
Boundary Value Problems
Numerical Methods for BVPs

Outline

1 Boundary Value Problems

2 Numerical Methods for BVPs

Michael T. Heath Scientific Computing 2 / 45

Boundary Value Problems
Numerical Methods for BVPs

Boundary Values
Existence and Uniqueness
Conditioning and Stability

Boundary Value Problems

Side conditions prescribing solution or derivative values at
specified points are required to make solution of ODE
unique

For initial value problem, all side conditions are specified at
single point, say t0

For boundary value problem (BVP), side conditions are
specified at more than one point

kth order ODE, or equivalent first-order system, requires k

side conditions

For ODEs, side conditions are typically specified at
endpoints of interval [a, b], so we have two-point boundary

value problem with boundary conditions (BC) at a and b.

Michael T. Heath Scientific Computing 3 / 45

ODEs: Boundary Value Problems in 1D

Consider linear ODE of the form Lũ = f(x), with ũ(x) satisfying given BCs.

Here, we consider three basic approaches to find u ⇡ ũ.

• Finite di↵erence methods (FDM):

– Essentially, approximate di↵erential equation at multiple points, xi, i = 0, . . . , n.

– Note: we will use either n or n+1 points according to what makes the most sense

in the given context.

• Collocation methods:

– Approximate the solution by an expansion,

u(x) :=
nX

j=0

uj�j(x),

– Solve for coe�cients uj such that the ODE is satisfied at a chosen set of collocation
points, xi, along with the boundary conditions.

– That is, the residual, r(x) := (Lũ� Lu) is forced to be zero at xi, i = 0, . . . , n.

• Weighted residual technique (WRT):

– Approximate the solution by an expansion,

u(x) :=
nX

j=0

uj�j(x),

and solve for coe�cients uj such that the ODE is satisfied in some weighted sense.

– That is, rather than enforcing r(x) = 0 at isolated points, we require r(x) to be
orthogonal to a set of weight functions, i(x):

Z b

a

 i(x) r(x) dx =

Z b

a

 i(x)L(u)� L(ũ) dx = 0, or

Z b

a

 i(x)L(u) =

Z b

a

 i(x)L(ũ) dx

for i = 0, 1, ...

– Note that if i(x) = �(x� xi) (Dirac delta function), we recover collocation.

– Most often, the test-space and trial space are the same: i := �i. (Galerkin case.)

– Finite element, spectral, spectral element methods are examples of WRTs.

– WRTs have many advantages over collocation in terms of flexibility of basis func-
tions, application of boundary conditions, etc., and are generally preferred over
collocation.

Boundary Value Problems
Numerical Methods for BVPs

Shooting Method
Finite Difference Method
Collocation Method
Galerkin Method

Finite Difference Method

Finite difference method converts BVP into system of
algebraic equations by replacing all derivatives with finite
difference approximations

For example, to solve two-point BVP

u

00
= f(t, u, u

0
), a < t < b

with BC
u(a) = ↵, u(b) = �

we introduce mesh points ti = a+ ih, i = 0, 1, . . . , n+ 1,
where h = (b� a)/(n+ 1)

We already have y0 = u(a) = ↵ and yn+1 = u(b) = � from
BC, and we seek approximate solution value yi ⇡ u(ti) at
each interior mesh point ti, i = 1, . . . , n

Michael T. Heath Scientific Computing 20 / 45

Boundary Value Problems
Numerical Methods for BVPs

Shooting Method
Finite Difference Method
Collocation Method
Galerkin Method

Finite Difference Method, continued

We replace derivatives by finite difference approximations
such as

u

0
(ti) ⇡ yi+1 � yi�1

2h

u

00
(ti) ⇡ yi+1 � 2yi + yi�1

h

2

This yields system of equations

yi+1 � 2yi + yi�1

h

2
= f

✓
ti, yi,

yi+1 � yi�1

2h

◆

to be solved for unknowns yi, i = 1, . . . , n

System of equations may be linear or nonlinear, depending
on whether f is linear or nonlinear

