

Demo: Choice of Nodes for Polynomial Interpolation

Interpolation: Choosing Basis Function and Nodes

• Monomials
$$1, x, x^2, x^3, x^4, ...$$

$$ullet$$
 Functions that make $V=I
ightarrow$ 'Lagrange basis'

• Functions that make
$$V$$
 triangular \rightarrow 'Newton basis'

Ideas for nodes:

- Equispaced
- 'Edge-Clustered' (so-called Chebyshev/Gauss/... nodes)

Better Conditioning: Orthogonal Polynomials

- What caused monomials to have a terribly conditioned Vandermonde?
- What's a way to make sure two vectors are *not* like that?
- But polynomials are functions!

But how can I practically compute the Legendre polynomials?

Another Family of Orthogonal Polynomials: Chebyshev

Three equivalent definitions:

- Result of Gram-Schmidt with weight $1/\sqrt{1-x^2}$
 - What is that weight?

$$T_k(x) = \cos(k\cos^{-1}(x))$$

•
$$T_k(x) = 2x T_k(x) - T_{k-1}(x)$$

Demo: Chebyshev interpolation part I

• What are good nodes to use with Chebyshev polynomials?

$$X_{i} = \cos(X_{i}) = \cos(K \cdot \cos^{-1}(X_{i}))$$

$$X_{i} = \cos(Y_{i}) \longrightarrow \cos(K \cdot y_{i})$$

Chebyshev Nodes

Might also consider zeros (instead of roots) of
$$T_k$$
:
$$x_i = \cos\left(\frac{2i+1}{2k}\pi\right) \quad (i=1...,k).$$

The Vandermonde for these (with T_k) can be applied in $O(N \log N)$ time, too.

It turns out that we were still looking for a good set of interpolation nodes.

 We came up with the criterion that the nodes should bunch towards the ends. Do these do that?

Demo: Chebyshev interpolation part II

Calculus on Interpolants

Suppose we have an interpolant $\tilde{f}(x)$ with $f(x_i) = \tilde{f}(x_i)$ for i = 1, ..., n:

$$\tilde{f}(x) = \alpha_1 \varphi_1(x) + \dots + \alpha_n \varphi_n(x)$$

How do we compute the derivative of f?

Suppose we have function values at nodes $(x_i, f(x_i))$ for i = 1, ..., n for a function f. If we want $f'(x_i)$, what can we do?

About Differentiation Matrices

How could you find coefficients of the derivative?

Give a matrix that finds the second derivative.

Demo: Taking derivatives with Vandermonde matrices