

Outline

Python, Numpy, and Matplotlib

Programming Language: Python/numpy

» Reasonably readable

» Reasonably beginner-friendly

» Mainstream (top 5 in ‘TIOBE Index’)

» Free, open-source

» Great tools and libraries (not just) for scientific computing
» Python 2/37 3!

» numpy: Provides an array datatype
Will use this and matplotlib all the time.

> See class web page for learning materials

» Demo: Python
» Demo: numpy

» In-class activity: Image Processing

https://relate.cs.illinois.edu/course/cs357-s17/flow/inclass-image-stencil/start

Outline

Making Models with Polynomials:
Taylor Series

Why polynomials?

a3x3 + a2x2 +aix + ag

How do we write a general degree n polynomial?

n
g a;x’.
i=0

Why polynomials and not something else?

» We can add, multiply, maybe divide (grade school, computer
HW)

» More complicated functions (e*, sinz, 1/x) have to be built
from those parts — at least approximately

Why polynomials? (II)

> Easy to work with as a building block.
General recipe for numerics: Model observation with a
polynomial, perform operation on that, evaluate. (e.g. calculus,
root finding)

Reconstructing a Function From Derivatives

Given f(xo), f'(x0), f"(x0), ... can we reconstruct a polynomial

f?

flx)=27747772 + 77222 4 . ..
For simplicity, let us consider g = 0 and a degree 4 polynomial f

f(x) =ap +a12 + a2x2 = a3x3 + a4zv4

Note that ag = f(0). Now, take a derivative
f(z) = a1 + 2a2z + 3asz? + dagx®
we see that a; = f/(0), differntiating again
f"(x) = 2as + 3 - 2a3z +4- 3ayx?
yields as = f(0)/2, and finally
f"(x) =3-2a3+4-32a4x

yields az = f"(0)/3!. In general, a; = f©(0)/i!.

Reconstructing a Function From Derivatives
Found: Taylor series approximation.

FO+2) ~ F(0)+ f'(0)z + f';(mﬁ L

The general Taylor expansion with center g = 0 is

O £(9) .
fay =3 L0
=0

1

Demo: Polynomial Approximation with Derivatives (click to visit)
(Part 1)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/poly/Polynomial Approximation with Derivatives.html

Shifting the Expansion Center

Can you do this at points other than the origin?

In this case, 0 is the center of the series expansion. We can obtain a
Taylor expansion of f centered at x(by defining a shifted function

g(x) = f(x + x0)

The Taylor expansion g with center 0 is as before

Shifting the Expansion Center (I1)

It suffices to note that f()(zq) = ¢()(0) to get the general form

@) (g . s
z(') (x—mp)* or flxzo+h) = Z
i=0

f(i)(fﬂ)i
!Oh

7

jw =31

=0

Errors in Taylor Approximation (1)

Can’t sum infinitely many terms. Have to truncate. How big of
an error does this cause?

Demo: Polynomial Approximation with Derivatives (click to visit)
(Part I1)

Suspicion, as h — 0, we have

- f(i)(fL’O) i n+1
‘f($0+h)_iz;i!h <C-h
Taylor error for degree n
or
n .
f(l) € i n
lf(:vo +h) - z; Z.(!O)h = O(h")

Vv
Taylor error for degree n

As we will see, there is a satisfactory bound on C' for most functions

f.

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/poly/Polynomial Approximation with Derivatives.html

Making Predictions with Taylor Truncation Error

Suppose you expand v/x — 10 in a Taylor polynomial of degree 3
about the center xg = 12. For h; = 0.5, you find that the Taylor
truncation error is about 104,

What is the Taylor truncation error for hy = 0.257

Error(h) = O(h™*!), where n = 3, i.e.
Error(hi) =~ C - hi
Error(hy) ~ C - h3

While not knowing C' or lower order terms, we can use the ratio of
ha/h1

h ha*
Error(hy) ~ C -h3 = C - hi 2) ~ Error(hy) - -2
h1 hl
Can make prediction of the error for one h if we know another.
Demo: Polynomial Approximation with Derivatives (click to visit)
(Part 1lI)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/poly/Polynomial Approximation with Derivatives.html

Taylor Remainders: the Full Truth

Let f: R — R be (n + 1)-times differentiable on the interval
(z0,2) with f(") continuous on [zg,z]. Then there exists a
€ € (zo,x) so that

@ () (n+1)
f(x() + h) . Z f Z(' 0) Bt = f (5) (é— o IL‘o)nJrl

— (n+1)!
= N —
s

and since |§ — zg| < h

noor@) . (n+1)
=0
g

Intuition for Taylor Remainder Theorem

Given the value of a function and its derivative f(zg), f'(zo), prove
the Taylor error bound.

