

$$p(x) = q_0 + q_1 \sin(x) + q_2 \cos(x) + a_3 \sin(2x) + a_4 \cos(4x)$$

$$cos(0x)$$

$$a_{440} \sin(440.2\pi \cdot t)$$

$$x^{440}$$

More General Functions

• Is this technique limited to the monomials $\{1, x, x^2, x^3, ...\}$?

Interpolation with General Sets of Functions

For a general set of functions $\{\varphi_1, ..., \varphi_n\}$, solve the linear system with the generalized Vandermonde matrix for the coefficients $(a_1, ..., a_n)$:

$$\underbrace{\begin{pmatrix} \varphi_1(x_1) & \varphi_2(x_1) & \cdots & \varphi_n(x_1) \\ \varphi_1(x_2) & \varphi_2(x_2) & \cdots & \varphi_n(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1(x_n) & \varphi_2(x_n) & \cdots & \varphi_n(x_n) \end{pmatrix}}_{q_n(x_n)} \underbrace{\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}}_{a} = \underbrace{\begin{pmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{pmatrix}}_{f}.$$

• Given those coefficients, what is the interpolant \tilde{f} satisfying $\tilde{f}(x_i) = f(x_i)$?

3 Making Models with Monte Carlo

Randomness: Why?

• What types of problems can we solve with the help of random numbers?

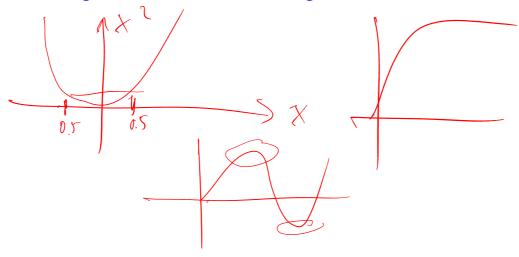
Random Variables

probabling

• What is a random variable?

 $X \in (a,b)$ has prib. 0.1X = 0.125 has grib 0.1

Demo: Plotting Distributions with Histograms



Averages: What?

(antihum) $P(x \in (a, b))$ $P(x) \in (a, b)$ $= \int_{a}^{b} p(x) dx$

Define 'expected value' of a random variable.

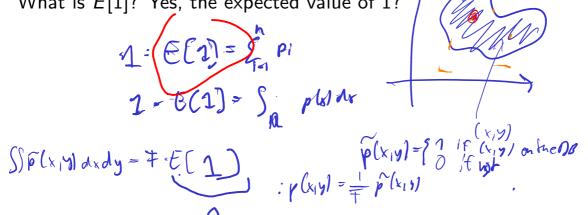
$$E(X) = \begin{cases} x & b(x) & dx \end{cases}$$

$$E(J(x)) = E(J(x)) \cdot p(x) = E(J(x)) = SJ(x) \cdot p(x) \cdot ax$$

Variance of avantow variables

Normalization

What is E[1]? Yes, the expected value of 1?



Expected Value: Example I

• What is the expected snowfall in Champaign?

$$\frac{F(S_{Now}) = S(hov(A), p(A))}{p(A) = 1}$$

$$p(A) = 1$$

$$367$$

Expected Value: Example II

• What is the expected snowfall in Illinois?

$$E[S_{40}] = S[x_{0}] \times [x_{1}] \times [x_{2}] \times [x_{2}]$$

$$E[S_{40}] \times [x_{2}] \times$$

Tool: Law of Large Numbers

Terminology:

• Sample: A random number x_i whose values follow a distribution p(x).

In words:

• As the number of samples $N \to \infty$, the average of samples converges to the expected value with probability 1.

In symbols:

$$P\left[\lim_{N\to\infty}\frac{1}{N}\left(\sum_{n=1}^{N}x_i\right)=E[X]\right]=1.$$

Or:

$$E[X] \approx \frac{1}{N} \left(\sum_{n=1}^{N} x_i \right)$$

Sampling: Approximating Expected Values

Integrals and sums in expected values are often challenging to evaluate.

How can we approximate an expected value?

Idea: Draw random samples. Make sure they are distributed according to p(x).

• What is a Monte Carlo method?

Sampling II: Approximating Expected Values

• What if I can't sample from p(x)?

Idea: Draw uniformly distributed random samples.

Demo: Computing π using Sampling

Demo: Errors in Sampling

Sampling III: Importance Sampling

Integrals and sums in expected values are often challenging to evaluate.

Idea: Draw random samples from a sampling distribution q.

- 1. Draw N samples x_i distributed according to q(x).
- 2. Possibly: Reject sample if $p(x_i) = 0$.
- 3. Approximate

$$E[f(X)] \approx \sum_{i=1}^{N} f(x_i) \frac{p(x_i)}{q(x)}.$$

• When is this a good way to sample?

Sampling: Error

The Central Limit Theorem states that with

$$S_n := x_1 + x_2 + \cdots + x_n$$

for the (x_i) independent and identically distributed we have that

$$\frac{S_n - n E[x_i]}{\sqrt{\sigma^2[x_i]n}} \to \mathcal{N}(0,1),$$

i.e. that term approaches the normal distribution. Or, short and imprecise:

$$\left|\frac{1}{n}S_n - E[x_i]\right| = O\left(\frac{1}{\sqrt{n}}\right).$$

Computers and Random Numbers

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

[from xkcd]

How can a computer make random numbers?

