
Numerical Methods
CS 357 - Spring 2017

Numerical Methods: What?

‘Numerical’?

I Has to do with (real) numbers...

I ...in a computer
Q: How do we even get a computer to understand real
numbers?

I ...and not just one, arrays of them
Q: What’s an ‘array’? How does a computer deal with it?

‘Method’?

I Think ‘algorithm’. But there’s more:
I The algorithm comes from a math idea
I For each math idea, there are lots of algorithms
I Some fast, some slow
I Some accurate, some inaccurate

Wait–how did ‘accuracy’ come into this?

I Math + Complexity + Accuracy = Method

Accuracy

Why might a numerical method not give the right answer?
(i.e. be inaccurate)

I Because (unlike in the special cases that math has taught you),
mostly we can’t write down the answer. Not in a finite amount
of space anyway. And a computer is finite.

Demo: Waiting for 1

Numerical Experiments

Model:

I Small-scale behavior easy to describe

I Large-scale behavior desired, but hard to understand

Demo: Brownian Motion

Numerical Experiments

What are we going to want to know about a numerical experiment?

I What question are we attempting to answer?

I What is the outcome of the experiment?
What does it predict?

I Is the answer accurate? Does it match the question?

I How long will it take?

I Better: How long until we have an acceptable answer?
Observation: Time-accuracy trade-off

I Is the experiment repeatable?

I Efficient: Is running this a good use of our time/computer?

Class web page

bit.ly/cs357-s17

I Assignments
I HW0!
I Pre-lecture quizzes
I In-lecture interactive content (bring computer or phone if

possible)

I Exams

I Class outline (with links to notes/demos/activities/quizzes)

I Scribbles

I Virtual Machine Image

I Piazza

I Policies

Class web page (II)
I Video

I Interactive Questions
I Calendar

I Office Hours

In-class activity: Complexity of Matrix-Matrix Multiplication

Recap: Understanding Asymptotic Behavior, O(·)Notation

Demo: Cost of Matrix-Matrix Multiplication

Can we say anything exact about our results?

I Observed: Time for n = 800 was about 8× that for n = 400

I Does a linear model fit? Time ≈ c · n?

I Does a quadratic model fit? Time ≈ c · n2?

I Does a cubic model fit? Time ≈ c · n3? Yep.

I Problem: Still not necessarily valid for each individual value.

Recap: Understanding Asymptotic Behavior, O(·)Notation
(II)

How do we say something exact without having to predict individual
values exactly?

Solution: O(·) notation

Idea: Let g(n) be our ‘model function’ (g(n) = n3 above)

Then: Say
Time(n) = O(g(n))

to mean: There is a constant C so that

Time(n) 6 C · g(n).

Assume Time(n) non-negative, otherwise add absolute values.

Important: Not just time: also errors, growth, ...

Making Predictions with O(·)-Notation

Suppose you know that Time(n) = O(n2). And you know that
for n1 = 1000, the time taken was 5 seconds. Estimate how much
time would be taken for n2 = 2000.

Time(n1) ≈ C · n2
1 = 5

Could use that to find coefficient C. Or: just use the ratio.

Time(n2) ≈ C·n2
2 = C·

(
n2

n1

)2

n2
1 =

(
n2

n1

)2

·Time(n1) = 22·5s = 20s.

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Programming Language: Python/numpy

I Reasonably readable

I Reasonably beginner-friendly

I Mainstream (top 5 in ‘TIOBE Index’)

I Free, open-source

I Great tools and libraries (not just) for scientific computing

I Python 2/3? 3!

I numpy: Provides an array datatype
Will use this and matplotlib all the time.

I See class web page for learning materials

I Demo: Python

I Demo: numpy

I In-class activity: Image Processing

https://relate.cs.illinois.edu/course/cs357-s17/flow/inclass-image-stencil/start

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Why polynomials?

a3x
3 + a2x

2 + a1x+ a0

How do we write a general degree n polynomial?

n∑
i=0

aix
i.

Why polynomials and not something else?

I We can add, multiply, maybe divide (grade school, computer
HW)

I More complicated functions (ex, sinx,
√
x) have to be built

from those parts → at least approximately

Why polynomials? (II)
I Easy to work with as a building block.

General recipe for numerics: Model observation with a
polynomial, perform operation on that, evaluate. (e.g. calculus,
root finding)

Reconstructing a Function From Derivatives

Given f(x0), f ′(x0), f ′′(x0), . . . can we reconstruct a polynomial
f?

f(x) = ??? + ???x+ ???x2 + · · ·

For simplicity, let us consider x0 = 0 and a degree 4 polynomial f

f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4

Note that a0 = f(0). Now, take a derivative

f ′(x) = a1 + 2a2x+ 3a3x
2 + 4a4x

3

we see that a1 = f ′(0), differntiating again

f ′′(x) = 2a2 + 3 · 2a3x+ 4 · 3a4x
2

yields a2 = f ′′(0)/2, and finally

f ′′′(x) = 3 · 2a3 + 4 · 3 · 2a4x

yields a3 = f ′′′(0)/3!. In general, ai = f (i)(0)/i!.

Reconstructing a Function From Derivatives

Found: Taylor series approximation.

f(0 + x) ≈ f(0) + f ′(0)x+
f ′′(0)

2
x2 + · · ·

The general Taylor expansion with center x0 = 0 is

f(x) =

∞∑
i=0

f (i)(0)

i!
xi

Demo: Polynomial Approximation with Derivatives (click to visit)
(Part I)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/poly/Polynomial Approximation with Derivatives.html

Shifting the Expansion Center

Can you do this at points other than the origin?

In this case, 0 is the center of the series expansion. We can obtain a
Taylor expansion of f centered at x0 by defining a shifted function

g(x) = f(x+ x0)

The Taylor expansion g with center 0 is as before

g(x) =

∞∑
i=0

g(i)(0)

i!
xi

This expansion of g yields a Taylor expansion of f with center x0

f(x) = g(x− x0) =

∞∑
i=0

g(i)(0)

i!
(x− x0)i

Shifting the Expansion Center (II)
It suffices to note that f (i)(x0) = g(i)(0) to get the general form

f(x) =

∞∑
i=0

f (i)(x0)

i!
(x−x0)i or f(x0 +h) =

∞∑
i=0

f (i)(x0)

i!
hi

Errors in Taylor Approximation (I)

Can’t sum infinitely many terms. Have to truncate. How big of
an error does this cause?

Demo: Polynomial Approximation with Derivatives (click to visit)
(Part II)

Suspicion, as h→ 0, we have∣∣∣∣∣f(x0 + h)−
n∑
i=0

f (i)(x0)

i!
hi

∣∣∣∣∣︸ ︷︷ ︸
Taylor error for degree n

6 C · hn+1

or ∣∣∣∣∣f(x0 + h)−
n∑
i=0

f (i)(x0)

i!
hi

∣∣∣∣∣︸ ︷︷ ︸
Taylor error for degree n

= O(hn+1)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/poly/Polynomial Approximation with Derivatives.html

Errors in Taylor Approximation (I) (II)
As we will see, there is a satisfactory bound on C for most functions
f .

Making Predictions with Taylor Truncation Error

Suppose you expand
√
x− 10 in a Taylor polynomial of degree 3

about the center x0 = 12. For h1 = 0.5, you find that the Taylor
truncation error is about 10−4.

What is the Taylor truncation error for h2 = 0.25?

Error(h) = O(hn+1), where n = 3, i.e.

Error(h1) ≈ C · h4
1

Error(h2) ≈ C · h4
2

While not knowing C or lower order terms, we can use the ratio of
h2/h1

Error(h2) ≈ C · h4
2 = C · h4

1

(
h2

h1

)4

≈ Error(h1) ·
(
h2

h1

)4

Can make prediction of the error for one h if we know another.

Making Predictions with Taylor Truncation Error (II)
Demo: Polynomial Approximation with Derivatives (click to visit)
(Part III)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/poly/Polynomial Approximation with Derivatives.html

Taylor Remainders: the Full Truth

Let f : R→ R be (n+ 1)-times differentiable on the interval
(x0, x) with f (n) continuous on [x0, x]. Then there exists a
ξ ∈ (x0, x) so that

f(x0 + h)−
n∑
i=0

f (i)(x0)

i!
hi =

f (n+1)(ξ)

(n+ 1)!︸ ︷︷ ︸
“C”

·(ξ − x0)n+1

and since |ξ − x0| 6 h∣∣∣∣∣f(x0 + h)−
n∑
i=0

f (i)(x0)

i!
hi

∣∣∣∣∣ 6
∣∣f (n+1)(ξ)

∣∣
(n+ 1)!︸ ︷︷ ︸

“C”

·hn+1.

Intuition for Taylor Remainder Theorem

Given the value of a function and its derivative f(x0), f ′(x0), prove
the Taylor error bound.

We express f(x) as

f(x) = f(x0) +

∫ x

x0

f ′(w0)dw0

We then express the integrand f ′(w0) for w0 ∈ [x0, x] using f ′′ in
the same way

f(x) = f(x0) +

∫ x

x0

(
f ′(x0) +

∫ w0

x0

f ′′(w1)dw1

)
dw0

= f(x0) + f ′(x0)(x− x0)︸ ︷︷ ︸
Taylor expansion t1(x)

+

∫ x

x0

(∫ w0

x0

f ′′(w1)dw1

)
dw0

Intuition for Taylor Remainder Theorem (II)
We can bound the error by finding the maximizer
ξ = argmaxξ∈[x0,x] |f ′′(ξ)|

|f(x)− t1(x)| ≤
∫ x

x0

(∫ w0

x0

|f ′′(ξ)|dw1

)
dw0

=
|f ′′(ξ)|

2!
(x− x0)2

|f(x0 + h)− t1(x0 + h)| ≤ |f
′′(ξ)|
2!

h2 for x = x0 + h

In-class activity: Taylor series

https://relate.cs.illinois.edu/course/cs357-s17/flow/inclass-taylor/start

Proof of Taylor Remainder Theorem

We can complete the proof by induction of the Taylor degree
expansion n

f(x) = tn−1(x) +

∫ x

x0

∫ w0

x0

· · ·
∫ wn−1

x0

f (n)(wn)dwn · · · dw0

Given the formula above, it suffices to expand

f (n)(wn) = f (n)(x0) +

∫ wn

x0

f (n+1)(wn+1)dwn+1

Inserting this back in gives us the next inductive hypothesis

f(x) = tn−1(x) +
f (n)(x0)

n!
(x− x0)n︸ ︷︷ ︸

Taylor expansion tn(x)

+

∫ x

x0

∫ w0

x0

· · ·
∫ wn

x0

f (n+1)(wn+1)dwn+1 · · · dw0

Proof of Taylor Remainder Theorem (II)
The bound follows as for n = 1, with ξ = argmaxξ∈[x0,x] |f (n+1)(ξ)|

|f(x)− tn(x)| ≤
∫ x

x0

∫ w0

x0

· · ·
∫ wn

x0

|f (n+1)(ξ)|dwn+1 · · · dw0

=
|f ′′(ξ)|
(n+ 1)!

(x− x0)n+1

|f(x0 + h)− tn(x0 + h)| ≤ |f
′′(ξ)|

(n+ 1)!
hn+1 for x = x0 + h

Using Polynomial Approximation

Suppose we can approximate a function as a polynomial:

f(x) ≈ a0 + a1x+ a2x
2 + a3x

3.

How is that useful?
E.g.: What if we want the integral of f?

Easy: Just integrate the polynomial:∫ t

s
f(x)dx ≈

∫ t

s
a0 + a1x+ a2x

2 + a3x
3dx

= a0

∫ t

s
1dx+ a1

∫ t

s
x · dx+ a2

∫ t

s
x2dx+ a3

∫ t

s
x3dx

Even if you had no idea how to integrate f using calculus, you can
approximately integrate f anyway, by taking a bunch of derivatives
(and forming a Taylor polynomial).

Demo: Computing Pi with Taylor (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/poly/Computing Pi with Taylor.html

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Reconstructing a Function From Point Values

If we know function values at some points f(x1), f(x2), . . . , f(xn),
can we reconstruct the function as a polynomial?

f(x) = ??? + ???x+ ???x2 + · · ·

In particular, we’d like to obtain a1, a2, . . . to satisfy equations:

a0 + a1 · x1 + a2 · x2
1 + · · · = f(x1)

...
...

a0 + a1 · xn + a2 · x2
n + · · · = f(xn)

Q: How many ai can we (uniquely) determine this way? (Answer:
n–same number of unknowns as equations.)

Reconstructing a Function From Point Values (II)
The equations for these n-unkowns are

a0 + a1 · x1 + a2 · x2
1 + · · ·+ an−1 · xn−1

1 = f(x1)

...
...

a0 + a1 · xn + a2 · x2
n + · · ·+ an−1 · xn−1

n = f(xn)

We can rewrite them in matrix form
1 x1 · · · xn−1

1

1 x2 · · · xn−1
2

...
...

. . .
...

1 xn · · · xn−1
n


︸ ︷︷ ︸

V


a0

a1
...

an−1


︸ ︷︷ ︸

a

=


f(x1)
f(x2)

...
f(xn)


︸ ︷︷ ︸

f

.

Reconstructing a Function From Point Values (III)
Thus, to find (a0, . . . , an) we need to solve a linear system. This
gives us a degree n− 1 polynomial interpolant satisfying
f̃(xi) = f(xi) of the form

f̃(x) = a0 + a1 · xn + a2 · x2
n + · · ·+ an−1 · xn−1

n

Vandermonde Linear Systems

Polynomial interpolation is a critical component in many numerical
models.