We express f(x) as
@) = fGa0) + [F(an)duay

We then express the integrand f’(wg) for wy € [zg, x] using f” in
the same way

T wo

@) = fGao) + |

o

(70 + [1w) du

Zo

= f(a0) + @) — o)+ [(B f”(wl)dw1>dwo

zo 0

Taylor expansion t1(x)

Intuition for Taylor Remainder Theorem (lI)
We can bound the error by finding the maximizer

§= argmaxec(zy, |f”(§)|

@)~ (w° e)\dw1>dw0
©

2

(z)] <
‘f (z — o)

el
2! n

|f(xo+h) —ti(zo + h)| < forc =x9+h

In-class activity: Taylor series

https://relate.cs.illinois.edu/course/cs357-s17/flow/inclass-taylor/start

Proof of Taylor Remainder Theorem

We can complete the proof by induction of the Taylor degree
expansion n

flz) =tna1(z //wo /wnlf(n Wy)dwy, - - - dwg

Given the formula above, it suffices to expand
£ wa) = 10 + [£ (w1
zo
Inserting this back in gives us the next inductive hypothesis

f(n) (z0)

f(a) = tua(a) + T

Taylor expansion t, (z)

wo Wn,
/ / f("+1)(wn+1)dwn+1 -+ - dwo

(z — x0)"

Proof of Taylor Remainder Theorem (II)

The bound follows as for n =1, with § = argmaxec(y 4] |F D (€)]

)t |</)/ {/ £ () du g -
xo xo

=it
F@o+) — talwo+h)| < 2Oyt g o 0o

(n+1)!

Using Polynomial Approximation

Suppose we can approximate a function as a polynomial:

f(z) = ap+ a1z + a2x2 + a3x3.

How is that useful?
E.g.: What if we want the integral of f7

Easy: Just integrate the polynomial:

/: f(x)dx

Q

t
/ ap + a1z + asx?® + azzidx
S

t t t t
= ao/ 1dx+a1/ a:-d:c—i—ag/ .TZd.CC—i-ag/ 23dx
S S S S

Even if you had no idea how to integrate f using calculus, you can
approximately integrate f anyway, by taking a bunch of derivatives
(and forming a Taylor polynomial).

Demo: Computing Pi with Taylor (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/poly/Computing Pi with Taylor.html

Outline

Making Models with Polynomials:
Interpolation

Reconstructing a Function From Point Values

If we know function values at some points f(x1), f(2z2),..., f(zn),
can we reconstruct the function as a polynomial?

F(z) =77+ + 77722 + - -

In particular, we'd like to obtain aq, as, ... to satisfy equations:
a0+a1-$1+a2‘$%+"' = f(x1)
2 —
ag+ay-zpt+az -+ = f(zn)

Q: How many a; can we (uniquely) determine this way? (Answer:
n—same number of unknowns as equations.)

Reconstructing a Function From Point Values (II)

The equations for these n-unkowns are
ap+ar a1 +az-ri 4+t an_y -2}t = f(2)
ap+ay-xntag 24 Fapg -2t = f(xn)

We can rewrite them in matrix form

1z - x’f‘l ao fxy)
1 xzy - a7l ay f(z2)
1 oz, - a7l an—1 f(zn)

<4
e
<

Reconstructing a Function From Point Values (IlI)

Thus, to find (ag,...,a,) we need to solve a linear system. This
gives us a degree n — 1 polynomial interpolant satisfying

f(z;) = f(x;) of the form

f@)=ao+ar-zpn+ay 22+ +ap1-a"?

Vandermonde Linear Systems

Polynomial interpolation is a critical component in many numerical
models.

V is called the Vandermonde matrix.

Main lesson:
V (coefficients) = (values at points).

This is called interpolation. xq,...,x,_1 are called the nodes.
The problem also has surprisingly ‘interesting’ numerical properties.

In other words, while solving this linear system may look bulletproof,
it can break in a number of ‘interesting’ ways. We will study these
in detail later.

Demo: Polynomial Approximation with Point Values (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/poly/Polynomial Approximation with Point Values.html

Error in Interpolation

How did the interpolation error behave in the demo?