Random Numbers: What do we want?

• What properties can 'random numbers' have?

What's a Pseudorandom Number?

 Actual randomness seems like a lot of work. How about 'pseudorandom numbers?' **Demo:** Playing around with Random Number Generators

Some Pseudorandom Number Generators

Lots of variants of this idea:

- LC: 'Linear congruential' generators
- MT: 'Mersenne twister'

Remarks:

- Initial state and parameter choice often surprisingly tricky.
 - Bad choice: Predictable/correlated numbers.
 - E.g. Debian OpenSSL RNG disaster
- Absolutely no reason to use LC or MT any more. (Although almost all randonumber generators you're likely to find are based on those-Python's random module, numpy.random, C's rand(), C's rand48().
- These are obsolete.

Counter-Based Random Number Generation (CBRNG)

o What's a CBRNG?

4 Sources of Error in Computational Models

5 Accuracy and Convergence

6 Floating Point

Wanted: Real Numbers... in a computer

Computers can represent integers, using bits:

$$23 = 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = (10111)_2$$

How would we represent fractions?

Fixed-Point Numbers

Suppose we use units of 64 bits, with 32 bits for exponents ≥0 and 32 bits for exponents <0. What numbers can we represent?</p>

 How many 'digits' of relative accuracy (think relative rounding error) are available for the smallest vs. the largest number?

Floating Point numbers

• Convert $13 = (1101)_2$ into floating point representation.

• What pieces do you need to store an FP number?

In-class activity: Floating Point

Unrepresentable numbers?

Can you think of a somewhat central number that we cannot represent as

$$x = (1._{---})_2 \cdot 2^{-p}$$
?

Demo: Picking apart a floating point number

Subnormal Numbers

• What is the smallest representable number in an FP system with 4 stored bits in the significand and an exponent range of [-7, 7]?

Running out of digits

 \circ Suppose you store π in a floating point number. What do you get?

Demo: Density of Floating Point Numbers

Demo: Floating Point vs. Program Logic

Floating Point and Rounding Error

What is the relative error produced by working with floating point numbers?

• What is smallest floating point number > 1? Assume 4 bits in the significand.

- What's the smallest FP number > 1024 in that same system?
- Can we give that number a name?
- What does this say about the relative error incurred in floating point calculations?

 What's that same number for double-precision floating point? (52 bits in the significand)

Demo: Floating Point and the Harmonic Series

Implementing Arithmetic

How is floating point addition implemented? Consider adding $a = (1.101)_2 \cdot 2^1$ and $b = (1.001)_2 \cdot 2^{-1}$ in a system with three bits in the significand.

Problems with FP Addition

What happens if you subtract two numbers of very similar magnitude? As an example, consider $a = (1.1011)_2 \cdot 2^0$ and $b = (1.1010)_2 \cdot 2^0$.

Demo: Catastrophic Cancellation

Part 2: Arrays-Computing with Many Numbers

7 Modeling the World with Arrays

7.1 The World in a Vector

7.2 What can Matrices Do?

7.3 Graphs

8 Norms and Errors

• What's a norm?

Define norm.

Examples of norms?

Ooes the choice of norm really matter much?

Demo: Vector norms [Make sure this covers unit balls]

Norms and Errors

If we're computing a vector result, the error is a vector.
 That's not a very useful answer to 'how big is the error'.
 What can we do?

Absolute and Relative Error

• What are the relative and absolute errors in approximating [TODO] the location of Siebel center as ...?

Matrix Norms

• What norms would we apply to matrices?

Demo: Matrix norms

In-class activity: Matrix norms

Properties of Matrix Norms

Matrix norms inherit the vector norm properties:

- 1. $||A|| > 0 \Leftrightarrow A \neq \mathbf{0}$.
- 2. $\|\gamma A\| = |\gamma| \|A\|$ for all scalars γ .
- 3. Obeys triangle inequality $||A + B|| \le ||A|| + ||B||$
- But also some more properties that stem from our definition:

Conditioning

Now, let's study conditioning of solving a linear system

$$Ax = b$$
.

Demo: Condition number visualized **In-class activity:** Matrix Conditioning **Demo:** Conditioning of 2×2 Matrices

Residual and Error

What is the residual vector of solving the linear system

$$\boldsymbol{b} = A\boldsymbol{x}$$
?

• How do the (norms of the) residual vector \mathbf{r} and the error $\Delta \mathbf{x} = \mathbf{x} - \hat{\mathbf{x}}$ relate to one another?

9 The 'Undo' Button for Linear Operations: LU

10 LU: Applications

10.1 Interpolation

11 Repeating Linear Operations: Eigenvalues and Steady States

12 Eigenvalues: Applications

13 Approximate Undo: SVD and Least Squares

14 Least Squares: Applications

14.1 Data Fitting

Part 3: Approximation—When the Exact Answer is Out of Reach

15 Iteration and Convergence

16 Solving One Equation

17 Solving Many Equations

18 Finding the Best: Optimization in 1D

19 Optimization in *n* Dimensions