V is called the Vandermonde matrix.

Main lesson:

V (coefficients) = (values at points) .

This is called interpolation. x0, . . . , xn−1 are called the nodes.

The problem also has surprisingly ‘interesting’ numerical properties.

In other words, while solving this linear system may look bulletproof,
it can break in a number of ‘interesting’ ways. We will study these
in detail later.

Demo: Polynomial Approximation with Point Values (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/poly/Polynomial Approximation with Point Values.html

Error in Interpolation

How did the interpolation error behave in the demo?

To fix notation: f is the function we’re interpolating. f̃ is the
interpolant that obeys f̃(xi) = f(xi) for xi = x1 < . . . < xn.
h = xn − x1 is the interval length.

For x ∈ [x1, xn] : ∣∣∣f(x)− f̃(x)
∣∣∣ = O(hn)

Can predict errors with this just like for Taylor.

What is the error at the interpolation nodes?

Zero–we’re matching the function exactly there.

Care to make an unfounded prediction? What will you call it?

Error in Interpolation (II)
It looks like approximating by an (n− 1)th degree polynomial
somewhat generally results in an O(hn) error. This is called
convergence of order n or nth order convergence.

Proof Intuition for Interpolation Error Bound

Let us consider an interpolant f̃ based on n = 2 points so

f̃(x1) = f(x1) and f̃(x2) = f(x2).

The interpolation error is O((x2−x1)2) for any x ∈ [x1, x2], why?

Let us define the error function to be

E(x) = f(x)− f̃(x) so we have E(x1) = 0 and E(x2) = 0.

Now note that ∫ x2

x1

E′(x)dx = E(x2)− E(x1) = 0.

This implies E′(x) cannot be strictly positive or strictly negative in
[x1, x2], so

∃z∈[x1,x2]E
′(z) = 0

Proof Intuition for Interpolation Error Bound (II)
Having found z ∈ (x1, x2) such that E′(z) = 0, we can proceed
analogously to the Taylor remainder theorem proof

E(x) = E(x1) +

∫ x

x1

E′(w0)dw0

= E(x1) +

∫ x

x1

(
E′(z) +

∫ w0

z
E′′(w1)dw1

)
dw0

=

∫ x

x1

(∫ w0

z
f ′′(w1)dw1

)
dw0.

Defining as x2 − x1 = h and assuming x ∈ [x1, x2], we again look
for a maximizer ξ = argmaxξ∈[x1,x2] |f ′′(ξ)|

|E(x)| ≤
∣∣∣∣ ∫ x

x1

(∫ w0

z
f ′′(ξ)dw1

)
dw0

∣∣∣∣ =
|f ′′(ξ)|

2!
· |z − x| · |x1 − x|

≤ |f
′′(ξ)|
2!

h2.

Proof of Interpolation Error Bound

We can use induction on n to show that if E(x) = f(x) − f̃(x)
has n zeros x1, . . . , xn and f̃ is a degree n polynomial, then there
exist y1, . . . , yn such that

E(x) =

∫ x

x1

∫ w0

y1

· · ·
∫ wn−1

yn

f (n+1)(wn)dwn · · · dw0 (1)

As before we start by writing

E(x) = E(x1) +

∫ x

x1

E′(w0)dw0 (2)

Now note that for each of n− 1 consecutive pairs xi, xi+1 we have∫ xi+1

xi

E′(x)dx = E(x2)− E(x1) = 0

Proof of Interpolation Error Bound (II)
and so there are zi ∈ (xi, xi+1) such that E′(zi) = 0. By inductive
hypothesis

E′(w0) =

∫ w0

z1

∫ w1

y2

· · ·
∫ wn−1

yn

f (n+1)(wn)dwn · · · dw1 (3)

Substituting (3) into (2), we obtain (1) with y1 = z1

Making Use of Interpolants

Suppose we can approximate a function as a polynomial:

f(x) ≈ a0 + a1x+ a2x
2 + a3x

3.

How is that useful? E.g. what if we want the integral of f?

Easy: Just integrate the interpolant:∫ t

s
f(x)dx ≈

∫ t

s
a0 + a1x+ a2x

2 + a3x
3dx

= a0

∫ t

s
1dx+ a1

∫ t

s
x · dx+ a2

∫ t

s
x2dx+ a3

∫ t

s
x3dx

Even if you had no idea how to integrate f using calculus, you can
approximately integrate f anyway, by taking a bunch of function
values (and forming an interpolant).

Demo: Computing Pi with Interpolation (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/poly/Computing Pi with Interpolation.html

More General Functions

Is this technique limited to the monomials {1, x, x2, x3, . . .}?

No, not at all. Works for any set of functions {ϕ1, . . . , ϕn} for
which the generalized Vandermonde matrix

ϕ1(x1) ϕ2(x1) · · · ϕn(x1)
ϕ1(x2) ϕ2(x2) · · · ϕn(x2)

...
...

. . .
...

ϕ1(xn) ϕ2(xn) · · · ϕn(xn)


is invertible.

Interpolation with General Sets of Functions

For a general set of functions {ϕ1, . . . , ϕn}, solve the linear system
with the generalized Vandermonde matrix for the coefficients
(a1, . . . , an):

ϕ1(x1) ϕ2(x1) · · · ϕn(x1)
ϕ1(x2) ϕ2(x2) · · · ϕn(x2)

...
...

. . .
...

ϕ1(xn) ϕ2(xn) · · · ϕn(xn)


︸ ︷︷ ︸

V


a1

a2
...
an


︸ ︷︷ ︸

a

=


f(x1)
f(x2)

...
f(xn)


︸ ︷︷ ︸

f

.

Given those coefficients, what is the interpolant f̃ satisfying
f̃(xi) = f(xi)?

f̃(x) =

n∑
i=1

aiϕi(x).

Interpolation with General Sets of Functions (II)
In-class activity: Interpolation

https://relate.cs.illinois.edu/course/cs357-s17/flow/inclass-interpolation/start

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Randomness: Why?

What types of problems can we solve with the help of random
numbers?

We can compute (potentially) complicated averages.

I Where does ‘the average’ web surfer end up? (PageRank)

I How much is my stock portfolio/option going to be worth?

I How will my robot behave if there is measurement error?

Random Variables

What is a random variable?

A random variable X is a function that depends on ‘the (random)
state of the world’.

Example: X could be

I ‘how much rain tomorrow?’, or

I ‘will my buttered bread land face-down?’

Idea: Since I don’t know the entire state of the world (i.e. all the
influencing factors), I can’t know the value of X.

→ Next best thing: Say something about the average case.

To do that, I need to know how likely each individual value of X is.
I need a probability distribution.

Probability Distributions

What kinds of probability distributions are there?

I discrete distribution:

Event X = x1 X = x2 · · · X = xn
Probability p1 p2 · · · pn

Need: pi ≥ 0 for the word ‘probability’ to make sense.
I continuous distribution:

I Values are arbitrary real numbers
I Each individual value has zero probability
I But: Ranges ‘value in range/interval [a, b]’ has non-zero

probability
∫ b

a
p(x)dx where p is the distribution function.

(Sometimes also called the probability density)

Need: p(x) ≥ 0 for ‘probability’ to make sense.

Demo: Plotting Distributions with Histograms (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/mc/Plotting Distributions with Histograms.html

Expected Values/Averages: What?

Define the ‘expected value’ of a random variable.

For a discrete random variable X:

E[f(X)] =

n∑
i=1

pif(xi)

For a continuous random variable:

E[f(X)] =

∫
R

f(x) · p(x)dx

Define variance of a random variable.

σ2[X] = E[(X − E[X])2] = E[X2]− E[X]2.

‘Average squared distance from the average’

Expected Value: Example I

What is the expected snowfall (e.g. per day) in Champaign?

E[Snow] =

∫ ∞
0

s · p(s)ds

where

I Snow is a random variable distributed according to p(s),

I s is an integration variable–its name doesn’t matter,

I p(s) is the distribution (or density) function.

Note that we’re integrating over all possible values of Snow.

Tool: Law of Large Numbers

Terminology:

I Sample: A sample s1, . . . , sN of a discrete random variable X
(with potential values x1, . . . , xn) selects each si such that
si = xj with probability p(xj).

In words:

I As the number of samples N →∞, the average of samples
converges to the expected value with probability 1.

What can samples tell us about the distribution?

P

[
lim
N→∞

1

N

(
N∑
i=1

si

)
= E[X]

]
= 1.

Or for an expected value,

E[X] ≈ 1

N

(
N∑
i=1

si

)

Sampling: Approximating Expected Values

Integrals and sums in expected values are often challenging to
evaluate.

How can we approximate an expected value?
Idea: Draw random samples. Make sure they are distributed
according to p(x).

1. Draw N samples si distributed according to p(x).

2. Approximate

E[f(X)] ≈ 1

N

N∑
i=1

f(si).

What is a Monte Carlo (MC) method?

Monte Carlo methods are algorithms that compute approximations
of desired quantities or phenomena based on randomized sampling.

Expected Values with Hard-to-Sample Distributions

Computing the sample mean requires samples from the distribution
p(x) of the random variable X. What if such samples aren’t
available?

Find a different distribution p̃(x) that we can sample from. Then:

E[X] =

∫
R

x · p(x)dx =

∫
R

x
p(x)

p̃(x)
· p̃(x)dx

=

∫
R

x̃
p(x̃)

p̃(x̃)
· p̃(x̃)dx = E

[
X̃ · p(X̃)

p̃(X̃)

]
.

The purpose of this exercise is that we can now apply the sample
mean to the last expected value, since p̃ is easy to sample from.

Note 1: The random variable X̃ is distributed according to p̃.
Note 2: Must ensure p̃(x) 6= 0 wherever p(x) 6= 0.

(Discrete case goes analogously.)

Switching Distributions for Sampling

Found:

E[X] = E

[
X̃ · p(X̃)

p̃(X̃)

]

Why is this useful for sampling?

Starting point: X is hard to sample from, X̃ is easy to sample from
(think uniform). Both have known distribution functions p(x) and
p̃(x). Knowing p(x) does not imply that its easy to sample from X.

Then we can approximate E[X] by sampling s̃i from X̃:

E[X] ≈ 1

N

N∑
i=1

s̃i ·
p(s̃i)

p̃(s̃i)
.

In-class activity: Monte-Carlo Methods

https://relate.cs.illinois.edu/course/cs357-s17/flow/inclass-mc/start

Sampling for Integrals

The machinery we have developed can actually be used to approxi-
mate arbitrary integrals. How?

We just have to rewrite them as an expected value with respect to
some distribution function p̃:∫

Ω
g(x)dx =

∫
Ω

g(x)

p̃(x)
p̃(x)dx

= E

[
g(X̃)

p̃(X̃)

]
≈ 1

N

N∑
i=1

g(s̃i)

p̃(s̃i)
.

Note that we have switched to the random variable X̃ under the
expected value to indicate that it is distributed according to p̃. We
also require that the samples s̃i are distributed according to p̃.

We are free to choose p̃ as we like, as long as p̃(x) 6= 0 on Ω.
(It is obviously often also convenient if p̃ is easy to sample. That’s
why uniform distributions are often used.)

Expected Value: Example II

What is the average snowfall in Illinois?

E[Snow] =

∫
R

∫
R

Snow(x, y) · p(x, y)dxdy?

What’s p(x, y)? What’s Snow(x, y)?

I Snow(x,y): expected snowfall at longitude x and latitude y in
(say) a day.

I p(x, y): Probability that a point with longitude x and latitude
y is in Illinois.

Expected Value: Example II (II)
Can check whether (x, y) is in Illinois, e.g. as

q(x, y) =

{
1 if (x, y) is in Illinois,
0 if it’s not.

But: Need p to be a probability density, i.e.∫
R

∫
R

p(x, y)dxdy = 1.

Can ensure that by finding a scaling factor C so that
p(x) = C · q(x).

I Find

C =
1∫

R

∫
R
p(x, y)dxdy

by using sampling to approximate the integral. (How?)

Expected Value: Example II (III)
I And once more to compute

E[Snow] = E

[
Snow

p(x, y)

puniform(x,y)

]
where we have chosen puniform(x,y) to be an (easy-to-sample)
uniform distribution on a rectangle containing the state area.

Example: Computing a 2D Integral using Monte Carlo

Lets consider integrating f(x, y) on domain Ω ⊂ [0, L]2

G =

∫ ∫
Ω
f(x, y)dxdy =

∫ L

0

∫ L

0
f(x, y)1Ω(x, y)dxdy,

where 1Ω(x, y) = 1 if (x, y) ∈ Ω and 1Ω(x, y) = 0 if (x, y) /∈ Ω.

If |Ω| is the area of domain Ω, then p(x, y) = 1
|Ω|1Ω(x, y) can be

interpreted as a probability distribution (the normalization ensures
its integral over the whole domain is equal to 1).
We can express G as an expected value of a random variable Z
(which takes on 2D coordinate values),

G = |Ω|E[f(Z)] = |Ω|
∫ L

0

∫ L

0
f(x, y)p(x, y)dxdy.