To fix notation: f is the function we're interpolating. f is the
interpolant that obeys f(z;) = f(x;) for x; = x1 < ... < Xy.
h = x, — x1 is the interval length.

For z € [z1, 2, :
@) = f@)| = o)

Can predict errors with this just like for Taylor.

What is the error at the interpolation nodes?

Zero—we're matching the function exactly there.

Care to make an unfounded prediction? What will you call it?

Error in Interpolation (II)

It looks like approximating by an (n — 1)th degree polynomial
somewhat generally results in an O(h™) error. This is called
convergence of order n or nth order convergence.

Proof Intuition for Interpolation Error Bound

Let us consider an interpolant f based on n = 2 points so

f(x1) = f(z1) and f(22) = f(2).

The interpolation error is O((z2 — x1)?) for any x € [z1, 23], why?

Let us define the error function to be
E(z) = f(z) — f(z) sowehave E(z;)=0 and E(zs)=0.

Now note that
@2
/ E'(z)dx = E(x2) — E(x1) = 0.
1

This implies E'(z) cannot be strictly positive or strictly negative in
[1'1, (L‘Q], SO
Elze[m,mz]El(z) =0

Proof Intuition for Interpolation Error Bound (I1)
Having found z € (z1, 2z2) such that E'(z) = 0, we can proceed
analogously to the Taylor remainder theorem proof

E((I}) = E(xl) + /x E,(wo)dwo

= E(z1) + /: (E/(Z) + " E”(wl)dw1>dw0

1 4

L[o

Defining as x2 — x1 = h and assuming x € [x1, 3], we again look
for a maximizer § = argmaxecy, 4,1 [f” ()]

o= ‘/ (Zwo fl/(f)dw1>dw0 1(€)]

2!
PTG
- 2

Jz—z|- |y — 2

Proof of Interpolation Error Bound

We can use induction on n to show that if E(z) = f(z) — f(z)
has n zeros x1,...,x, and f is a degree n polynomial, then there
exist Y1, ..., Yn such that

E(m):/: /wo.../jn_l FOD (Vdwy, - dwo (1)

Y1
As before we start by writing

X
E(x) = E(x1) —1—/ E'(wo)dwo (2)
x
Now note that for each of n — 1 consecutive pairs x;, x;+1 we have

/ B @)ds = B(ws) — B(a) =0

i

Proof of Interpolation Error Bound (I1)

and so there are z; € (24, x;+1) such that E'(z;) = 0. By inductive
hypothesis

wo w1 Wn—1
E'(wo) :/ / / f("+1)(wn)dwn---dw1 (3)
z1 Y2 Yn

Substituting (3) into (2), we obtain (1) with y; = 21

Making Use of Interpolants

Suppose we can approximate a function as a polynomial:

f(z) = ap+ a1z + a2x2 + a3x3.

How is that useful? E.g. what if we want the integral of f?

Easy: Just integrate the interpolant:

/St f(x)dx

%

t
/ ag +ai1x + a2x2 + a3x3dx
S

t t t t
= ao/ 1dx—|—a1/ l‘-d$+a2/ :U2dx+a3/ z2dz
S S S S

Even if you had no idea how to integrate f using calculus, you can
approximately integrate f anyway, by taking a bunch of function
values (and forming an interpolant).

Demo: Computing Pi with Interpolation (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/poly/Computing Pi with Interpolation.html

More General Functions

Is this technique limited to the monomials {1,z, 2%, 23,...}?

No, not at all. Works for any set of functions {¢1,...,@,} for
which the generalized Vandermonde matrix

p1(r1) p2(71) on (1)
p1(w2) p2(x2) Pn(z2)
e1(en) ¢2(wn) o oalwn)

is invertible.

Interpolation with General Sets of Functions

For a general set of functions {¢1,..., ¥y}, solve the linear system
with the generalized Vandermonde matrix for the coefficients
(a1y...,an):

e1(x1) @2(z1) - enla1) a1 fz1)

p1(z2) @a(w2) -+ @n(x2) az | | flaz)

o1(zn) p2(zn) - n(Tn) an f(zn)

~————
\4 a f

Given those coefficients, what is the interpolant f satisfying

f(xi) = f(x:)?

f(l‘) = Z a;pi(x).
i=1

In-class activity: Interpolation

https://relate.cs.illinois.edu/course/cs357-s17/flow/inclass-interpolation/start

Outline

Making Models with Monte Carlo

Randomness: Why?

