import numpy as np
import scipy.sparse as sparse
import scipy.linalg as sla
import scipy.sparse.linalg as spla
import matplotlib.pyplot as plt
%matplotlib inline
Let's make a random sparse matrix
First we'll set the density so that $$ density = \frac{nnz(A)}{n^2} $$
n = 100
density = 10.0 / n # 5 points per row
nnz = int(n*n*density)
Now make the entries:
def randsp(n, density):
nnz = int(n*n*density)
row = np.random.random_integers(low=0, high=n-1, size=nnz)
col = np.random.random_integers(low=0, high=n-1, size=nnz)
data = np.ones(nnz, dtype=float)
A = sparse.coo_matrix((data, (row, col)), shape=(n, n))
return A
But let's make it positive definite:
A = randsp(100, 5/100.)
plt.spy(A, marker='.')
A = randsp(100, 2/100.)
plt.spy(A, marker='.')
A = randsp(100, 50/100.)
plt.spy(A, marker='.')
A = randsp(100, 25/100.)
plt.spy(A, marker='.')