Example: Computing a 2D Integral using Monte Carlo (II)
We can approximate G based on samples of uniform random
variable X: (x1, y1), . . . , (xN , yN) ∈ [0, 1]2 with distribution
p̃(x, y) = 1

L2 , using only the function 1Ω(x, y),

G = |Ω|E
[
f(X)

p(X)
1
L2

]
= |Ω|L2E[f(X)p(X)]

≈ |Ω|L
2

N

N∑
i=1

f(xi, yi)p(xi, yi)

=
L2

N

N∑
i=1

f(xi, yi)1Ω(xi, yi).

Demo: Computing Pi using Sampling (click to visit)
Demo: Errors in Sampling (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/mc/Computing Pi using Sampling.html
https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/mc/Errors in Sampling.html

Sampling: Error

The Central Limit Theorem states that with

SN := X1 +X2 + · · ·+Xn

for the (Xi) independent and identically distributed according to
random variable X with variance σ2, we have that

SN −NE[X]√
σ2N

→ N (0, 1),

i.e. that term approaches the normal distribution. As we increase
N , σ2 stays fixed, so the asymptotic behavior of the error is∣∣∣∣ 1

N
SN − E[X]

∣∣∣∣ = O

(
1√
N

)
.

Proof Intuition for Central Limit Theorem

The Central Limit Theorem uses the fact that given N identically
distribution samples of random variable X with variance σ2[X],
the average of the samples will have variance σ2[X]/N . Since
σ2[X] = E[(E[X]−X)2] is the expected square of the deviation,
it tells us how far away the average of the samples is expected to
be from the real mean. Why is this the case?

Represent each sample s1, . . . , sN by random variable X1, . . . XN

(each one is identical to X, but all are independent).
Assume that

E[X] = E[Xi] = 0.

By considering the variance of SN =
∑N

i=1Xi/N , we can gauge the
expectation of how far their average is expected to deviate from
E[X] = 0. That variance is given by

σ2[SN] = E[S2
N] = E

[(N∑
i=1

Xi/N

)2]
=

1

N2
E

[(N∑
i=1

Xi

)2]
.

Proof Intuition for Central Limit Theorem (II)
We can separate that into parts

σ2[SN] =
1

N2

(N∑
i=1

E[X2
i] +

N∑
i=1

N∑
j=1,j 6=i

E[XiXj]

)
.

Since Xi and Xj are independent, we have

E[XiXj] =

∫ ∫
xixjp(xi)p(xj)dxidxj

=

(∫
xip(xi)dxi

)(∫
xjp(xj)dxj

)
= E[Xi]E[Xj] = 0 · 0 = 0,

therefore, the previous expression simplifes to

σ2[SN] =
1

N2

N∑
i=1

E[X2
i] =

1

N
E[X2] =

σ2[X]

N
.

Monte Carlo Methods: The Good and the Bad

What are some advantages of MC methods?

I Computes integrals when nothing else will

I Convergence does not depend on dimensionality

I Still applies when deterministic modeling fails

What are some disadvantages of MC methods?

I Convergence is very slow (O (1/
√
n))

I Outcome is non-deterministic

Computers and Random Numbers

[from xkcd]

How can a computer make random numbers?

It kind of can’t. Computers are predictable. Random numbers aren’t
supposed to be.

Option 1: Stick a source of actual randomness into the computer.

Computers and Random Numbers (II)
I Don’t have to look very far: Arrival times of network packets,

mouse movements, ... are all sort of random.

I xxd /dev/random

I xxd /dev/urandom

Difference?

I ∼40 bucks will buy you one: e.g. Altus Metrum ChaosKey

For generating large samples, these methods are clearly too
expensive.

Random Numbers: What do we want?

What properties can ‘random numbers’ have?

I Have a specific distribution
(e.g. ‘uniform’–each value in given interval is equally likely)

I Real-valued/integer-valued

I Repeatable (i.e. you may ask to exactly reproduce a sequence)
I Unpredictable

I V1: ‘I have no idea what it’s going to do next.’
I V2: No amount of engineering effort can get me the next

number.

I Uncorrelated with later parts of the sequence
(Weaker: Doesn’t repeat after a short time)

I Usable on parallel computers

What’s a Pseudorandom Number?

Actual randomness seems like a lot of work. How about ‘pseudo-
random numbers?’

Idea: Maintain some ‘state’. Every time someone asks for a
number:

random number, new state = f(state)

Satisfy:

I Distribution

I ‘I have no idea what it’s going to do next.’

I Repeatable (just save the state)

I Typically not easy to use on parallel computers

Demo: Playing around with Random Number Generators (click to
visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/mc/Playing around with Random Number Generators.html

Some Pseudorandom Number Generators

Lots of variants of this idea:

I LC: ‘Linear congruential’ generators

I MT: ‘Mersenne twister’

I almost all randonumber generators you’re likely to find are
based on these–Python’s random module, numpy.random, C’s
rand(), C’s rand48().

Counter-Based Random Number Generation (CBRNG)

What’s a CBRNG?

Idea: Cryptography has way stronger requirements than RNGs.
And the output must ‘look random’.

(Advanced Encryption Standard) AES algorithm:
128 encrypted bits = AES (128-bit plaintext, 128 bit key)

We can treat the encrypted bits as random:
128 random bits = AES (128-bit counter, arbitrary 128 bit key)

I Just use 1, 2, 3, 4, 5, as the counter.

I No quality requirements on counter or key to obtain
high-quality random numbers

I Very easy to use on parallel computers

I Often accelerated by hardware, faster than the competition

Demo: Counter-Based Random Number Generation (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/mc/Counter-Based Random Number Generation.html

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Error in Numerical Methods

Every result we compute in Numerical Methods is inaccurate. What
is our model of that error?

Approximate Result = True Value + Error.

x̃ = x0 + ∆x.

Suppose the true answer to a given problem is x0, and the computed
answer is x̃. What is the absolute error?

|x0 − x̃|.

Relative Error

What is the relative error?

|x0 − x̃|
|x0|

Why introduce relative error?

Because absolute error can be misleading, depending on the
magnitude of x0. Take an absolute error of 0.1 as an example.

I If x0 = 105, then x̃ = 105 + 0.1 is a fairly accurate result.

I If x0 = 10−5, then x̃ = 10−5 + 0.1 is a completely inaccurate
result.

Relative Error (II)
Relative error is independent of magnitude.

What is meant by ‘the result has 5 accurate digits’?

Say we compute an answer that gets printed as

3.1415777777.

The closer we get to the correct answer, the more of the leading
digits will be right:

3.1415777777.

This result has 5 accurate digits. Consider another result:

123, 477.7777

This has four accurate digits. To determine the number of accurate
digits, start counting from the front (most-significant) non-zero
digit.

Relative Error (III)
Observation: ‘Accurate digits’ is a measure of relative error.

‘x̃ has n accurate digits’ is roughly equivalent to having a relative
error of 10−n. Generally, we can show

|x̃− x0|
|x0|

< 10−n+1.

Measuring Error

Why is |x̃| − |x0| a bad measure of the error?

Because it would claim that x̃ = −5 and x0 = 5 have error 0.

If x̃ and x0 are vectors, how do we measure the error?

Using something called a vector norm. Will introduce those soon.
Basic idea: Use norm in place of absolute value. Symbol: ‖x‖. E.g.
for relative error:

‖x̃− x0‖
‖x0‖

.

Sources of Error

What are the main sources of error in numerical computation?

I Truncation error:
(E.g. Taylor series truncation, finite-size models, finite
polynomial degrees)

I Rounding error
(Numbers only represented with up to ˜15 accurate digits.)

Digits and Rounding

Establish a relationship between ‘accurate digits’ and rounding
error.

Suppose a result gets rounded to 4 digits:

3.1415926 → 3.142.

Since computers always work with finitely many digits, they must do
something similar. By doing so, we’ve introduced an error–‘rounding
error’.

|3.1415926− 3.142| = 0.0005074

Rounding to 4 digits leaves 4 accurate digits–a relative error of
about 10−4.

Computers round every result–so they constantly introduce relative
error.
(Will look at how in a second.)

Condition Numbers

Methods f take input x and produce output y = f(x).
Input has (relative) error |∆x| / |x|.
Output has (relative) error |∆y| / |y|.
Q: Did the method make the relative error bigger? If so, by how
much?

The condition number provides the answer to that question.
It is simply the smallest number κ across all inputs x so that

Rel error in output 6 κ · Rel error in input,

or, in symbols,

κ = max
x

Rel error in output f(x)

Rel error in input x
= max

x

|f(x)−f(x+∆x)|
|f(x)|
|∆x|
|x|

.

nth-Order Accuracy

Often, truncation error is controlled by a parameter h.

Examples:

I distance from expansion center in Taylor expansions

I length of the interval in interpolation

A numerical method is called ‘nth-order accurate’ if its truncation
error E(h) obeys

E(h) = O(hn).

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Wanted: Real Numbers... in a computer

Computers can represent integers, using bits:

23 = 1 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20 = (10111)2

How would we represent fractions, e.g. 23.625?

Idea: Keep going down past zero exponent:

23.625 = 1·24+0·23+1·22+1·21+1·20+1 · 2−1 + 0 · 2−2 + 1 · 2−3

So: Could store

I a fixed number of bits with exponents > 0

I a fixed number of bits with exponents < 0

This is called fixed-point arithmetic.

Fixed-Point Numbers

Suppose we use units of 64 bits, with 32 bits for exponents > 0
and 32 bits for exponents < 0. What numbers can we represent?

231 · · · 20 2−1 · · · 2−32

Smallest: 2−32 ≈ 10−10

Largest: 231 + · · ·+ 2−32 ≈ 109

How many ‘digits’ of relative accuracy (think relative rounding
error) are available for the smallest vs. the largest number?

For large numbers: about 19
For small numbers: few or none

Idea: Instead of fixing the location of the 0 exponent, let it float.

Floating Point numbers

Convert 13 = (1101)2 into floating point representation.

13 = 23 + 22 + 20 = (1.101)2 · 23

What pieces do you need to store an FP number?

Significand: (1.101)2

Exponent: 3

Idea: Notice that the leading digit (in binary) of the significand is
always one.

Only store ‘101’. Final storage format:

Floating Point numbers (II)

Significand: 101 – a fixed number of bits
Exponent: 3 – a (signed!) integer allowing a certain range

Exponent is most often stored as a positive ‘offset’ from a certain
negative number. E.g.

3 = −1023︸ ︷︷ ︸
implicit offset

+ 1026︸︷︷︸
stored

Actually stored: 1026, a positive integer.

In-class activity: Floating Point

https://relate.cs.illinois.edu/course/cs357-s17/flow/inclass-floating-point/start

Unrepresentable numbers?

Can you think of a somewhat central number that we cannot
represent as

x = (1.)2 · 2
−p?

Zero. Which is somewhat embarrassing.

Core problem: The implicit 1. It’s a great idea, were it not for this
issue.

Have to break the pattern. Idea:

I Declare one exponent ‘special’, and turn off the leading one for
that one.
(say, -1023, a.k.a. stored exponent 0)

I For all larger exponents, the leading one remains in effect.

Bonus Q: With this convention, what is the binary representation
of a zero?

Demo: Picking apart a floating point number (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/fp/Picking apart a floating point number.html

Subnormal Numbers

What is the smallest representable number in an FP system with 4
stored bits in the significand and an exponent range of [−7, 7]?

First attempt:

I Significand as small as possible → all zeros after the implicit
leading one

I Exponent as small as possible: −7

(1.0000)2 · 2−7.

Unfortunately: wrong. We can go way smaller by using the special
exponent (which turns off the implicit leading one). We’ll assume
that the special exponent is −8. So:

(0.0001)2 · 2−7

Numbers with the special exponent are called subnormal (or
denormal) FP numbers. Technically, zero is also a subnormal.

Subnormal Numbers (II)
Note: It is thus quite natural to ‘park’ the special exponent at the
low end of the exponent range.

Subnormal Numbers (II)

Why would you want to know about subnormals? Because com-
puting with them is often slow, because it is implemented using
‘FP assist’, i.e. not in actual hardware. Many C compilers support
options to ‘flush subnormals to zero’.

I FP systems without subnormals will underflow (return 0) as
soon as the exponent range is exhausted.

I This smallest representable normal number is called the
underflow level, or UFL.

I Beyond the underflow level, subnormals provide for gradual
underflow by ‘keeping going’ as long as there are bits in the
significand, but it is important to note that subnormals don’t
have as many accurate digits as normal numbers.

I Analogously (but much more simply–no ‘supernormals’): the
overflow level, OFL.

Summary: Translating Floating Point Numbers

To summarize: To translate a stored (double precision) floating
point value consisting of the stored fraction (a 52-bit integer) and
the stored exponent value estored the into its (mathematical) value,
follow the following method:

value =

{
(1 + fraction ·2−52) · 2−1023+estored estored 6= 0,

(fraction ·2−52) · 2−1022 estored = 0.

Demo: Density of Floating Point Numbers (click to visit)
Demo: Floating Point vs Program Logic (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/fp/Density of Floating Point Numbers.html
https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/fp/Floating Point vs Program Logic.html

Floating Point and Rounding Error

What is the relative error produced by working with floating point
numbers?

What is smallest floating point number > 1? Assume 4 stored bits
in the significand.

(1.0001)2 · 20 = x · (1 + 0.0001)2

What’s the smallest FP number > 1024 in that same system?

(1.0001)2 · 210 = x · (1 + 0.0001)2

Can we give that number a name?

Floating Point and Rounding Error (II)
Unit roundoff or machine precision or machine epsilon or εmach is
the smallest number such that

float(1 + ε) > 1.