What types of problems can we solve with the help of random
numbers?

We can compute (potentially) complicated averages.
» Where does ‘the average’ web surfer end up? (PageRank)
» How much is my stock portfolio/option going to be worth?

» How will my robot behave if there is measurement error?

Random Variables

’What is a random variable? l

A random variable X is a function that depends on ‘the (random)
state of the world’.

Example: X could be

» ‘how much rain tomorrow?’, or

> ‘will my buttered bread land face-down?’
Idea: Since | don't know the entire state of the world (i.e. all the
influencing factors), | can't know the value of X.

— Next best thing: Say something about the average case.

To do that, | need to know how likely each individual value of X is.
| need a probability distribution.

Probability Distributions

What kinds of probability distributions are there?

» discrete distribution:

Event X=21 X=29 -+ X=2u,
Probability 1 Do e D

Need: p; > 0 for the word ‘probability’ to make sense.
» continuous distribution:

» Values are arbitrary real numbers
» Each individual value has zero probability
» But: Ranges ‘value in range/interval [a,b]" has non-zero

probability f;p(x)dm where p is the distribution function.
(Sometimes also called the probability density)

Need: p(x) > 0 for ‘probability’ to make sense.

Demo: Plotting Distributions with Histograms (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/mc/Plotting Distributions with Histograms.html

Expected Values/Averages: What?

Define the ‘expected value' of a random variable.

For a discrete random variable X:
Elf(X)] = Zpif(%)
i=1

For a continuous random variable:

Elf(X)) = /R f(2) - p()da

Define variance of a random variable.

o’[X] = E[(X — B[X])’] = E[X"] - E[X]*.

‘Average squared distance from the average’

Expected Value: Example |

What is the expected snowfall (e.g. per day) in Champaign?

E[Snow| = /000 s-p(s)ds

where
» Snow is a random variable distributed according to p(s),
> s is an integration variable—its name doesn’t matter,
> p(s) is the distribution (or density) function.

Note that we're integrating over all possible values of Snow.

Tool: Law of Large Numbers
Terminology:

» Sample: A sample s, ..., sy of a discrete random variable X
(with potential values z1,...,x,) selects each s; such that
s; = xj with probability p(x;).
In words:

» As the number of samples NV — oo, the average of samples
converges to the expected value with probability 1.

What can samples tell us about the distribution?

Sampling: Approximating Expected Values

Integrals and sums in expected values are often challenging to
evaluate.

How can we approximate an expected value?
Idea: Draw random samples. Make sure they are distributed

according to p(x).

1. Draw N samples s; distributed according to p(z).
2. Approximate

1 N
E[f(X)] = 5 > f(si)-

=1

What is a Monte Carlo (MC) method?

Monte Carlo methods are algorithms that compute approximations
of desired quantities or phenomena based on randomized sampling.

Expected Values with Hard-to-Sample Distributions

Computing the sample mean requires samples from the distribution

p(x) of the random variable X. What if such samples aren't
available?

Find a different distribution p(x) that we can sample from. Then:

= ‘plx)dr = a:p(x)-Naj x
BX) = [aepyis = [2B @)

The purpose of this exercise is that we can now apply the sample
mean to the last expected value, since p is easy to sample from.

Note 1: The random variable X is distributed according to p.
Note 2: Must ensure p(x) # 0 wherever p(z) # 0.

(Discrete case goes analogously.)

Switching Distributions for Sampling

Found: ~
p(X)

E[X]=E

Why is this useful for sampling?

Starting point: X is hard to sample from, X is easy to sample from
(think uniform). Both have known distribution functions p(z) and
p(z). Knowing p(x) does not imply that its easy to sample from X.

Then we can approximate E[X] by sampling §; from X:

%zsz .

CI.N CIJI

In-class activity: Monte-Carlo Methods

https://relate.cs.illinois.edu/course/cs357-s17/flow/inclass-mc/start

Sampling for Integrals

The machinery we have developed can actually be used to approxi-
mate arbitrary integrals. How?

We just have to rewrite them as an expected value with respect to
some distribution function p:

[stz = [251

)
9 1 Y g(5)
‘E[M)]”N;“ |

p(5i)

Note that we have switched to the random variable X under the
expected value to indicate that it is distributed according to p. We
also require that the samples §; are distributed according to p.

