Overview - Error in MC	Hw3
- RNG	
– Ernus	
Condition winder	
	1

Demo: Computing π using Sampling

Demo: Errors in Sampling

Sampling: Error

The Central Limit Theorem states that with

$$S_N := X_1 + X_2 + \dots + X_n$$

for the (X_i) independent and identically distributed according to random variable X with variance σ^2 , we have that

$$\frac{S_N - NE[X]}{\sqrt{\sigma^2 N}} \to \mathcal{N}(0, 1),$$

i.e. that term approaches the normal distribution. As we increase N, σ^2 stays fixed, so the asymptotic behavior of the error is

$$\left| \frac{1}{N} S_N - E[X] \right| = O\left(\frac{1}{\sqrt{N}}\right).$$

Monte Carlo Methods: The Good and the Bad

What are some advantages of MC methods?	
- easy to code - does not suffer from "curse of dim."	(ort
What are some disadvantages of MC methods?	-3 Cot
- Sad error scaling (IVN) Loxponsive	
- No immediate over pstimale	
- No immediate over Ostimale - not deterministic < (can work by seed	aund

Computers and Random Numbers

```
int getRandomNumber()
{
return 4; // chosen by fair dice roll.
// guaranteed to be random.
}
```

[from xkcd]

How can a computer make random numbers?

- complicated formula = haraware random noss
 - order 'online"

Random Numbers: What do we want?

What properties can 'random numbers' have?

- Have a specific distribution (e.g. 'uniform'—each value in given interval is equally likely)
 - ► Real-valued/integer-valued
- \checkmark Repeatable (i.e. you may ask to exactly reproduce a sequence)
 - **▶** Unpredictable
 - ▶ V1: 'I have no idea what it's going to do next.' ←
 - V2: No amount of engineering effort can get me the next number. esp. important for cryptograph
 - Uncorrelated with later parts of the sequence
 - (Weaker: Doesn't repeat after a short time)
 - Usable on parallel computers

What's a Pseudorandom Number?

Actual randomness seems like a lot of work. How about 'pseudorandom numbers?'

Idea: Maintain some 'state'. Every time someone asks for a number: random_number, new_state = (f(state))Satisfy: Distribution √ 'I have no idea what it's going to do next.' Repeatable (just save the state) - See ding Typically not easy to use on parallel computers COMP IT **Demo:** Playing around with Random Number Generators

Some Pseudorandom Number Generators

Lots of variants of this idea:

- ► LC: 'Linear congruential' generators (a x + 4) % C
- MT: 'Mersenne twister'
- almost all randonumber generators you're likely to find are based on these—Python's random module, numpy.random, C's rand(), C's rand48().

Counter-Based Random Number Generation (CBRNG)

What's a CBRNG? **Idea:** Cryptography has way stronger requirements than RNGs. And the output must 'look random'. (Advanced Encryption Standard) AES algorithm: 128 encrypted bits = AES (128-bit plaintext, 128 big key) We can treat the encrypted bits as random: 128 random bits = AES (128-bit counter, arbitrary $\frac{1}{2}$ 28 bit key) ▶ Just use $1, 2, 3, 4, 5, \ldots$ as the counter. No quality requirements on counter or key to obtain high-quality random numbers

Often accelerated by hardware, faster than the competition

AES

Demo: Counter-Based Random Number Generation

Very easy to use on parallel computers

Outline

Error, Accuracy and Convergence

Low-Rank Approximation

ptimization in n Dimensions

Error in Numerical Methods

Every result we compute in Numerical Methods is inaccurate. What
is our model of that error?
Approx result = true result + error
Suppose the true answer to a given problem is x_0 , and the computed
answer is \tilde{x} . What is the absolute error?
abs. error = Approx. roull - true result
fah & este evron - Approx. result
alos. ernor = 2

Relative Error

frne erm

approx X

What is the relative error?

$$\frac{|\Delta x|}{|x_0|} = \frac{|x_0|^2}{|x_0|} = \frac{A_{bs.enar}}{|x_0|}$$

Why introduce relative error?

to compare result quality

What is meant by 'the result has 5 accurate digits'?

$$tme \Rightarrow [2.345,000]$$
 $approx \Rightarrow [2.345,99957]$
 $relevel = 8.099-10^{-7} \approx 0.0001$

Measuring Error

Why is $|\tilde{x}| - |x_0|$ a bad measure of the error?

If $\widetilde{m{x}}$ and $m{x}_0$ are vectors, how do we measure the error?

Sources of Error

What are the main sources of error in numerical computation?

Digits and Rounding

Establish a relationship between 'accurate digits' and rounding error.

Condition Numbers

Methods f take input x and produce output y = f(x). Input has (relative) error $|\Delta x| / |x|$.

Input has (relative) error $|\Delta x|/|x|$

Output has (relative) error $|\Delta y| / |y|$.

Q: Did the method make the relative error bigger? If so, by how much?

*n*th-Order Accuracy

Often, $truncation\ error$ is controlled by a parameter h.

Examples:

- distance from expansion center in Taylor expansions
- length of the interval in interpolation

A numerical method is called 'nth-order accurate' if its truncation error E(h) obeys

$$E(h) = O(h^n).$$