Ignoring possible subtleties about rounding, in the above system,
εmach = (0.0001)2. Another related quantity is ULP, or unit in the
last place.

What does this say about the relative error incurred in floating
point calculations?

I The factor to get from one FP number to the next larger one is
(mostly) independent of magnitude: 1 + εmach.

Floating Point and Rounding Error (III)
I Since we can’t represent any results between

x and x · (1 + εmach),

that’s really the minimum error incurred.

I In terms of relative error:∣∣∣∣ x̃− xx
∣∣∣∣ =

∣∣∣∣x(1 + εmach)− x
x

∣∣∣∣ = εmach.

At least theoretically, εmach is the maximum relative error in
any FP operations. (Practical implementations do fall short of
this.)

Floating Point and Rounding Error (IV)

What’s that same number for double-precision floating point? (52
bits in the significand)

2−52 ≈ 10−16

We can expect FP math to consistently introduce relative errors of
about 10−16.

Working in double precision gives you about 16 (decimal) accurate
digits.

Implementing Arithmetic

How is floating point addition implemented?
Consider adding a = (1.101)2 · 21 and b = (1.001)2 · 2−1 in a
system with three bits in the significand.

Rough algorithm:

1. Bring both numbers onto a common exponent

2. Do grade-school addition from the front, until you run out of
digits in your system.

3. Round result.

a = 1. 101 · 21

b = 0. 01001 · 21

a+ b ≈ 1. 111 · 21

Demo: Floating point and the Harmonic Series (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/fp/Floating point and the Harmonic Series.html

Problems with FP Addition

What happens if you subtract two numbers of very similar magni-
tude?
As an example, consider a = (1.1011)2 · 21 and b = (1.1010)2 · 21.

a = 1. 1011 · 21

b = 1. 1010 · 21

a− b ≈ 0. 0001???? · 21

or, once we normalize,
1.???? · 2−3.

There is no data to indicate what the missing digits should be.
→ Machine fills them with its ‘best guess’, which is not often good.

This phenomenon is called Catastrophic Cancellation.

Demo: Catastrophic Cancellation (click to visit)
In-class activity: Floating Point 2

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/fp/Catastrophic Cancellation.html
https://relate.cs.illinois.edu/course/cs357-s17/flow/inclass-floating-point-2/start

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Some Perspective

I We have so far (mostly) looked at what we can do with single
numbers (and functions that return single numbers).

I Things can get much more interesting once we allow not just
one, but many numbers together.

I It is natural to view an array of numbers as one object with its
own rules.
The simplest such set of rules is that of a vector.

I A 2D array of numbers can also be looked at as a matrix.

I So it’s natural to use the tools of computational linear algebra.

I ‘Vector’ and ‘matrix’ are just representations that come to life
in many (many!) applications. The purpose of this section is to
explore some of those applications.

Vectors

What’s a vector?

An array that defines addition and scalar multiplication with
reasonable rules such as

u + (v + w) = (u + v) + w

v + w = w + v

α(u + v) = αu + αv

These axioms generally follow from properties of “+” and “·”
operators

Vectors from a CS Perspective

What would the concept of a vector look like in a programming
language (e.g. Java)?

In a sense, ‘vector’ is an abstract interface, like this:

interface Vector

{

Vector add(Vector x, Vector y);

Vector scale(Number alpha, Vector x);

}

(Along with guarantees that add and multiply interact
appropriately.)

Vectors in the ‘Real World’

Demo: Images as Vectors (click to visit)
Demo: Sounds as Vectors (click to visit)
Demo: Shapes as Vectors (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/model_vec/Images as Vectors.html
https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/model_vec/Sounds as Vectors.html
https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/model_vec/Shapes as Vectors.html

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Matrices

What does a matrix do?

It represents a linear function between two vector spaces f : U → V
in terms of bases u1, . . . ,un of U and v1, . . . ,vm of V . Let

u = α1u1 + · · ·+ αnun

and
v = β1v1 + · · ·+ βmvm.

Then f can always be represented as a matrix that obtains the βs
from the αs: a11 · · · a1n

...
. . .

...
am1 · · · amn


 α1

...
αn

 =

 β1
...
βm

 .

Example: The ‘Frequency Shift’ Matrix

Assume both u and v are linear combination of sounds of different
frequencies:

u = α1u110 Hz + α2u220 Hz + · · ·+ α4u880 Hz

(analogously for v, but with βs). What matrix realizes a ‘frequency
doubling’ of a signal represented this way?


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0




α1

α2

α3

α4

 =


β1

β2

β3

β4



Matrices in the ‘Real World’

What are some examples of matrices in applications?

Demo: Matrices for geometry transformation (click to visit)
Demo: Matrices for image blurring (click to visit)
In-class activity: Computational Linear Algebra

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/model_mat/Matrices for geometry transformation.html
https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/model_mat/Matrices for image blurring.html

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Graphs as Matrices

How could this (directed) graph be written as a matrix?

0 1 4

2 3


1 1 0 0 0
1 1
1 1 1

1
1 1



Matrices for Graph Traversal: Technicalities

What is the general rule for turning a graph into a matrix?

If there is an edge from node i to node j, then Aji = 1.
(otherwise zero)

What does the matrix for an undirected graph look like?

Symmetric.

How could we turn a weighted graph (i.e. one where the edges
have weights–maybe ‘pipe widths’) into a matrix?

Allow values other than zero and one for the entries of the matrix.

Graph Matrices and Matrix-Vector Multiplication

If we multiply a graph matrix by the ith unit vector, what happens?

0 1 4

2 3


1 1 0 0 0
1 1
1 1 1

1
1 1




1
0
0
0
0

 =


1
1
1
0
1

 .

Graph Matrices and Matrix-Vector Multiplication (II)
We get a vector that indicates (with a 1) all the nodes that are
reachable from node i.

Demo: Matrices for graph traversal (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/model_graph/Matrices for graph traversal.html

Markov chains

Consider the following graph of states:

Surf the web

Study

Eat

Suppose this is an accurate model of the behavior of the average
student. :) Can this be described using a matrix?

Markov chains (II)
Important assumption: Only the most recent state matters to
determine probability of next state. This is called the Markov
property, and the model is called a Markov chain.

Write transition probabilities into matrix as before:
(Order: surf, study, eat–‘from’ state along columns)

A =

 .8 .6 .8
.2 .3 0
0 .1 .2


Observe: Columns add up to 1, to give sensible probability
distribution of next states. Given probabilities of states
p = (psurf , pstudy, peat), Ap gives us the probabilities after one unit
of time has passed.

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Storing Sparse Matrices

Some types of matrices (including graph matrices) contain many
zeros.
Storing all those zero entries is wasteful.
How can we store them so that we avoid storing tons of zeros?

I Python dictionaries (easy, but not efficient)

I Using arrays...?

Storing Sparse Matrices Using Arrays

How can we store a sparse matrix using just arrays? For example:
0 2 0 3
1 4

5
6 7


Idea: ‘Compressed Sparse Row’ (‘CSR’) format

I Write all non-zero values from top-left to bottom-right

I Write down what column each value was in

I Write down the index where each row started

RowStarts =
(

0 2 4 5 7
)

(zero-based)

Columns =
(

1 3 0 1 2 0 3
)

(zero-based)

Values =
(

2 3 1 4 5 6 7
)

Demo: Sparse Matrices in CSR Format (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/model_sparse/Sparse Matrices in CSR Format.html

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Norms

What’s a norm?

I A generalization of ‘absolute value’ to vectors.

I f(x) : Rn → R+
0 , returns a ‘magnitude’ of the input vector

I In symbols: Often written ‖x‖.

Define norm.

A function ‖x‖ : Rn → R+
0 is called a norm if and only if

1. ‖x‖ > 0⇔ x 6= 0.

2. ‖γx‖ = |γ| ‖x‖ for all scalars γ.

3. Obeys triangle inequality ‖x+ y‖ 6 ‖x‖+ ‖y‖

Examples of Norms

What are some examples of norms?

The so-called p-norms:∥∥∥∥∥∥
 x1

xn

∥∥∥∥∥∥
p

= p

√
|x1|p + · · ·+ |xn|p (p > 1)

p = 1, 2,∞ particularly important

Demo: Vector Norms (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/norm/Vector Norms.html

Norms and Errors

If we’re computing a vector result, the error is a vector.
That’s not a very useful answer to ‘how big is the error’.
What can we do?

Apply a norm!

How? Attempt 1:

Magnitude of error 6= ‖true value‖−‖approximate value‖ WRONG!

Attempt 2:

Magnitude of error = ‖true value− approximate value‖

Absolute and Relative Error

What are the absolute and relative errors in approximating the
location of Siebel center (40.114,−88.224) as (40,−88) using the
2-norm?

(
40.114
−88.224

)
−
(

40
−88

)
=

(
0.114
−.224

)
Absolute magnitude;∥∥∥∥(40.114

−88.224

)∥∥∥∥
2

≈ 96.91

Absolute error: ∥∥∥∥(0.114
−.224

)∥∥∥∥
2

≈ .2513

Relative error:
.2513

96.91
≈ .00259.

Absolute and Relative Error (II)
But: Is the 2-norm really the right norm here?

Demo: Calculate geographic distances using
http://tripstance.com

I Siebel Center is at 40.113813,-88.224671. (latitude, longitude)

I Locations in that format are accepted in the location boxes.

I What’s the distance to the nearest integer lat/lon intersection,
40,-88?

I How does distance relate to lat/lon? Only lat? Only lon?

http://tripstance.com

Matrix Norms

What norms would we apply to matrices?

I Easy answer: ‘Flatten’ matrix as vector, use vector norm.
This corresponds to an entrywise matrix norm called the
Frobenius norm,

‖A‖F :=

√∑
i,j

a2
ij .

I However, interpreting matrices as linear functions, what we are
really interested in is the maximum amplification of the norm
of any vector multiplied by the matrix,

‖A‖ := max
‖x‖=1

‖Ax‖ .

These are called induced matrix norms, as each is associated
with a specific vector norm ‖·‖.

Matrix Norms (II)
I The following are equivalent:

max
‖x‖6=0

‖Ax‖
‖x‖

= max
‖x‖6=0

∥∥∥∥∥∥∥∥∥A
x

‖x‖︸︷︷︸
y

∥∥∥∥∥∥∥∥∥
‖y‖=1

= max
‖y‖=1

‖Ay‖ = ‖A‖ .

I Logically, for each vector norm, we get a different matrix norm,
so that, e.g. for the vector 2-norm ‖x‖2 we get a matrix
2-norm ‖A‖2, and for the vector ∞-norm ‖x‖∞ we get a
matrix ∞-norm ‖A‖∞.

Demo: Matrix norms (click to visit)
In-class activity: Matrix norms

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/norm/Matrix norms.html

Properties of Matrix Norms

Matrix norms inherit the vector norm properties:

1. ‖A‖ > 0⇔ A 6= 0.

2. ‖γA‖ = |γ| ‖A‖ for all scalars γ.

3. Obeys triangle inequality ‖A+B‖ 6 ‖A‖+ ‖B‖

But also some more properties that stem from our definition:

1. ‖Ax‖ 6 ‖A‖ ‖x‖
2. ‖AB‖ 6 ‖A‖ ‖B‖ (easy consequence)

Both of these are called submultiplicativity of the matrix norm.

Example: Orthogonal Matrices

What is the 2-norm of an orthogonal matrix?

Linear Algebra recap: For an orthogonal matrix A, A−1 = AT .

In other words: AAT = ATA = I.
Next:

‖A‖2 = max
‖x‖2=1

‖Ax‖2

where

‖Ax‖2 =
√

(Ax)T (Ax) =
√
xT (ATA)x =

√
xTx = ‖x‖2 ,

so ‖A‖2 = 1.

Conditioning

Now, let’s study condition number of solving a linear system

Ax = b.

Input: b with error ∆b,
Output: x with error ∆x.

Observe A(x+ ∆x) = (b+ ∆b), so A∆x = ∆b.

rel err. in output

rel err. in input
=
‖∆x‖ / ‖x‖
‖∆b‖ / ‖b‖

=
‖∆x‖ ‖b‖
‖∆b‖ ‖x‖

=

∥∥A−1∆b
∥∥ ‖Ax‖

‖∆b‖ ‖x‖

6
∥∥A−1

∥∥ ‖A‖ ‖∆b‖ ‖x‖
‖∆b‖ ‖x‖

=
∥∥A−1

∥∥ ‖A‖ .

Conditioning (II)
So we’ve found an upper bound on the condition number. With a
little bit of fiddling, it’s not too hard to find examples that achieve
this bound, i.e. that it is tight.

So we’ve found the condition number of linear system solving, also
called the condition number of the matrix A:

cond(A) = κ(A) = ‖A‖
∥∥A−1

∥∥ .
I cond is relative to a given norm. So, to be precise, use

cond2 or cond∞ .

I If A−1 does not exist: cond(A) =∞ by convention.

Demo: Condition number visualized (click to visit)
Demo: Conditioning of 2x2 Matrices (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/norm/Condition number visualized.html
https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/norm/Conditioning of 2x2 Matrices.html

More Properties of the Condition Number

What is cond(A−1)?

cond(A−1) = ‖A‖ ·
∥∥A−1

∥∥ = cond(A).

What is the condition number of applying the matrix-vector multi-
plication Ax = b? (I.e. now x is the input and b is the output)

Let B = A−1.
Then computing b = Ax is equivalent to solving Bb = x.
Solving Bb = x has condition number
cond(B) = cond(A−1) = cond(A).