We are free to choose p as we like, as long as p(x) # 0 on €.
(It is obviously often also convenient if j is easy to sample. That's
why uniform distributions are often used.)

Expected Value: Example Il

What is the average snowfall in lllinois?

E[Snow| = /]R/RSnow(ﬂs,y) -p(z,y)dzdy?

What's p(z,y)? What's Snow(z,y)?
» Snow(x,y): expected snowfall at longitude = and latitude y in
(say) a day.
» p(x,y): Probability that a point with longitude x and latitude
y is in lllinois.

Expected Value: Example 11 (II)

Can check whether (z,y) is in lllinois, e.g. as

_ 1 if (x,y) is in lllinois,
alw,y) = { 0 if it's not.

But: Need p to be a probability density, i.e.

/]R/Rp(m,y)dacdy— 1.

Can ensure that by finding a scaling factor C' so that
p(z) =C - q(x).

» Find .

" Ja Jup(@ y)dzdy

by using sampling to approximate the integral. (How?)

C

Expected Value: Example 11 (III)

» And once more to compute

p(x,y)

E[Snow| = E |Snow
Puniform(z,y)

where we have chosen pypiform(z,y) to be an (easy-to-sample)
uniform distribution on a rectangle containing the state area.

Example: Computing a 2D Integral using Monte Carlo

Lets consider integrating f(z,y) on domain Q C [0, L]?

- /Q f(, y)dwdy = /0 ’ /0 ¥ @) 1ae,y)dady,

where 1g(z,y) =1 if (z,y) € Q and 1q(x,y) =0 if (z,y) ¢ Q.

If || is the area of domain €, then p(x,y) = ﬁlg(m,y} can be
interpreted as a probability distribution (the normalization ensures
its integral over the whole domain is equal to 1).

We can express GG as an expected value of a random variable Z
(which takes on 2D coordinate values),

— [QIE[f(2)] = |9 / / 7 (e, y)p(e, y)ddy.

Example: Computing a 2D Integral using Monte Carlo (I1)

We can approximate G based on samples of uniform random
variable X: (x1,41),. .., (zn,yn) € [0, 1]? with distribution
1

p(z,y) = 73, using only the function 1q(z,y),

p(X)
1

2

G = rmE[ﬂX) } — QI B[(X)p(X)]

!QW

Zf xlvyl 1‘27%)

L2N

== Z flxi, yi)la(x, vi).
i=1

Demo: Computing Pi using Sampling (click to visit)
Demo: Errors in Sampling (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/mc/Computing Pi using Sampling.html
https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/mc/Errors in Sampling.html

Sampling: Error

The Central Limit Theorem states that with
Sy =X1+Xo+---+ X,

for the (X;) independent and identically distributed according to
random variable X with variance o2, we have that

Sy — NE[X]
VoiN

i.e. that term approaches the normal distribution. As we increase
N, o2 stays fixed, so the asymptotic behavior of the error is

-] -o(i5)

— N(0, 1),

Proof Intuition for Central Limit Theorem

The Central Limit Theorem uses the fact that given N identically
distribution samples of random variable X with variance o%[X],
the average of the samples will have variance 0?[X]/N. Since
0?[X] = E[(E[X] — X)?] is the expected square of the deviation,
it tells us how far away the average of the samples is expected to
be from the real mean. Why is this the case?

Represent each sample s1, ..., sy by random variable X1,... Xy
(each one is identical to X, but all are independent).
Assume that

E[X]=FE[X;]=0.

By considering the variance of Sy = Zf\il X;/N, we can gauge the
expectation of how far their average is expected to deviate from
E[X] = 0. That variance is given by

o?[Sy] = E[S%] = E[(i){#]\f)j =]\;EKi_V:X)Q}

Proof Intuition for Central Limit Theorem (1)
We can separate that into parts

o?[Sn] = NQ(ZEXQ +Z Z

i=1 j=1,j#i

Since X; and X are independent, we have
E[X;Xj] —//xixjp(mi)p(xj)d:cidxj
= (/wip(ilfz‘)dfﬂz') </5L'jp(xj)d$j>
= FE[X;]E[X;]=0-0=0,
therefore, the previous expression simplifes to

o?[X]
N

1
o?[Sy] = N2§ E[X?] = NE[XQ]:
=1

Monte Carlo Methods: The Good and the Bad

What are some advantages of MC methods?

