Pl

L~/

A
/5

\ .

WR\LIM\\ AN

1\

h-1

X

e _f qr'\!

G+ q,wq@(l*

o~
_—

V\/K)
\SZN




po)=a, ] g, sfn[x) 44y cos(x) +a, s/u(%/-mu(.eos]vs/)

i
(05(0\()

ozw)gll,\ | Y40y {i}

~ by




More General Functions

o s this technique limited to the monomials {1, x, x2,x3,...}7



Interpolation with General Sets of Functions

For a general set of functions {1, ..., ¢, }, solve the linear system with the
generalized Vandermonde matrix for the coefficients (ay, ..., ap):

1(X1) 2(X1 o @nlX1 a1

( il(Xz) Zzz(xz) : in(Xz) \/ \ ( f(Xz) \
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o Given those coefficients, what is the interpolant f satisfying f (x;)=f(x;)?




3 Making Models with Monte Carlo



Randomness: Why?
o  What types of proble.ms can we solve with the help of random numbers?
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Random Variables

o What is a random variable?
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Demo: Plotting Distributions with Histograms
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o Define ‘expected value' of a random variable.
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o Define variance o om variable. .
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Normalization

o What is E[1]? Yes, the expected value of 17
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Expected Value: Example |
o What is the expected snowfall in Champaign? (/\)
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Expected Value: Example Il

o What is the expected snowfall in lllinois?

A Saov )= (S St ol dy
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Tool: Law of Large Numbers
Terminology:

e Sample: A random number x; whose values follow a distribution p(x).
In words:

e As the number of samples N — oo, the average of samples converges
to the expected value with probability 1.

In symbols:

=1

PlNleoo %(Zl x,-> = E[X]
1 N

Or:



Sampling: Approximating Expected Values

Integrals and sums in expected values are often challenging to evaluate.
o How can we approximate an expected value?

Idea: Draw random samples. Make sure they are distributed according to

p(x).
o What is a Monte Carlo method?



Sampling Il: Approximating Expected Values
o  What if | can’t sample from p(x)?

Idea: Draw uniformly distributed random samples.



Demo: Computing 7 using Sampling
Demo: Errors in Sampling



Sampling Ill: Importance Sampling

Integrals and sums in expected values are often challenging to evaluate.
Idea: Draw random samples from a sampling distribution q.

1. Draw N samples x; distributed according to g(x).
2. Possibly: Reject sample if p(x;)=0.
3. Approximate

E[F(X)] ~ ZN: F(x)PL9).

P q(x)

o  When is this a good way to sample?



Sampling: Error
The Central Limit Theorem states that with
Sni=x1+ X+ + X,
for the (x;) independent and identically distributed we have that
Sn — n E[xi] R

Vo?[xi]n

i.e. that term approaches the normal distribution. Or, short and imprecise:

()

N(0,1),
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Computers and Random Numbers

int getRundmNumberO

return 4. // chosen by fair dice roll.
// Quaranteed to be random.

[from xked]
o How can a computer make random numbers?



Random Numbers: What do we want?

o What properties can ‘random numbers’ have?



What’s a Pseudorandom Number?

o Actual randomness seems like a lot of work. How about ‘pseudorandom
numbers?’



Demo: Playing around with Random Number Generators



Some Pseudorandom Number Generators
Lots of variants of this idea:

e LC: ‘Linear congruential’ generators

e MT: ‘Mersenne twister’

Remarks:

e |Initial state and parameter choice often surprisingly tricky.
Bad choice: Predictable/correlated numbers.
E.g. Debian OpenSSL RNG disaster

e Absolutely no reason to use LC or MT any more. (Although
almost all randonumber generators you're likely to find are based on
those—Python’s random module, numpy.random, C's rand(), C's
rand48().

e These are obsolete.



Counter-Based Random Number Generation (CBRNG)
o  What's a CBRNG?



4 Sources of Error in Computational Models



5 Accuracy and Convergence



6 Floating Point



Wanted: Real Numbers... in a computer

o Computers can represent integers, using bits:
23=1-2+0-23+1-224+1-21+1-2°=(10111),

How would we represent fractions?



Fixed-Point Numbers

o Suppose we use units of 64 bits, with 32 bits for exponents >0 and 32
bits for exponents <0. What numbers can we represent?

o How many 'digits’ of relative accuracy (think relative rounding error) are
available for the smallest vs. the largest number?



Floating Point numbers

o Convert 13=(1101); into floating point representation.

o What pieces do you need to store an FP number?



In-class activity: Floating Point



Unrepresentable numbers?

o Can you think of a somewhat central number that we cannot represent as



Demo: Picking apart a floating point number



Subnormal Numbers

o What is the smallest representable number in an FP system with 4 stored
bits in the significand and an exponent range of [—7,7]?



Running out of digits

o Suppose you store 7 in a floating point number. What do you get?



Demo: Density of Floating Point Numbers
Demo: Floating Point vs. Program Logic



Floating Point and Rounding Error

What is the relative error produced by working with floating point numbers?
o What is smallest floating point number > 1?7 Assume 4 bits in the signif-
icand.

o What's the smallest FP number > 1024 in that same system?

o Can we give that number a name?

o What does this say about the relative error incurred in floating point
calculations?

o What's that same number for double-precision floating point? (52 bits in
the significand)






Demo: Floating Point and the Harmonic Series



Implementing Arithmetic

o How is floating point addition implemented?
Consider adding a = (1.101),- 2! and b= (1.001),-27! in a system with
three bits in the significand.



Problems with FP Addition

o What happens if you subtract two numbers of very similar magnitude?
As an example, consider a=(1.1011),-2° and b= (1.1010),- 2°.



Demo: Catastrophic Cancellation



Part 2:
Arrays—Computing with Many
Numbers



7 Modeling the World with Arrays
7.1 The World in a Vector



7.2 What can Matrices Do?



7.3 Graphs



8 Norms and Errors



Recap: Norms
o  What's a norm?

o Define norm.

o Examples of norms?

o Does the choice of norm really matter much?



Demo: Vector norms [Make sure this covers unit balls]



Norms and Errors

o If we're computing a vector result, the error is a vector.
That's not a very useful answer to ‘how big is the error’.
What can we do?



Absolute and Relative Error

o What are the relative and absolute errors in approximating [TODO] the
location of Siebel center as ...7



Matrix Norms

o What norms would we apply to matrices?



Demo: Matrix norms
In-class activity: Matrix norms



Properties of Matrix Norms
Matrix norms inherit the vector norm properties:
1. |Al>0< A+£0.
2. [[7Al = |7]||A|| for all scalars 7.
3. Obeys triangle inequality |A+ B|| < ||A|| + || B||

o But also some more properties that stem from our definition:



Conditioning
o Now, let's study conditioning of solving a linear system

Ax = b.



Demo: Condition number visualized
In-class activity: Matrix Conditioning
Demo: Conditioning of 2 x 2 Matrices



Residual and Error

o What is the residual vector of solving the linear system

b= Ax?

o How do the (norms of the) residual vector r and the error Ax = x — x
relate to one another?



EUThe ‘Undo’ Button for Linear Operations:



10 LU: Applications



10.1 Interpolation



11 Repeating Linear Operations: Eigenvalues
and Steady States



12 Eigenvalues: Applications



13 Approximate Undo: SVD and Least
Squares



14 Least Squares: Applications



14.1 Data Fitting



Part 3:
Approximation—When the
Exact Answer is QOut of Reach



15 Iteration and Convergence



16 Solving One Equation



17 Solving Many Equations



18 Finding the Best: Optimization in 1D



19 Optimization in n Dimensions