So the operation ‘multiply a vector by matrix A’ has the same
condition number as ‘solve a linear system with matrix A’.

Matrices with Great Conditioning (Part 1)

Give an example of a matrix that is very well-conditioned.
(I.e. has a condition-number that’s good for computation.)
What is the best possible condition number of a matrix?

Small condition numbers mean not a lot of error amplification.
Small condition numbers are good.

The identity matrix I should be well-conditioned:

‖I‖ = max
‖x‖=1

‖Ix‖ = max
‖x‖=1

‖x‖ = 1.

It turns out that this is the smallest possible condition number:

1 = ‖I‖ =
∥∥A ·A−1

∥∥ 6 ‖A‖ ·
∥∥A−1

∥∥ = κ(A).

Both of these are true for any norm ‖·‖.

Matrices with Great Conditioning (Part 2)

What is the 2-norm condition number of an orthogonal matrix A?

κ2(A) = ‖A‖2
∥∥A−1

∥∥
2

= ‖A‖2
∥∥AT∥∥

2
= 1.

That means orthogonal matrices have optimal conditioning.
They’re very well-behaved in computation.

In-class activity: Matrix Conditioning

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Solving Systems of Equations

Want methods/algorithms to solve linear systems. Starting small,
a kind of system that’s easy to solve has a ... matrix.

‘Triangular’ → Easy to solve by hand, e.g. given

b1 = a11x1 + a12x2

b2 = a22x2

just substitute x2 = b2/a22 into the first equation.
Generally written as upper/lower triangular matrices.

Triangular Matrices

Solve 
a11 a12 a13 a14

a22 a23 a24

a33 a34

a44




x1

x2

x3

x4

 =


b1
b2
b3
b4

 .

I Solve for x4 in a44x4 = b4, so x4 = b4/a44.

I Then solve (recurse) a11 a12 a13

a22 a23

a33

 x1

x2

x3

 =

 b1 − a14x4

b2 − a24x4

b3 − a34x4

 .

I This process is called back-substitution.

I The analogous process for lower triangular matrices is called
forward-substitution.

Demo: Coding back-substitution (click to visit)
In-class activity: Forward-substitution

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/linsys/Coding back-substitution.html

General Matrices

What about non-triangular matrices?

Perform Gaussian Elimination, also known as LU factorization

Given n× n matrix A, obtain lower triangular matrix L and upper
triangular matrix U such that A = LU .

Is there some redundancy in this representation?

Yes, the number of entries in a triangular matrix is (n+ 1)n2 >
n2

2 .
So, by convention we constrain L to have unit diagonal, so Lii = 1
for all i. Then we have n2 nontrivial values in L,U .

Using LU Decomposition to Solve Linear Systems

Given A = LU , how do we solve Ax = b?

Ax = b

L Ux︸︷︷︸
y

= b

Ly = b ← solvable by fwd. subst.

Ux = y ← solvable by bwd. subst.

Now x is a solution to Ax = b.

2-by-2 LU Factorization (Gaussian Elimination)

Lets consider an example for n = 2.

A =

[
a11 a12

a21 a22

]
=

[
1 0
l21 1

]
·
[
u11 u12

0 u22

]
First, we can observe[

a11 a12

]
= 1 ·

[
u11 u12

]
,

so the first row of U is just the first row of A.

Second, we notice a21 = l21 · u11, so l21 = a21/u11.

Lastly, we just need to get u22, which participates in the final
equation,

a22 = l21 · u12 + 1 · u22

thus we are left with u22 = a22 − l21u12.

General LU Factorization (Gaussian Elimination)

A =

[
a11 a12

a21 A22

]
=

[
1 0

l21 L22

]
·
[
u11 u12

0 U22

]
First, we can observe[

a11 a12

]
= 1 ·

[
u11 u12

]
,

so the first row of U is just the first row of A.

Second, we notice a21 = l21 · u11, so l21 = a21/u11.

To get L22 and U22, we use the equation,

A22 = l21 · u12 + L22 · U22.

To solve, perform the Schur complement update and ‘recurse’,

[L22, U22] = LU-decomposition(A22 − l21 · u12︸ ︷︷ ︸
Schur complement

)

Demo: Vanilla Gaussian Elimination (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/linsys/Vanilla Gaussian Elimination.html

LU: Failure Cases?

Is LU/Gaussian Elimination bulletproof?

No, the process can break, try performing LU on A =

(
0 1
2 1

)
.

Q: Is this a problem with the process or with the entire idea of LU?(
0 1
2 1

)
=

(
1 0
`21 1

)(
u11 u12

0 u22

)
We observe that(

1
`21 1

)(
u11 u12

0 u22

)
=

(
0 1
2 1

)
→ u11 = 0

and yet simultaneously u11 · `21︸ ︷︷ ︸
0

+1 · 0 = 2

It turns out to be that A doesn’t have an LU factorization.

LU: Failure Cases? (II)

What can be done to get something like an LU factorization?

Idea: In Gaussian elimination: simply swap rows, equivalent linear
system.

Approach:

I Good Idea: Swap rows if there’s a zero in the way

I Even better Idea: Find the largest entry (by absolute value),
swap it to the top row.

The entry we divide by is called the pivot.
Swapping rows to get a bigger pivot is called (partial) pivoting.

Partial Pivoting Example

Lets try to get a pivoted LU factorization of the matrix

A =

(
0 1
2 1

)
.

Start by swapping the two rows

Ā = PA =

[
2 1
0 1

]
.

P is a permutation matrix,

P =

[
0 1
1 0

]
.

Now proceed as usual with the Gaussian elimination on Ā,

Ā =

[
1 0
0 1

]
︸ ︷︷ ︸

L

[
2 1
0 1

]
︸ ︷︷ ︸

U

.

Partial Pivoting Example (II)
Thus, we obtained a pivoted LU factorization,

PA = LU.

Written differently, we have

A = P TLU.

To solve a linear system Ax = b, it suffices to compute

x = U−1︸︷︷︸
bwd. subs.

· L−1︸︷︷︸
fwd. subs.

· P︸︷︷︸
permute

· b.

Permutation Matrices

How do we capture ‘row swaps’ in a factorization?


1

1
1

1


︸ ︷︷ ︸

P


A A A A
B B B B
C C C C
D D D D

 =


A A A A
C C C C
B B B B
D D D D

 .

P is called a permutation matrix.

Q: What’s P−1?

General LU Partial Pivoting

What does the overall process look like?

1. pivot row with largest leading entry to top,

Ā = P1A =

[
ā11 ā12

ā21 Ā22

]
2. the top row of Ā is the top row of U

3. compute l̄21 by dividing ā21 by ā11

4. perform Schur complement update and recurse, get

P̄ (Ā22 − l̄21u12) = L22U22

5. permute the first column of L, l21 = P̄ l̄21

6. combine permutations P =

[
1

P̄

]
P1, so PA = LU

Computational Cost

What is the computational cost of multiplying two n×n matrices?

O(n3)

More precisely, we have n accumulated outer products with n2

additions and multiplications, so to leading order the cost is 2n3.

What is the computational cost of carrying out LU factorization
on an n× n matrix?

O(n) cost to form l21

O(n2) to perform Schur complement update l21u12

Overall O(n3) since we continue for n steps

More precisely, we have n outer products of decreasing size,

n∑
i=1

2i2 ≈ 2n3/3.

More cost concerns

What’s the cost of solving Ax = b?

LU: O(n3)
FW/BW Subst: 2×O(n2) = O(n2)

What’s the cost of solving Ax1 = b1, . . . , Axn = bn?

LU: O(n3)
FW/BW Subst: 2n×O(n2) = O(n3)

What’s the cost of finding A−1?

Same as solving
AX = I,

so still O(n3).

Cost: Worrying about the Constant, BLAS

O(n3) really means

α · n3 + β · n2 + γ · n+ δ.

All the non-leading and constants terms swept under the rug. But:
at least the leading constant ultimately matters.

Getting that constant to be small is surprisingly hard, even for
something deceptively simple such as matrix-matrix multiplication.

Idea: Rely on library implementation: BLAS (Fortran)
Level 1 z = αx+ y vector-vector operations

O(n)
?axpy

Level 2 z = Ax+ y matrix-vector operations
O(n2)
?gemv

Level 3 C = AB + βC matrix-matrix operations
O(n3)
?gemm

Cost: Worrying about the Constant, BLAS (II)
LAPACK: Implements ‘higher-end’ things (such as LU) using BLAS
Special matrix formats can also help save const significantly, e.g.

I banded

I sparse

LU: Rectangular Matrices

Can we compute LU of an m× n rectangular matrix?

Yes, two cases:

I m > n (tall and skinny): L : m× n, U : n× n
I m < n (short and fat): L : m×m, U : m× n

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Eigenvalue Problems: Setup/Math Recap

A is an n× n matrix.

I x 6= 0 is called an eigenvector of A if there exists a λ so that

Ax = λx.

I In that case, λ is called an eigenvalue.

I By this definition if x is an eigenvector then so is αx, therefore
we will usually seek normalized eigenvectors, so ‖x‖2 = 1.

Finding Eigenvalues

How do you find eigenvalues?

Linear Algebra approach:

Ax = λx

⇔ (A− λI)x = 0

⇔ A− λI is singular

⇔ det(A− λI) = 0

det(A− λI) is called the characteristic polynomial, which has
degree n, and therefore n (potentially complex) roots.

Q: Does that help computationally?
A: Abel showed that for n > 5 there is no general formula for the
roots of the polynomial. (i.e. no analog to the quadratic formula for
n = 5)

Finding Eigenvalues (II)
Algorithmically, that means we will need to approximate. So far
(e.g. for LU and QR), if it had not been for FP error, we would
have obtained exact answers. For eigenvalue problems, that is no
longer true–we can only hope for an approximate answer.

Distinguishing eigenvectors

Assume we have normalized eigenvectors x1, . . . ,xn with eigen-
values |λ1| > |λ2| > · · · > |λn|. Show that the eigenvectors are
linearly-independent.

We’d like to show that if

0 = α1x1 + · · ·+ αnxn

each αi = 0. Intuitively, we can see that if we multiply the
expression by A, the x1 component would grow faster than others:

lim
k→∞

‖(1/λk1)Ak(α1x1 + · · ·+ αnxn)‖ = α1 = 0.

We can then apply the same argument for α2, etc.

Diagonalizability

If we have n eigenvectors with different eigenvalues, the matrix is
diagonalizable.

Define a matrix whose columns are the eigenvectors

X =

 | |
x1 · · · xn
| |

 ,

and observe

AX =

 | |
λ1x1 · · · λnxn
| |

 =

 | |
x1 · · · xn
| |


 λ1

. . .

λn


This corresponds to a similarity transform

AX = XD ⇔ A = XDX−1,

Diagonalizability (II)
where D is a diagonal matrix with the eigenvalues.

In that sense: “Diagonalizable” = “Similar to a diagonal matrix”.

Are all Matrices Diagonalizable?

Give characteristic polynomial, eigenvalues, eigenvectors of(
1 1

1

)
.

CP: (1− λ)2

Eigenvalues: 1 (with multiplicity 2)
Eigenvectors: (

1 1
1

)(
x
y

)
=

(
x
y

)
⇒ x+ y = x⇒ y = 0. So all eigenvectors must look like

(
x
0

)
.

Eigenvector matrix X won’t be invertible. → This matrix is not
diagonalizable!

Power Iteration

We can use linear-independence to find the eigenvector with the
largest eigenvalue. Consider the eigenvalues of A1000.

Now, define for example x = αx1 + βx2, so

y = A1000(αx1 + βx2) = αλ1000
1 x1 + βλ1000

2 x2

and observe

y

λ1000
1

= αx1 + β

 λ2

λ1︸︷︷︸
<1


1000

︸ ︷︷ ︸
�1

x2.

Idea: Use this as a computational procedure to find x1.
Called Power Iteration.

Power Iteration: Issues?

What could go wrong with Power Iteration?

I Starting vector has no component along x1

Not a problem in practice: Rounding will introduce one.

I Overflow in computing λ1000
1

→ Normalized Power Iteration

I λ1 = λ2

Real problem.

What about Eigenvalues?

Power Iteration generates eigenvectors. What if we would like to
know eigenvalues?

Estimate them:
xTAx

xTx

I = λ if x is an eigenvector w/ eigenvalue λ

I Otherwise, an estimate of a ‘nearby’ eigenvalue

This is called the Rayleigh quotient.

Convergence of Power Iteration

What can you say about the convergence of the power method?

Say v
(k)
1 is the kth estimate of the eigenvector x1, and

ek =
∥∥∥x1 − v(k)

1

∥∥∥ .
Easy to see:

ek+1 ≈
|λ2|
|λ1|

ek.

We will later learn that this is linear convergence. It’s quite slow.

What does a shift do to this situation?

ek+1 ≈
|λ2 − σ|
|λ1 − σ|

ek.

Picking σ ≈ λ1 does not help...

Idea: Invert and shift to bring |λ1 − σ| into numerator.

Transforming Eigenvalue Problems

Suppose we know that Ax = λx. What are the eigenvalues of these
changed matrices?

Power. A→ Ak

Akx = λkx

Shift. A→ A− σI

(A− σI)x = (λ− σ)x

Inversion. A→ A−1

A−1x = λ−1x

Inverse Iteration / Rayleigh Quotient Iteration

Describe inverse iteration.

xk+1 := (A− σI)−1xk

I Implemented by storing/solving with LU factorization

I Converges to eigenvector for eigenvalue closest to σ, with

ek+1 ≈
|λclosest − σ|

|λsecond-closest − σ|
ek.

