




More General Functions

◦ Is this technique limited to the monomials {1, x , x2, x3, ...}?



Interpolation with General Sets of Functions

For a general set of functions {ϕ1, ..., ϕn}, solve the linear system with the
generalized Vandermonde matrix for the coefficients (a1, ..., an):
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◦ Given those coefficients, what is the interpolant f̃ satisfying f̃ (xi)= f (xi)?



3 Making Models with Monte Carlo



Randomness: Why?

◦ What types of problems can we solve with the help of random numbers?



Random Variables

◦ What is a random variable?



Demo: Plotting Distributions with Histograms



Averages: What?

◦ Define ‘expected value’ of a random variable.

◦ Define variance of a random variable.



Normalization

◦ What is E [1]? Yes, the expected value of 1?



Expected Value: Example I

◦ What is the expected snowfall in Champaign?



Expected Value: Example II

◦ What is the expected snowfall in Illinois?



Tool: Law of Large Numbers

Terminology:

• Sample: A random number xi whose values follow a distribution p(x).

In words:

• As the number of samples N→∞, the average of samples converges
to the expected value with probability 1.

In symbols:

P

"

lim
N→∞

1

N

 
X

n=1

N

xi

!

=E [X ]

#

=1.

Or:

E [X ]≈ 1

N

 
X

n=1
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xi

!



Sampling: Approximating Expected Values

Integrals and sums in expected values are often challenging to evaluate.

◦ How can we approximate an expected value?

Idea: Draw random samples. Make sure they are distributed according to
p(x).

◦ What is a Monte Carlo method?



Sampling II: Approximating Expected Values

◦ What if I can’t sample from p(x)?

Idea: Draw uniformly distributed random samples.



Demo: Computing π using Sampling
Demo: Errors in Sampling



Sampling III: Importance Sampling

Integrals and sums in expected values are often challenging to evaluate.

Idea: Draw random samples from a sampling distribution q.

1. Draw N samples xi distributed according to q(x).

2. Possibly: Reject sample if p(xi)= 0.

3. Approximate

E [f (X )]≈
X

i=1

N

f (xi)
p(xi)

q(x)
.

◦ When is this a good way to sample?



Sampling: Error

The Central Limit Theorem states that with

Sn := x1+ x2+ ···+ xn

for the (xi) independent and identically distributed we have that

Sn − nE [xi ]

σ2[xi ]n
p →N (0, 1),

i.e. that term approaches the normal distribution. Or, short and imprecise:
�
�
�
�

1

n
Sn −E [xi ]
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n
√
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.



Computers and Random Numbers

[from xkcd]

◦ How can a computer make random numbers?



Random Numbers: What do we want?

◦ What properties can ‘random numbers’ have?



What’s a Pseudorandom Number?

◦ Actual randomness seems like a lot of work. How about ‘pseudorandom
numbers?’



Demo: Playing around with Random Number Generators



Some Pseudorandom Number Generators

Lots of variants of this idea:

• LC: ‘Linear congruential’ generators

• MT: ‘Mersenne twister’

Remarks:

• Initial state and parameter choice often surprisingly tricky.
Bad choice: Predictable/correlated numbers.
E.g. Debian OpenSSL RNG disaster

• Absolutely no reason to use LC or MT any more. (Although
almost all randonumber generators you’re likely to find are based on
those–Python’s random module, numpy.random, C’s rand(), C’s
rand48().

• These are obsolete.



Counter-Based Random Number Generation (CBRNG)

◦ What’s a CBRNG?



4 Sources of Error in Computational Models



5 Accuracy and Convergence



6 Floating Point



Wanted: Real Numbers... in a computer

◦ Computers can represent integers, using bits:

23=1 · 24+0 · 23+1 · 22+1 · 21+1 · 20=(10111)2

How would we represent fractions?



Fixed-Point Numbers

◦ Suppose we use units of 64 bits, with 32 bits for exponents �0 and 32
bits for exponents <0. What numbers can we represent?

◦ How many ‘digits’ of relative accuracy (think relative rounding error) are
available for the smallest vs. the largest number?



Floating Point numbers

◦ Convert 13=(1101)2 into floating point representation.

◦ What pieces do you need to store an FP number?



In-class activity: Floating Point



Unrepresentable numbers?

◦ Can you think of a somewhat central number that we cannot represent as

x =(1._________)2 · 2−p?



Demo: Picking apart a floating point number



Subnormal Numbers

◦ What is the smallest representable number in an FP system with 4 stored
bits in the significand and an exponent range of [−7, 7]?



Running out of digits

◦ Suppose you store π in a floating point number. What do you get?



Demo: Density of Floating Point Numbers
Demo: Floating Point vs. Program Logic



Floating Point and Rounding Error

What is the relative error produced by working with floating point numbers?
◦ What is smallest floating point number > 1? Assume 4 bits in the signif-

icand.

◦ What’s the smallest FP number > 1024 in that same system?

◦ Can we give that number a name?

◦ What does this say about the relative error incurred in floating point
calculations?

◦ What’s that same number for double-precision floating point? (52 bits in
the significand)





Demo: Floating Point and the Harmonic Series



Implementing Arithmetic

◦ How is floating point addition implemented?
Consider adding a= (1.101)2 · 21 and b= (1.001)2 · 2−1 in a system with
three bits in the significand.



Problems with FP Addition

◦ What happens if you subtract two numbers of very similar magnitude?
As an example, consider a=(1.1011)2 ·20 and b=(1.1010)2 · 20.



Demo: Catastrophic Cancellation



Part 2:
Arrays–Computing with Many

Numbers



7 Modeling the World with Arrays

7.1 The World in a Vector



7.2 What can Matrices Do?



7.3 Graphs



8 Norms and Errors



Recap: Norms
◦ What’s a norm?

◦ Define norm.

◦ Examples of norms?

◦ Does the choice of norm really matter much?



Demo: Vector norms [Make sure this covers unit balls]



Norms and Errors

◦ If we’re computing a vector result, the error is a vector.
That’s not a very useful answer to ‘how big is the error’.
What can we do?



Absolute and Relative Error

◦ What are the relative and absolute errors in approximating [TODO] the
location of Siebel center as ...?



Matrix Norms

◦ What norms would we apply to matrices?



Demo: Matrix norms
In-class activity: Matrix norms



Properties of Matrix Norms

Matrix norms inherit the vector norm properties:

1. kAk> 0⇔A=/ 0.

2. kγAk= |γ |kAk for all scalars γ.

3. Obeys triangle inequality kA+Bk� kAk+ kBk
◦ But also some more properties that stem from our definition:



Conditioning

◦ Now, let’s study conditioning of solving a linear system

Ax = b.



Demo: Condition number visualized
In-class activity: Matrix Conditioning
Demo: Conditioning of 2× 2 Matrices



Residual and Error

◦ What is the residual vector of solving the linear system

b=Ax?

◦ How do the (norms of the) residual vector r and the error Δx = x − x̂

relate to one another?



9 The ‘Undo’ Button for Linear Operations:
LU



10 LU: Applications



10.1 Interpolation



11 Repeating Linear Operations: Eigenvalues
and Steady States



12 Eigenvalues: Applications



13 Approximate Undo: SVD and Least
Squares



14 Least Squares: Applications



14.1 Data Fitting



Part 3:
Approximation–When the

Exact Answer is Out of Reach



15 Iteration and Convergence



16 Solving One Equation



17 Solving Many Equations



18 Finding the Best: Optimization in 1D



19 Optimization in n Dimensions