» Computes integrals when nothing else will
» Convergence does not depend on dimensionality

» Still applies when deterministic modeling fails

What are some disadvantages of MC methods?

» Convergence is very slow (O (1/y/n))

» Outcome is non-deterministic

Computers and Random Numbers

int getRondomNumber ()

return 4. // chosen by fair dice roll.
J// Quaranteed to be random.

[from xked]

How can a computer make random numbers?

It kind of can't. Computers are predictable. Random numbers aren't
supposed to be.

Option 1: Stick a source of actual randomness into the computer.

Computers and Random Numbers (I1)

» Don't have to look very far: Arrival times of network packets,
mouse movements, ... are all sort of random.

» xxd /dev/random

» xxd /dev/urandom
Difference?

> ~40 bucks will buy you one: e.g. Altus Metrum ChaosKey

For generating large samples, these methods are clearly too
expensive.

Random Numbers: What do we want?

What properties can ‘random numbers’ have?

» Have a specific distribution
(e.g. ‘uniform’—each value in given interval is equally likely)

» Real-valued/integer-valued
» Repeatable (i.e. you may ask to exactly reproduce a sequence)
» Unpredictable

» V1: ‘I have no idea what it's going to do next.’

» V2: No amount of engineering effort can get me the next

number.
» Uncorrelated with later parts of the sequence
(Weaker: Doesn't repeat after a short time)

» Usable on parallel computers

What's a Pseudorandom Number?

Actual randomness seems like a lot of work. How about ‘pseudo-
random numbers?’

Idea: Maintain some ‘state’. Every time someone asks for a

number:
random_number, new_state = f(state)
Satisfy:
» Distribution
>

‘I have no idea what it's going to do next.’

v

Repeatable (just save the state)

v

Typically not easy to use on parallel computers

Demo: Playing around with Random Number Generators (click to
visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/mc/Playing around with Random Number Generators.html

Some Pseudorandom Number Generators

Lots of variants of this idea:
» LC: ‘Linear congruential' generators
» MT: ‘Mersenne twister’

» almost all randonumber generators you're likely to find are
based on these—Python's random module, numpy.random, C's

rand (), C's rand48().

Counter-Based Random Number Generation (CBRNG)
| What's a CBRNG? |

Idea: Cryptography has way stronger requirements than RNGs.
And the output must ‘look random’.

(Advanced Encryption Standard) AES algorithm:

128 encrypted bits = AES (128-bit plaintext, 128 bit key)

We can treat the encrypted bits as random:

128 random bits = AES (128-bit counter, arbitrary 128 bit key)
» Just use 1,2,3,4,5,.... as the counter.

» No quality requirements on counter or key to obtain
high-quality random numbers

> Very easy to use on parallel computers

» Often accelerated by hardware, faster than the competition

Demo: Counter-Based Random Number Generation (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/mc/Counter-Based Random Number Generation.html

Outline

Error, Accuracy and Convergence

Error in Numerical Methods

Every result we compute in Numerical Methods is inaccurate. What
is our model of that error?

Approximate Result = True Value 4+ Error.

z =x0+ Ax.

Suppose the true answer to a given problem is xg, and the computed
answer is . What is the absolute error?

‘l‘o —i‘.

Relative Error

[What is the relative error?

|20 — 7
|0

Why introduce relative error?

Because absolute error can be misleading, depending on the
magnitude of zy. Take an absolute error of 0.1 as an example.

» If 9 = 10°, then & = 10° + 0.1 is a fairly accurate result.

» If 29 = 1075, then £ = 107> + 0.1 is a completely inaccurate
result.

Relative Error (I1)

Relative error is independent of magnitude.

What is meant by ‘the result has 5 accurate digits'?

Say we compute an answer that gets printed as
3.1415777777.

The closer we get to the correct answer, the more of the leading
digits will be right:
31415777777,

This result has 5 accurate digits. Consider another result:
123,477.7777

This has four accurate digits. To determine the number of accurate
digits, start counting from the front (most-significant) non-zero
digit.

Relative Error (I11)

Observation: ‘Accurate digits' is a measure of relative error.

‘T has n accurate digits' is roughly equivalent to having a relative
error of 10™". Generally, we can show

’JN}—IL’()‘

< 107",
|zol

Measuring Error

Why is |Z| — |xo| a bad measure of the error?

Because it would claim that £ = —5 and xy = 5 have error 0.

If £ and x(are vectors, how do we measure the error?