Describe Rayleigh Quotient Iteration.

Compute σk = xTkAxk/x
T
k xk to be the Rayleigh quotient for xk.

xk+1 := (A− σkI)−1xk

Demo: Power iteration and its Variants (click to visit)
In-class activity: Eigenvalue Iterations

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/eigen/Power iteration and its Variants.html

Computing Multiple Eigenvalues

All Power Iteration Methods compute one eigenvalue at a time.
What if I want all eigenvalues?

Two ideas:

1. Deflation: Suppose Av = λv (v 6= 0). Let V = span{v}.
Then

A : V → V

V ⊥ → V ⊕ V ⊥

In matrix form

A =

 |
v Basis of V ⊥

|


︸ ︷︷ ︸

Q1


λ ∗ ∗ ∗
0 ∗ ∗ ∗
... ∗ ∗ ∗
0 ∗ ∗ ∗

QT1 .

Computing Multiple Eigenvalues (II)
Now call B the shaded part of the resulting matrix

eigenvalues of A = eigenvalues of B ∪ {λ}.

I.e. we’ve reduced the rest of the problem to finding the
eigenvalues of B–which is smaller → We have shrunk the
problem size, or ‘deflated’ the problem.

2. Iterate with multiple vectors simultaneously.

Simultaneous Iteration

What happens if we carry out power iteration on multiple vectors
simultaneously?

Simultaneous Iteration:

1. Start with X0 ∈ Rn×p (p 6 n) with (arbitrary) iteration
vectors in columns

2. Xk+1 = AXk

Problems:

I Needs rescaling

I X increasingly ill-conditioned: all columns go towards x1

Fix: orthogonalize! (using, e.g. Gram-Schmidt)

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Markov chains and Eigenvalue Problems

Recall our example of a Markov chain:

Surf the web

Study

Eat

Suppose this is an accurate model of the behavior of the average
student. :) How likely are we to find the average student in each
of these states?

Markov chains and Eigenvalue Problems (II)
Write transition probabilities into matrix as before:
(Order: surf, study, eat–‘from’ state along columns)

A =

 .8 .6 .8
.2 .3 0
0 .1 .2


Recall: Columns add up to 1. Given probabilities of states
p = (psurf , pstudy, peat), Ap gives us the probabilities after one unit
of time has passed.

Idea: Look for a steady state, i.e. Ap = p.

Phrase as an eigenvalue problem: Ap = λp.

Demo: Finding an equilibrium distribution using the power method
(click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/eigen_app/Finding an equilibrium distribution using the power method.html

Understanding Time Behavior

Many important systems in nature are modeled by describing the
time rate of change of something.

I E.g. every bird will have 0.2 baby birds on average per year.

I But there are also foxes that eat birds. Every fox present
decreases the bird population by 1 birds a year.
Meanwhile, each fox has 0.3 fox babies a year. And for each
bird present, the population of foxes grows by 0.9 foxes.

Set this up as equations and see if eigenvalues can help us under-
stand how these populations will evolve over time.

Equation just for birds:

d

dt
b = 0.2b.

Understanding Time Behavior (II)
Equations for birds and foxes:

d

dt
b = 0.2b− 1f,

d

dt
f = 0.9b+ .3f.

Shorter, letting the population p =
(
b f

)T
:

d

dt
p =

(
0.2 −1
0.9 .3

)
p.

Bold (but pretty good) assumpution:

p(t) = eλtp0.

Then:

λp0 =

(
0.2 −1
0.9 .3

)
p0.

Understanding Time Behavior (III)
So, the eigenvalues of the transition matrix can tell us how the
system will evolve over time.

Demo: Understanding the birds and the foxes with eigenvalues
(click to visit)
In-class activity: Eigenvalues 2

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/eigen_app/Understanding the birds and the foxes with eigenvalues.html

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Singular Value Decomposition

What is the Singular Value Decomposition (‘SVD’)?

The SVD is a factorization of an m× n matrix into

A = UΣV T , where

I U is an m×m orthogonal matrix
(Its columns are called ‘left singular vectors’.)

I Σ is an m× n diagonal matrix
with the singular values on the diagonal

Σ =


σ1

. . .

σn
0

 Convention: σ1 > σ2 > · · · > σn > 0.

Singular Value Decomposition (II)
I V T is an n× n orthogonal matrix

(V ’s columns are called ‘right singular vectors’.)

Computing the SVD

How can I compute an SVD of a matrix A?

1. Compute the eigenvalues and eigenvectors of ATA.

ATAv1 = λ1v1 · · · ATAvn = λnvn

2. Make a matrix V from the vectors vi:

V =

 | |
v1 · · · vn
| |

 .

(ATA symmetric: V orthogonal if columns have norm 1.)

Computing the SVD (II)
3. Make a diagonal matrix Σ from the square roots of the

eigenvalues:

Σ =


√
λ1

. . . √
λn 0


4. Find U from

A = UΣV T ⇔ UΣ = AV.

(While being careful about non-squareness and zero singular
values)
In the simplest case:

U = AV Σ−1.

Computing the SVD (III)
Observe U is orthogonal: (Use: V TATAV = Σ2)

UTU = Σ−1 V TATAV︸ ︷︷ ︸
Σ2

Σ−1 = Σ−1Σ2Σ−1 = I.

(Similar for UUT .)

Demo: Computing the SVD (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/svd/Computing the SVD.html

How Expensive is it to Compute the SVD?

Demo: Relative cost of matrix factorizations (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/svd/Relative cost of matrix factorizations.html

‘Reduced’ SVD

Is there a ‘reduced’ factorization for non-square matrices?

‘Reduced’ SVD (II)
Yes:

I “Full” version shown in black

I “Reduced” version shown in red

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Solve Square Linear Systems

Can the SVD A = UΣV T be used to solve square linear systems?
At what cost (once the SVD is known)?

Yes, easy:

Ax = b

UΣV Tx = b

ΣV Tx︸ ︷︷︸
y:=

= UTb

(diagonal, easy to solve) Σy = UTb

Know y, find x = V y.

Cost: O(n2)–but more operations than using fw/bw subst. Even
worse when including comparison of LU vs. SVD.

Tall and Skinny Systems

Consider a ‘tall and skinny’ linear system, i.e. one that has more
equations than unknowns:

In the figure: m > n. How could we solve that?

Tall and Skinny Systems (II)
First realization: A square linear system often only has a single
solution. So applying more conditions to the solution will mean we
have no exact solution.

Ax = b ← Not going to happen.

Instead: Find x so that ‖Ax− b‖2 is as small as possible.

r = Ax− b is called the residual of the problem.

‖Ax− b‖22 = r2
1 + · · ·+ r2

m ← squares

This is called a (linear) least-squares problem. Since

Find x so that ‖Ax− b‖2 is as small as possible.

is too long to write every time, we introduce a shorter notation:

Ax ∼= b.

Solving Least-Squares

How can I actually solve a least-squares problem Ax ∼= b?

The job: Make ‖Ax− b‖2 is as small as possible.
Equivalent: Make ‖Ax− b‖22 is as small as possible.
Use: The SVD A = UΣV T .

Find x to minimize:

‖Ax− b‖22
=

∥∥UΣV Tx− b
∥∥2

2

=
∥∥UT (UΣV Tx− b)

∥∥2

2
(because U is orthogonal)

=

∥∥∥∥∥∥ΣV Tx︸︷︷ ︸
y

−UTb

∥∥∥∥∥∥
2

2

=
∥∥Σy − UTb

∥∥2

2

Solving Least-Squares (II)
What y minimizes

∥∥Σy − UTb
∥∥2

2
=

∥∥∥∥∥∥∥∥∥∥∥


σ1

. . .

σk
0

0

y − z
∥∥∥∥∥∥∥∥∥∥∥

2

2

?

Pick

yi =

{
zi/σi if σi 6= 0,
0 if σi = 0.

Find x = V y, done.

Slight technicality: There only is a choice if some of the σi are
zero. (Otherwise y is uniquely determined.) If there is a choice, this
y is the one with the smallest 2-norm that also minimizes the
2-norm of the residual. And since ‖x‖2 = ‖y‖2 (because V is

Solving Least-Squares (III)
orthogonal), x also has the smallest 2-norm of all x′ for which
‖Ax′ − b‖2 is minimal.

In-class activity: SVD and Least Squares

The Pseudoinverse: A Shortcut for Least Squares

How could the solution process for Ax ∼= b be with an SVDA =
UΣV T be ‘packaged up’?

UΣV Tx ≈ b

⇔ x ≈ V Σ−1UTb

Problem: Σ may not be invertible.
Idea 1: Define a ‘pseudo-inverse’ Σ+ of a diagonal matrix Σ as

Σ+
i =

{
σ−1
i if σi 6= 0,

0 if σi = 0.

Then Ax ∼= b is solved by V Σ+UTb.

Idea 2: Call A+ = V Σ+UT the pseudo-inverse of A.
Then Ax ∼= b is solved by A+b.

The Normal Equations

You may have learned the ‘normal equations’ ATAx = ATb to
solve Ax ∼= b.
Why not use those?

cond(ATA) ≈ cond(A)2

I.e. if A is even somewhat poorly conditioned, then the conditioning
of ATA will be a disaster.

The normal equations are not well-behaved numerically.

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Fitting a Model to Data

How can I fit a model to measurements? E.g.:

Number of days in polar vortex

Mood

Time t

m

Maybe:
m̂(t) = α+ βt+ γt2

Have: 300 data pooints: (t1,m1), . . . , (t300,m300)
Want: 3 unknowns α, β, γ

Fitting a Model to Data (II)
Write down equations:

α+ βt1 + γt21 ≈ m1

α+ βt2 + γt22 ≈ m2
...

...
...

α+ βt300 + γt2300 ≈ m300

→


1 t1 t21
1 t2 t22
...

...
...

1 t300 t2300


 α

β
γ

 ∼=


m1

m2
...

m300

 .

So data fitting is just like interpolation, with a Vandermonde matrix:

Vα = m.

Only difference: More rows. Solvable using the SVD.

Demo: Data Fitting with Least Squares (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/svd_app/Data Fitting with Least Squares.html

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Meaning of the Singular Values

What do the singular values mean? (in particular the first/largest
one)

A = UΣV T

‖A‖2 = max
‖x‖2=1

‖Ax‖2 = max
‖x‖2=1

∥∥UΣV Tx
∥∥

2

U orth.
= max

‖x‖2=1

∥∥ΣV Tx
∥∥

2

V orth.
= max

‖V Tx‖2=1

∥∥ΣV Tx
∥∥

2

Let y = V Tx
= max

‖y‖2=1
‖Σy‖2

Σ diag.
= σ1.

So the SVD (finally) provides a way to find the 2-norm.

Entertainingly, it does so by reducing the problem to finding the
2-norm of a diagonal matrix.

‖A‖2 = σ1.

Condition Numbers

How would you compute a 2-norm condition number?

cond2(A) = ‖A‖2
∥∥A−1

∥∥
2

= σ1/σn.

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

SVD as Sum of Outer Products

What’s another way of writing the SVD?

Starting from (assuming m > n for simplicity)

A = UΣV T =

 | |
u1 · · · um
| |




σ1

. . .

σm
0


 − v1 −

...
− vn −


we find that

A =

 | |
u1 · · · um
| |


 − σ1v1 −

...
− σnvn −


= σ1u1v

T
1 + σ2u2v

T
2 + · · ·+ σnunv

T
n .

SVD as Sum of Outer Products (II)
That means: The SVD writes the matrix A as a sum of outer
products (of left/right singular vectors). What could that be good
for?

Low-Rank Approximation (I)

What is the rank of σ1u1v
T
1 ?

1. (1 linearly independent column!)

What is the rank of σ1u1v
T
1 + σ2u2v

T
2 ?

2. (2 linearly independent–orthogonal–columns!)
Demo: Image compression (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/svd_app/Image compression.html

Low-Rank Approximation

What can we say about the low-rank approximation

Ak = σ1u1v
T
1 + · · ·+ σkukv

T
k

to
A = σ1u1v

T
1 + σ2u2v

T
2 + · · ·+ σnunv

T
n?

For simplicity, assume σ1 > σ2 > · · · > σn>0.

Observe that Ak has rank k. (And A has rank n.)

Then ‖A−B‖2 among all rank-k (or lower) matrices B is
minimized by Ak.
(Eckart-Young Theorem)

Even better:

min
rankB6k

‖A−B‖2 = ‖A−Ak‖2 = σk+1.

Low-Rank Approximation (II)
Ak is called the best rank-k approximation to A.
(where k can be any number)

This best-approximation property is what makes the SVD extremely
useful in applications and ultimately justifies its high cost.

It’s also the rank-k best-approximation in the Frobenius norm:

min
rankB6k

‖A−B‖F = ‖A−Ak‖F =
√
σ2
k+1 + · · ·σ2

n.

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Recap: Interpolation

Starting point: Looking for a linear combination of functions ϕi to
hit given data points (xi, yi).

Interpolation becomes solving the linear system:

yi = f(xi) =

Nfunc∑
j=0

αj ϕj(xi)︸ ︷︷ ︸
Vij

↔ Vα = y.

Want unique answer: Pick Nfunc = N → V square.

V is called the (generalized) Vandermonde matrix.

