import numpy as np
import scipy.sparse as sparse
import scipy.linalg as sla
import scipy.sparse.linalg as spla
import matplotlib.pyplot as plt
%matplotlib inline
Let's make a random sparse matrix
First we'll set the density so that $$ density = \frac{nnz(A)}{n^2} $$
n = 100
density = 10.0 / n # 5 points per row
nnz = int(n*n*density)
Now make the entries:
row = np.random.random_integers(low=0, high=n-1, size=nnz)
col = np.random.random_integers(low=0, high=n-1, size=nnz)
data = np.ones(nnz, dtype=float)
A = sparse.coo_matrix((data, (row, col)), shape=(n, n))
print(A.dtype)
But let's make it positive definite:
A.data[:] = -1.0 # -1 for off-diagonals
rowsum = -np.array(A.sum(axis=1)) + 1 # positive rowsum
rowsum = rowsum.ravel()
A.setdiag(rowsum)
u = np.random.rand(n)
v = np.random.rand(n)
A = A.tocsc()
%timeit s = spla.splu(A)
plt.spy(A, marker='.')
B = A.todense()
%timeit p, L, U = sla.lu(B)
s = spla.splu(A)
plt.spy(s.L, marker='.')