Using something called a vector norm. Will introduce those soon.
Basic idea: Use norm in place of absolute value. Symbol: ||z||. E.g.
for relative error:

|2 — x|

e

Sources of Error

What are the main sources of error in numerical computation?

» Truncation error:
(E.g. Taylor series truncation, finite-size models, finite
polynomial degrees)

> Rounding error
(Numbers only represented with up to 15 accurate digits.)

Digits and Rounding

Establish a relationship between ‘accurate digits' and rounding
error.

Suppose a result gets rounded to 4 digits:
3.1415926 — 3.142.

Since computers always work with finitely many digits, they must do
something similar. By doing so, we've introduced an error—"rounding
error'.

|3.1415926 — 3.142| = 0.0005074

Rounding to 4 digits leaves 4 accurate digits—a relative error of
about 1074

Computers round every result—so they constantly introduce relative
error.
(Will look at how in a second.)

Condition Numbers

Methods f take input = and produce output y = f(z).

Input has (relative) error |Ax| / |z|.

Output has (relative) error |Ay| / |yl.

Q: Did the method make the relative error bigger? If so, by how
much?

The condition number provides the answer to that question.
It is simply the smallest number k across all inputs = so that

Rel error in output < k - Rel error in input,

or, in symbols,

—f(z+A
Rel error in output f(z) Lt \f((xm)\)
K = Imax — =—max ———~ -
x Rel error in input = T |Az]

||

nth-Order Accuracy

Often, truncation error is controlled by a parameter h.

Examples:
» distance from expansion center in Taylor expansions
» length of the interval in interpolation

A numerical method is called ‘nth-order accurate’ if its truncation
error E(h) obeys
E(h) = O(h").

Outline

Floating Point

Wanted: Real Numbers... in a computer

Computers can represent integers, using bits:
23=1-240-284+1-22+1-2' +1.2° = (10111),

How would we represent fractions, e.g. 23.6257

Idea: Keep going down past zero exponent:
23.625 = 1-2*4+0-224+1-2241-2'+1.2°41. 271 +0-27241.273

So: Could store
> a fixed number of bits with exponents > 0
> a fixed number of bits with exponents < 0

This is called fixed-point arithmetic.

Fixed-Point Numbers

Suppose we use units of 64 bits, with 32 bits for exponents > 0
and 32 bits for exponents < 0. What numbers can we represent?

93l .. 90 o-1 .. 9-32

Smallest: 2732 ~ 1010
Largest: 23! + ... +2732 =~ 10°

How many ‘digits’ of relative accuracy (think relative rounding
error) are available for the smallest vs. the largest number?

For large numbers: about 19
For small numbers: few or none

Idea: Instead of fixing the location of the 0 exponent, let it float.

Floating Point numbers

Convert 13 = (1101); into floating point representation.

13 =23 +2%2 429 = (1.101) - 2

What pieces do you need to store an FP number?

Significand: (1.101)s
Exponent: 3

Idea: Notice that the leading digit (in binary) of the significand is
always one.

Only store ‘101'. Final storage format:

Floating Point numbers (1)

Significand: 101 — a fixed number of bits
Exponent: 3 — a (signed!) integer allowing a certain range

Exponent is most often stored as a positive ‘offset’ from a certain
negative number. E.g.

3= + 1026

—1023
~—— <~
implicit offset stored

Actually stored: 1026, a positive integer.

In-class activity: Floating Point

https://relate.cs.illinois.edu/course/cs357-s17/flow/inclass-floating-point/start

Unrepresentable numbers?

Can you think of a somewhat central number that we cannot
represent as

Zero. Which is somewhat embarrassing.

Core problem: The implicit 1. It's a great idea, were it not for this
issue.
Have to break the pattern. ldea:

» Declare one exponent ‘special’, and turn off the leading one for
that one.
(say, -1023, a.k.a. stored exponent 0)

» For all larger exponents, the leading one remains in effect.

Bonus Q: With this convention, what is the binary representation
of a zero?

Demo: Picking apart a floating point number (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/fp/Picking apart a floating point number.html

Subnormal Numbers

What is the smallest representable number in an FP system with 4
stored bits in the significand and an exponent range of [—7,7]?