Main lesson:

V (coefficients) = (values at nodes) .

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Rethinking Interpolation

We have so far always used monomials (1, x, x2, x3, . . .) and
equispaced points for interpolation. It turns out that this has
significant problems.
Demo: Monomial interpolation (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/interp/Monomial interpolation.html

Demo: Choice of Nodes for Polynomial Interpolation (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/interp/Choice of Nodes for Polynomial Interpolation.html

Interpolation: Choosing Basis Function and Nodes

Both function basis and point set are under our control. What do
we pick?

Ideas for basis functions:

I Monomials 1, x, x2, x3, x4, . . .

I Functions that make V = I → ‘Lagrange basis’

I Functions that make V triangular → ‘Newton basis’

I Splines (piecewise polynomials)

I Orthogonal polynomials

I Sines and cosines

I ‘Bumps’ (‘Radial Basis Functions’)

Ideas for nodes:

I Equispaced

I ‘Edge-Clustered’ (so-called Chebyshev/Gauss/... nodes)

Better Conditioning: Orthogonal Polynomials

What caused monomials to have a terribly conditioned Vander-
monde?

Being close to linearly dependent.

What’s a way to make sure two vectors are not like that?

Orthogonality

But polynomials are functions!

How can those be orthogonal? Just need something like a dot
product!

f · g =
n∑
i=1

figi = 〈f , g〉

〈f, g〉 =

∫ 1

−1
f(x)g(x)dx

Better Conditioning: Orthogonal Polynomials (II)
Orthogonal then just means 〈f, g〉 = 0.
Q: How can we find an orthogonal basis?
A: Apply Gram-Schmidt to the monomials.
Obtained Legendre polynomials.
Demo: Orthogonal Polynomials (click to visit)

But how can I practically compute the Legendre polynomials?

→ DLMF, Chapter on orthogonal polynomials
Main lessons:

I There exist three-term recurrences. Easy to apply if you know
the first two.

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/interp/Orthogonal Polynomials.html

Better Conditioning: Orthogonal Polynomials (III)
I There is a whole zoo of polynomials there, depending on the

weight function w in the (generalized) inner product:

〈f, g〉 =

∫
w(x)f(x)g(x)dx.

Some sets of orthogonal polynomials live on intervals other
than (−1, 1).

Another Family of Orthogonal Polynomials: Chebyshev

Three equivalent definitions:

I Result of Gram-Schmidt with weight 1/
√

1− x2

What is that weight?

1/ (Half circle), i.e. x2 + y2 = 1, with y =
√

1− x2

I Tk(x) = cos(k cos−1(x))

I Tk(x) = 2xTk−1(x)− Tk−2(x)

Demo: Chebyshev interpolation (click to visit) (Part 1)

What are good nodes to use with Chebyshev polynomials?

The answer would be particularly simple if the nodes were cos(∗).
So why not cos (equispaced)?

Might get

xi = cos

(
i

k
π

)
(i = 0, 1, . . . , k)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/interp/Chebyshev interpolation.html

Chebyshev Nodes

Might also consider zeros (instead of roots) of Tk:

xi = cos

(
2i− 1

2k
π

)
(i = . . . , k).

The Vandermonde for these (with Tk) can be applied in O(N logN)
time, too.

It turns out that we were still looking for a good set of interpolation
nodes.

We came up with the criterion that the nodes should bunch towards
the ends. Do these do that?

Yes.
Demo: Chebyshev interpolation (click to visit) (Part 2)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/interp/Chebyshev interpolation.html

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Calculus on Interpolants

Suppose we have an interpolant f̃(x) with f(xi) = f̃(xi) for
i = 1, . . . , n:

f̃(x) = α1ϕ1(x) + · · ·+ αnϕn(x)

How do we compute the derivative of f̃?

f̃ ′(x) = α1ϕ
′
1(x) + · · ·+ αnϕ

′
n(x).

Easy because interpolation basis (ϕi) is known.

Suppose we have function values at nodes (xi, f(xi)) for i =
1, . . . , n for a function f . If we want f ′(xi), what can we do?

f ′(xi): Hard to get
f̃ ′(xi): Easy to get

Calculus on Interpolants (II)
So:

1. Compute coefficients α = V −1f , where
f = (f(x1), . . . , f(xn))T .

2. Build generalized Vandermonde with derivatives of basis:

V ′ =

 ϕ′1(x1) · · · ϕ′n(x1)
...

...
ϕ′1(xn) · · · ϕ′n(xn)

 .

3. Compute

V ′α =

 α1ϕ
′
1(x1) + · · ·+ αnϕ

′
n(x1)

...
α1ϕ

′
1(xn) + · · ·+ αnϕ

′
n(xn)

 =

 f̃ ′(x1)
...

f̃ ′(xn)


︸ ︷︷ ︸

f̃ ′

.

Calculus on Interpolants (III)

All in one step: f̃
′
= V ′V −1f .

In other words: V ′V −1 is a matrix to apply a derivative!
We call D = V ′V −1 a differentiation matrix.

About Differentiation Matrices

How could you find coefficients of the derivative in the original
basis (ϕi)?

α′ = V −1V ′ V −1f︸ ︷︷ ︸
coeff. in (ϕ′i)︸ ︷︷ ︸

coeff. in (ϕi)

.

Give a matrix that finds the second derivative.

Using above, we can apply repeated derivatives using just V and V ′:

f ′′ = V ′V −1V ′V −1︸ ︷︷ ︸
matrix for double differentiation

f .

Demo: Taking Derivatives with Vandermonde Matrices (click to
visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/interp/Taking Derivatives with Vandermonde Matrices.html

Finite Difference Formulas

It is possible to use the process above to find ‘canned’ formulas for
taking derivatives. Suppose we use three points equispaced points
(x− h, x, x+ h) for interpolation (i.e. a degree-2 polynomial).

I What is the resulting differentiation matrix?

I What does it tell us for the middle point?

D = V ′V −1 =


− 1

2h 0 1
2h

.


which we can check via
− 1

2h 0 1
2h

.


︸ ︷︷ ︸

D

 1 x− h (x− h)2

1 x x2

1 x+ h (x+ h)2


︸ ︷︷ ︸

V

=


0 1 2x
.


︸ ︷︷ ︸

V ′

Finite Difference Formulas (II)
(Can find the dependence on h by varying h and watching the
entries.) When we apply D, we get

V ′V −1

 f(x− h)
f(x)

f(x+ h)

 =

 . . .
f(x+h)−f(x−h)

2h
. . .


So we can compute an approximate (second-order accurate!)
derivative just by using this formula.
Generalizes to more (and non-center) points easily.

Reusing Finite Difference Formulas

Suppose we have the following finite difference rule using M
equispaced points to the left of x and N equispaced points to the
right of x (say, from a row of a differentiation matrix):

f ′(x) ≈
N∑

i=−M
αif(x+ ih).

How reusable is this rule?

Can we use this rule at a different x̃ 6= x?

Yes, with unchanged ‘coefficients’:

f ′(x̃) ≈
N∑

i=−M
αif(x̃+ ih).

Reusing Finite Difference Formulas (II)
This is true because if you consider a shifted function
g(x) = f(x− s) with s so that x̃ = x− s, then the rule still applies:

f ′(x̃) = f ′(x− s) = g′(x) ≈
N∑

i=−M
αig(x+ ih)

=

N∑
i=−M

αif(x− s+ ih)

=

N∑
i=−M

αif(x̃+ ih).

Can we use this rule with a different point distance h̃ = βh 6= h?

Reusing Finite Difference Formulas (III)
Yes, with scaled ‘coefficients’:

f ′(x) ≈
N∑

i=−M

αi
β
f(x+ iβh).

This is true because if you consider a scaled function g(x) = f(βx),
then the rule still applies:

βf ′(x) = g′(x) ≈
N∑

i=−M
αig(ih) =

N∑
i=−M

αif(βih),

so

f ′(x) ≈
N∑

i=−M

αi
β
f(βih).

Computing Integrals with Interpolation

Can we use a similar process to compute (approximate) integrals
of a function f?

The process of computing approximate integrals is called
‘quadrature’.
Same idea as derivatives: interpolate, then integrate.

Have: interpolant f̃(x) = α1ϕ1(x) + · · ·+ αnϕn(x)
so that f̃(xi) = f(xi) = yi. We’ll call the xi the quadrature nodes.

Want: Integral∫ b

a
f(x)dx ≈

∫ b

a
f̃(x)dx =

∫ b

a
α1ϕ1(x) + · · ·+ αnϕn(x)dx

= α1

∫ b

a
ϕ1(x)dx+ · · ·+ αn

∫ b

a
ϕn(x)dx.

Computing Integrals with Interpolation (II)

Idea: di =
∫ b
a ϕi(x)dx can be computed ahead of time, so that∫ b

a
f̃(x)dx = α1d1+· · ·+αndn = dTα = dT (V −1y) = (dTV −1)y.

Can call w := V −Td the quadrature weights and compute∫ b

a
f̃(x)dx = wTy = w · y.

Demo: Creating and Transforming Quadrature Rules (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/interp/Creating and Transforming Quadrature Rules.html

Example: Building a Quadrature Rule

Demo: Computing the Weights in Simpson’s Rule (click to visit)

Suppose we know

f(x0) = 2 f(x1) = 0 f(x2) = 3

x0 = 0 x1 =
1

2
x2 = 1

How can we find an approximate integral?

1. Find coefficients

α = V −1

 2
0
3

 .

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/interp/Computing the Weights in Simpson's Rule.html

Example: Building a Quadrature Rule (II)
2. Compute integrals∫ 1

0
1dx = 1∫ 1

0
xdx =

1

2∫ 1

0
x2dx =

[
1

3
x3

]1

0

=
1

3

3. Combine it all together:

∫ 1

0
f̃(x)dx =

(
1 1

2
1
3

)
V −1︸ ︷︷ ︸

weights w

 2
0
3

 =

 .167
.667
.167

·
 f(0)

f(1/2)
f(1)

 .

Example: Building a Quadrature Rule (III)
These weights are dependent only on the choice of nodes and not
the basis functions (the interpolant is unique, so its integral is
unique). For equispaced points like above, the method defined by
the quadrature weights is called Simpson’s rule.

Using Quadrature Rules

To estimate an integral over an arbitrary interval [a, b] we can use a
quadrature rule with weights derived by integrating over [0, 1], since∫ b

a
f(x)dx =︸︷︷︸

x=(b−a)x̄+a

(b− a)

∫ 1

0
f((b− a)x̄+ a)dx̄.

Thus, given weights w = V −Td computed from integrating n basis
functions on [0, 1] (to get d) and V defined based on points
x̄1, . . . , x̄n ∈ [0, 1], we can use the same weights for the above
integral as ∫ b

a
f(x)dx ≈ (b− a)wTy.

Above y corresponds to f evaluated at points
(b− a)x̄1 + a, . . . , (b− a)x̄n + a.

Facts about Quadrature

What does Simpson’s rule look like on [0, 1/2]?

1

2

 .167
.667
.167

 ·
 f(0)

f(1/4)
f(1/2)


What does Simpson’s rule look like on [5, 6]?

 .167
.667
.167

 ·
 f(5)

f(5.5)
f(6)


How accurate is Simpson’s rule with polynomials of degree n?

Demo: Accuracy of Simpson’s rule (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/interp/Accuracy of Simpson's rule.html

Facts about Quadrature (II)
I Quadrature:∣∣∣∣∫ b

a
f(x)dx−

∫ b

a
f̃(x)dx

∣∣∣∣ 6 C · hn+2

(where h = b− a)
(Side note: due to a happy accident, even n produce an even
smaller error.)

I Interpolation:

max
x∈[a,b]

∣∣∣f(x)− f̃(x)
∣∣∣ 6 C · hn+1

I Differentiation:

max
x∈[a,b]

∣∣∣f ′(x)− f̃ ′(x)
∣∣∣ 6 C · hn

General lesson: More derivatives ⇒ Worse accuracy.

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

What is linear convergence? quadratic convergence?

Let ek = x̂k − x be the error in the kth estimate x̂k of a desired
solution x.

An iterative method converges with rate r if

lim
k→∞

‖ek+1‖
‖ek‖r

= C

{
> 0,
<∞.

r = 1 is called linear convergence.
r > 1 is called superlinear convergence.
r = 2 is called quadratic convergence.

Examples:

I Power iteration is linearly convergent.

I Rayleigh quotient iteration is quadratically convergent.

About Convergence Rates

Demo: Rates of Convergence (click to visit)

Characterize linear, quadratic convergence in terms of the ‘number
of accurate digits’.

I Linear convergence gains a constant number of digits each step:

‖ek+1‖ 6 C ‖ek‖

(and C < 1 matters!)

I Quadratic convergence doubles the number of digits each step:

‖ek+1‖ 6 C ‖ek‖2

(Only starts making sense once ‖ek‖ is small. C doesn’t
matter much.)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/it_conv/Rates of Convergence.html

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Solving Nonlinear Equations

What is the goal here?

Solve f(x) = 0 for f : R→ R.
If looking for solution to f(x) = y, simply consider f(x) = f̃(x)− y.

This is called root finding. A related task is optimization, where one
looks to find an x∗ so that f(x∗) is minimal.
There are flavors of both root finding and optimization in one and n
dimensions.

