

Errors in Taylor Approximation (I)

Can't sum infinitely many terms. Have to \ \text{truncate}. How big of an error does this cause?

Demo: Polynomial Approximation with Derivatives (Part II)

Taylor Remainders: the Full Truth

Let $f: \mathbb{R} \to \mathbb{R}$ be (n+1)-times differentiable on the interval (x_0,x) with $f^{(n)}$ continuous on $[x_0,x]$. Then there exists a

so that
$$f(x_0+h)-\sum_{i=0}^n\frac{f^{(i)}(x_0)}{i!}h^i = \underbrace{f^{(n+1)}(\xi)}_{(n+1)!}(\xi-x_0)^{n+1}$$
 and since $|\xi-x_0|\leqslant h$

$$\left| f(x_0 + h) - \sum_{i=0}^n \frac{f^{(i)}(x_0)}{i!} h^i \right| \le \underbrace{\frac{\left| f^{(n+1)}(\xi) \right|}{(n+1)!}} \cdot h^{n+1}.$$

Intuition for Taylor Remainder Theorem

Given the value of a function and its derivative $f(x_0), f'(x_0)$, prove the Taylor error bound.

$$\int_{0}^{1} (x_{0}) = \int_{0}^{1} (x_{0}) + \int_{0}^{1} (x_{0}) dx_{0}$$

$$= \int_{0}^{1} (x_{0}) + \int_{0}^{1} (x_{$$

In-class activity: Taylor series

Using Polynomial Approximation

Suppose we can approximate a function as a polynomial:
$$f(x) \approx a_0 + a_1 x + a_2 x^2 + a_3 x^3.$$
 How is that useful? E.g.: What if we want the integral of f ?

$$= \frac{-3 e^{x} p\left(\frac{1}{x^{2}} + \sin x\right)}{-\left(\frac{1}{x^{3}} + \frac{1}{x^{3}} + \frac{$$

Demo: Computing π with Taylor

Reconstructing a Function From Point Values

If we know function values at some points $f(x_1), f(x_2), \dots, f(x_n)$, can we reconstruct the function as a polynomial? f(x) = 2??? $x + ???x^2 + \cdots$ called "Interpolation" P(x) $x_1 \rightarrow p(x_1) = a_0 + a_1 x_1 + a_2 x_1^{2} \cdots$ plan = and 9, 81 + 9, 4, +. = 1(x,) p(xn)= a0+ a, xn+ 1/xn+ -- = } (xn)

Vandermonde Linear Systems

Polynomial interpolation is a critical component in many numerical models.

Demo: Polynomial Approximation with Point Values

Error in Interpolation

How did the interpolation error behave in the demo?

To fix notation: f is the function we're interpolating. \tilde{f} is the interpolant that obeys $\tilde{f}(x_i) = f(x_i)$ for $x_i = x_1 < \ldots < x_n$. $h = x_n - x_1$ is the interval length.

What is the error at the interpolation nodes?

Care to make an unfounded prediction? What will you call it?

Proof Intuition for Interpolation Error Bound

Let us consider an interpolant \tilde{f} based on n=2 points so

$$\tilde{f}(x_1) = f(x_1) \quad \text{and} \quad \tilde{f}(x_2) = f(x_2).$$

Prove the interpolation error bound in this case.