First attempt:

» Significand as small as possible — all zeros after the implicit
leading one

» Exponent as small as possible: —7
(1.0000)5 - 277,
Unfortunately: wrong. We can go way smaller by using the special

exponent (which turns off the implicit leading one). We'll assume
that the special exponent is —8. So:

(0.0001)q - 277

Numbers with the special exponent are called subnormal (or
denormal) FP numbers. Technically, zero is also a subnormal.

Subnormal Numbers (II)

Note: It is thus quite natural to ‘park’ the special exponent at the
low end of the exponent range.

Subnormal Numbers (I1)

Why would you want to know about subnormals? Because com-
puting with them is often slow, because it is implemented using
‘FP assist’, i.e. not in actual hardware. Many C compilers support
options to ‘flush subnormals to zero'.

» FP systems without subnormals will underflow (return 0) as
soon as the exponent range is exhausted.

» This smallest representable normal number is called the
underflow level, or UFL.

» Beyond the underflow level, subnormals provide for gradual
underflow by ‘keeping going’ as long as there are bits in the
significand, but it is important to note that subnormals don’t
have as many accurate digits as normal numbers.

» Analogously (but much more simply—no ‘supernormals’): the
overflow level, OFL.

Summary: Translating Floating Point Numbers

To summarize: To translate a stored (double precision) floating
point value consisting of the stored fraction (a 52-bit integer) and
the stored exponent value egioreq the into its (mathematical) value,
follow the following method:

value = (1 + fraction '2_52) - 271023+ €gtored estored 7 0,
) (fraction -2-52) . 9—1022 -0
(fraction) estored = 0.

Demo: Density of Floating Point Numbers (click to visit)
Demo: Floating Point vs Program Logic (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/fp/Density of Floating Point Numbers.html
https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/fp/Floating Point vs Program Logic.html

Floating Point and Rounding Error

What is the relative error produced by working with floating point
numbers?

What is smallest floating point number > 17 Assume 4 stored bits
in the significand.

(1.0001)5 - 2° = 2 - (1 4 0.0001)5

What's the smallest FP number > 1024 in that same system?

(1.0001)5 - 219 = z - (1 + 0.0001),

Can we give that number a name?

Floating Point and Rounding Error (I)
Unit roundoff or machine precision or machine epsilon or eyacn is
the smallest number such that

float(1 4+ ¢) > 1.

Ignoring possible subtleties about rounding, in the above system,
€mach = (0.0001)2. Another related quantity is ULP, or unit in the
last place.

What does this say about the relative error incurred in floating
point calculations?

» The factor to get from one FP number to the next larger one is
(mostly) independent of magnitude: 1+ epach.

» Since we can't represent any results between
x and x-(1+ emach),

that's really the minimum error incurred.

Floating Point and Rounding Error (I11)
> In terms of relative error:

I—x (1 + emach) — @

X

= €mach-
T
At least theoretically, nach is the maximum relative error in

any FP operations. (Practical implementations do fall short of
this.)

What's that same number for double-precision floating point? (52
bits in the significand)

2752 ~ 10716

We can expect FP math to consistently introduce relative errors of
about 10716,

Working in double precision gives you about 16 (decimal) accurate
digits.

Implementing Arithmetic

How is floating point addition implemented?
Consider adding a = (1.101)s - 2* and b = (1.001)5 - 27! in a
system with three bits in the significand.

Rough algorithm:
1. Bring both numbers onto a common exponent

2. Do grade-school addition from the front, until you run out of
digits in your system.

3. Round result.

= 0. 01-2!
a+b~ 1. 2ol

Demo: Floating point and the Harmonic Series (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/fp/Floating point and the Harmonic Series.html

Problems with FP Addition

What happens if you subtract two numbers of very similar magni-
tude?
As an example, consider a = (1.1011)5 - 2! and b = (1.1010); - 2*.

a= 1. 1011-2!
b= 1. 1010-2'
a—br 17727 .21

or, once we normalize,
1.2727.273.

There is no data to indicate what the missing digits should be.
— Machine fills them with its ‘best guess’, which is not often good.

This phenomenon is called Catastrophic Cancellation.

Demo: Catastrophic Cancellation (click to visit)
In-class activity: Floating Point 2

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/fp/Catastrophic Cancellation.html
https://relate.cs.illinois.edu/course/cs357-s17/flow/inclass-floating-point-2/start

	Python, Numpy, and Matplotlib
	Making Models with Polynomials: Taylor Series
	Making Models with Polynomials: Interpolation
	Making Models with Monte Carlo
	Error, Accuracy and Convergence
	Floating Point