Root Finding, Optimization: Applications

I FPUs: Assume you have built a floating point unit that can
add, subtract and multiply. At this point, division and square
root seem like obvious next steps to implement.
Newton’s method (see below) for finding 1/

√
y can be

implemented with just add/subtract/multiply. This in turn can
be used to implement both division and square root.
See https:

//en.wikipedia.org/wiki/Fast_inverse_square_root

for some related computer game nostalgia.

I GPS: GPS measures signal run time between satellites and a
receiver device. The receiver must solve the navigation
equations to determine latitude/longitude/elevation/time.
https://en.wikipedia.org/wiki/Global_Positioning_

System#Navigation_equations

https://en.wikipedia.org/wiki/Fast_inverse_square_root
https://en.wikipedia.org/wiki/Fast_inverse_square_root
https://en.wikipedia.org/wiki/Global_Positioning_System#Navigation_equations
https://en.wikipedia.org/wiki/Global_Positioning_System#Navigation_equations

Root Finding, Optimization: Applications (II)
I Inverse kinematics: Given the desired position of the end of a

kinematic chain (such as the manipulator at the end of a robot
arm), finding the joint angles (i.e. the information needed to
drive the robot) requires solving f(θ) = y, where f is the
forward kinematic model based on the joint angles θ.

I Data fitting: Just like in our discussion of least squares, as soon
as a system of equations is non-square (such as when there is
more data than unknowns–think more than four satellites in
view for GPS), achieving f(x) = y becomes unlikely. A natural
idea is to consider the optimization problem ‖f(x)− y‖22
instead. (This specifically is called nonlinear least squares).

Bisection Method

Assume continuous function f has a zero on the interval [a, b] and

sign(f(a)) = −sign(f(b)).

Perform binary search: check sign of f((a+ b)/2) and define new
search interval so that ends have opposite sign.
Demo: Bisection Method (click to visit)

What’s the rate of convergence? What’s the constant?

Linear with constant 1/2.

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/solve_1d/Bisection Method.html

Newton’s Method

Derive Newton’s method.

Idea: Approximate f at current iterate using Taylor.

f(xk + h) ≈ f(xk) + f ′(xk)h

Now find root of this linear approximation in terms of h:

f(xk) + f ′(xk)h = 0 ⇔ h = − f(xk)

f ′(xk)
.

So

x0 = 〈starting guess〉

xk+1 = xk −
f(xk)

f ′(xk)
= g(xk)

Demo: Newton’s Method (click to visit)
Demo: Convergence of Newton’s Method (click to visit)

What are some drawbacks of Newton?

I Convergence argument only good locally
Will see: convergence only local (near root)

I Have to have derivative!

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/solve_1d/Newton's Method.html
https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/solve_1d/Convergence of Newton's Method.html

Secant Method

What would Newton without the use of the derivative look like?

Approximate

f ′(xk) ≈
f(xk)− f(xk−1)

xk − xk−1
.

So

x0 = 〈starting guess〉

xk+1 = xk −
f(xk)

f(xk)−f(xk−1)
xk−xk−1

.

Rate of convergence (not shown) is
(
1 +
√

5
)
/2 ≈ 1.618.

Secant Method Drawbacks

What are some drawbacks of Secant?

I Convergence argument only good locally
Will see: convergence only local (near root)

I Slower convergence

I Need two starting guesses

Demo: Secant Method (click to visit)
In-class activity: Secant Method

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/solve_1d/Secant Method.html

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Solving Nonlinear Equations

What is the goal here?

Solve f(x) = 0 for f : Rn → Rn
In other words, f(x) is now a vector-valued function

f(x) =

f1(x)
...

fn(x)

 =

f1(x1, . . . , xn)
...

fn(x1, . . . , xn)


If looking for solution to f̃(x) = y, simply consider f(x) = f̃(x)− y.

Intuition: Each of the n equations describes a surface. Looking for
intersections.
Demo: Three quadratic functions (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/solve_nd/Three quadratic functions.html

Newton’s method

What does Newton’s method look like in n dimensions?

Approximate by linear function:

f(x + s) = f(x) + Jf (x)s

where Jf is the Jacobian matrix of f :

Jf (x) =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn

 (x).

Set to 0:

Jf (x)s = −f(x) ⇒ s = −(Jf (x))−1f(x)

That’s a linear system! (Surprised?)

Newton’s method (II)
So

x0 = 〈starting guess〉
xk+1 = xk − (Jf (xk))

−1f(xk)

Downsides:

I Still only locally convergent

I Computing and inverting Jf is expensive.

Newton: Example

Set up Newton’s method to find a root of

f(x, y) =

(
x+ 2y − 2
x2 + 4y2 − 4

)
.

Mostly just need the Jacobian:

Jf (x, y) =

(
1 2

2x 8y

)
.

Demo: Newton’s method in n dimensions (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/solve_nd/Newton's method in n dimensions.html

Secant in n dimensions?

What would the secant method look like in n dimensions?

Need an ‘approximate Jacobian’ satisfying

J̃(xk+1 − xk) = f(xk+1)− f(xk).

Suppose we have already taken a step to xk+1. Could we ‘reverse
engineer’ J̃ from that equation?

I Solution non-unique: n2 unknowns in J̃ , but only n equations

I Better to ‘update’ J̃ with information from current guess.

One choice: Broyden’s method (minimizes change to J̃)

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Optimization

State the problem.

Have: Objective function f : Rn → R
Want: Minimizer x∗ ∈ Rn so that

f(x∗) = min
x
f(x) subject to g(x) = 0 and h(x) 6 0.

I g(x) = 0 and h(x) 6 0 are called constraints.
They define the set of feasible points x ∈ S ⊆ Rn.

I If g or h are present, this is constrained optimization.
Otherwise unconstrained optimization.

I If f , g, h are linear, this is called linear programming.
Otherwise nonlinear programming.

I Q: What if we are looking for a maximizer?
A: Minimize −f instead.

Optimization (II)
I Examples:

I What is the fastest/cheapest/shortest... way to do...?
Q: What about multiple objectives?
A: Make up your mind–decide on one (or build a combined
objective). Then we’ll talk.

I Solve a (nonlinear!) system of equations ‘as well as you can’ (if
no exact solution exists)–similar to what least squares does for
linear systems:

min ‖F (x)‖

Optimization: What could go wrong?

What are some potential problems in optimization?

I No minimum exists: Function just ‘keeps going’.

Optimization: What could go wrong? (II)
I Find a local minimum when we meant to find a global

minimum.

"global minimum"

"local minimum"

Optimization: What is a solution?

How can we tell that we have a (at least local) minimum? (Re-
member calculus!)

I Necessary condition: f ′(x) = 0

I Sufficient condition: f ′(x) = 0 and f ′′(x) > 0.

Newton’s Method

Let’s steal the idea from Newton’s method for equation solving:
Build a simple version of f and minimize that.

Use Taylor approximation–with what degree?

Note: Line (i.e. degree 1 Taylor) wouldn’t suffice–lines have no
minimum. Must use at least parabola. (degree 2)

Newton’s Method (II)

f(x+ h) ≈ f(x) + f ′(x)h+ f ′′(x)
h2

2
=: f̃(h)

Solve 0 = f̃ ′(h) = f ′(x) + f ′′(x)h:

h = − f
′(x)

f ′′(x)

Newton’s Method (III)
1. x0 = 〈some starting guess〉
2. xk+1 = xk − f ′(xk)

f ′′(xk)

Q: Notice something? Identical to Newton for solving f ′(x) = 0.
Because of that: locally quadratically convergent.

Demo: Newton’s Method in 1D (click to visit)
In-class activity: Optimization Methods

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/opt_1d/Newton's Method in 1D.html

Golden Section Search

Would like a method like bisection, but for optimization.
In general: No invariant that can be preserved.
Need extra assumption.

f is called unimodal if for all x1 < x2

I x2 < x∗ ⇒ f(x1) > f(x2)

I x∗ < x1 ⇒ f(x1) < f(x2)

Golden Section Search (II)
Suppose we have an interval with f unimodal:

Would like to maintain unimodality.

1. Pick x1, x2

2. If f(x1) > f(x2), reduce to (x1, b)

3. If f(x1) 6 f(x2), reduce to (a, x2)

Remaining question: Where to put x1, x2?

Golden Section Search (III)
I Want symmetry:
x1 = a+ (1− τ)(b− a)
x2 = a+ τ(b− a)

I Want to reuse function evaluations: τ2 = 1− τ
Find: τ =

(√
5− 1

)
/2. Also known as the ‘golden section’.

I Hence golden section search.

Linearly convergent. Can we do better?

Demo: Golden Section Search Proportions (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/opt_1d/Golden Section Search Proportions.html

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials:
Taylor Series
Making Models with Polynomials:
Interpolation
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Optimization in n dimensions: What is a solution?

How can we tell that we have a (at least local) minimum? (Re-
member calculus!)

I Necessary condition: ∇f(x) = 0
∇f is a vector, the gradient:

∇f(x) =


∂f
∂x1

...
∂f
∂xn


I Sufficient condition: ∇f(x) = 0 and Hf (x) positive definite.

Hf (x) =


∂2f

∂x1∂x1
· · · ∂2f

∂x1∂xn
...

. . .
...

∂2f
∂xn∂x1

· · · ∂2f
∂xn∂xn


is called the Hessian matrix.

Steepest Descent

Given a scalar function f : Rn → R at a point x, which way is
down?

Direction of steepest descent: −∇f

Q: How far along the gradient should we go?

Unclear–do a line search. For example using Golden Section Search.

1. x0 = 〈some starting guess〉
2. sk = −∇f(xk)

3. Use line search to choose αk to minimize f(xk + αksk)

4. xk+1 = xk + αksk

5. Go to 2.

Observation: (from demo)

I Linear convergence

Demo: Steepest Descent (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/opt_nd/Steepest Descent.html

Newton’s method (nD)

What does Newton’s method look like in n dimensions?

Build a Taylor approximation:

f(x+ s) ≈ f(x) +∇f(x)Ts+
1

2
sTHf (x)s =: f̂(s)

Then solve ∇f̂(s) = 0 for s to find

Hf (x)s = −∇f(x).

1. x0 = 〈some starting guess〉
2. Solve Hf (xk)sk = −∇f(xk) for sk

3. xk+1 = xk + sk

Drawbacks: (from demo)

Newton’s method (nD) (II)
I Need second (!) derivatives

(addressed by Conjugate Gradients, later in the class)

I local convergence

I Works poorly when Hf is nearly indefinite

Demo: Newton’s Method in n dimensions (click to visit)
Demo: Nelder-Mead Method (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/opt_nd/Newton's Method in n dimensions.html
https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/opt_nd/Nelder-Mead Method.html

Nonlinear Least Squares/Gauss-Newton

What if the f to be minimized is actually a 2-norm?

f(x) = ‖r(x)‖2 , r(x) = y − f(x)

Define ‘helper function’

ϕ(x) =
1

2
r(x)Tr(x) =

1

2
f2(x)

and minimize that instead.

∂

∂xi
ϕ =

1

2

n∑
j=1

∂

∂xi
[rj(x)2] =

∑
j

(
∂

∂xi
rj

)
rj ,

or, in matrix form:
∇ϕ = Jr(x)Tr(x).

Nonlinear Least Squares/Gauss-Newton (II)
For brevity: J := Jr(x). Can show similarly:

Hϕ(x) = JTJ +
∑
i

riHri(x).

Newton step s can be found by solving

Hϕ(x)s = −∇ϕ

Observation:
∑

i riHri(x) is inconvenient to compute and unlikely
to be large (since it’s multiplied by components of the residual,
which is supposed to be small) → forget about it.

Gauss-Newton method: Find step s by

JTJs = −∇ϕ = −JTr(x)

Nonlinear Least Squares/Gauss-Newton (III)
Does that remind you of the normal equations?

Js ∼= −r(x)

Solve that using our existing methods for least-squares problems.

Observations: (from demo)

I Newton on its own is only locally convergent

I Gauss-Newton is clearly similar

I It’s worse because the step is only approximate
→ Much depends on the starting guess.

Nonlinear Least Squares/Gauss-Newton (IV)
If Gauss-Newton on its own is poorly, conditioned, can try
Levenberg-Marquardt:

(Jr(xk)
TJr(xk)+µkI)sk = −Jr(xk)

Tr(xk)

for a ‘carefully chosen’ µk. This makes the system matrix ‘more
invertible’ but also less accurate/faithful to the problem. Can also
be translated into a least squares problem (see book).

What Levenberg-Marquardt does is generically called
‘Regularization’: Make H more positive definite.
Demo: Gauss-Newton (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/opt_nd/Gauss-Newton.html

	Python, Numpy, and Matplotlib
	Making Models with Polynomials: Taylor Series
	Making Models with Polynomials: Interpolation
	Making Models with Monte Carlo
	Error, Accuracy and Convergence
	Floating Point
	Modeling the World with Arrays
	The World in a Vector
	What can Matrices Do?
	Graphs
	Sparsity

	Norms and Errors
	The `Undo' Button for Linear Operations: LU
	Repeating Linear Operations: Eigenvalues and Steady States
	Eigenvalues: Applications
	Approximate Undo: SVD and Least Squares
	SVD: Applications
	Solving Funny-Shaped Linear Systems
	Data Fitting
	Norms and Condition Numbers
	Low-Rank Approximation

	Interpolation: A Second Look
	Making Interpolation Work Better
	Calculus on Interpolants

	Iteration and Convergence
	Solving One Equation
	Solving Many Equations
	Finding the Best: Optimization in 1D
	Optimization in n Dimensions