Michael T. Heath Scientific Computing 21 / 45

Boundary Value Problems
Numerical Methods for BVPs

Shooting Method
Finite Difference Method
Collocation Method
Galerkin Method

Finite Difference Method, continued

We replace derivatives by finite difference approximations
such as

u

0
(ti) ⇡ yi+1 � yi�1

2h

u

00
(ti) ⇡ yi+1 � 2yi + yi�1

h

2

This yields system of equations

yi+1 � 2yi + yi�1

h

2
= f

✓
ti, yi,

yi+1 � yi�1

2h

◆

to be solved for unknowns yi, i = 1, . . . , n

System of equations may be linear or nonlinear, depending
on whether f is linear or nonlinear

Michael T. Heath Scientific Computing 21 / 45

Error is O(h2)

Error is O(h2)

Boundary Value Problems
Numerical Methods for BVPs

Shooting Method
Finite Difference Method
Collocation Method
Galerkin Method

Finite Difference Method, continued

For these particular finite difference formulas, system to be
solved is tridiagonal, which saves on both work and
storage compared to general system of equations

This is generally true of finite difference methods: they
yield sparse systems because each equation involves few
variables

Michael T. Heath Scientific Computing 22 / 45

Example: Convection-Diffusion Equation

MATLAB EXAMPLE

�⌫

d

2
u

dx

2
+ c

du

dx

= 1, u(0) = u(1) = 0,

Apply finite di↵erence: Lu = Au + Cu = f

A =

⌫

�x

2

2

66666664

2 �1

�1 2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. �1

�1 2

3

77777775

C =

c

2�x

2

66666664

0 �1

�1 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. �1

�1 0

3

77777775

• A is symmetric positive definite.

• C is skew-symmetric.

• L = A + C is neither SPD nor skew-symmetric.

1

Example: Convection-Diffusion Equation

conv1d_a.m

Comments About Computing Error Norms
• Be careful with the l2 vector norm!

• Even though max |ei| �! 0 with n �! 1,

we can still have ||e|| grow with n. Why?

• When solving di↵erential equations, it is better to use

norms that approximate their continuous counterparts.

Thus

||e||2 =

Z

⌦
e

2
dx

� 1
2

⇡
"
1

n

nX

i=1

|ei|2
1

2

||e||1 = max

⌦
|e| ⇡ max

i
|ei|

• The issue can also be resolved by measuring relative error:

error :=

||e||
||u||

for some appropriate vector norm.

• Still, best to start with a norm that doesn’t scale with n.

1

Convection-Diffusion Equation
Convection (& Convection-Di↵usion).

• Consider 1D convection-di↵usion with c = 1 and f = 1:

@u

@t
+ c

@u

@x
= ⌫

@2u

@x2
+ f

u(0) = 0, u(1) = 0.

• Assume steady-state conditions u
t

= 0

�⌫u
xx

+ c u
x

= 1, u(0) = u(1) = 0.

• If ⌫ = 0, we have:

c u
x

= 1, u(0) = u(1) = 0 ???

Too many boundary conditions!

Convection-Diffusion Equation

• The issue is that ⌫ �! 0 is a singular perturbation.

• This is true whenever the highest-order derivative is multiplied
by a small constant.

• As the constant goes to zero, the number of boundary conditions
changes.

• Here,

– We go from one boundary condition when ⌫ = 0,

– to two boundary conditions when ⌫ > 0 (even for ⌫ ⌧ 1).

• An example that is not a singular perturbation is

�u
xx

+ ✏ u
x

= 1, u(0) = u(1) = 0, ✏ �! 0.

This is called a regular perturbation.

Regular / Singular Perturbations You’re Familiar With
• Another example:

• Consider solutions to the quadratic equation: ax2 + bx + c = 0.

Example 1: x2 + ✏x = 1 : Two roots as ✏ �! 0. Regular perturbation.

Example 2: ✏x2 + x = 1 :

x = � 1

2✏
± 1

2✏

p
1 + 4✏

x1 =
1

2✏

⇣p
1 + 4✏ � 1

⌘

=
1

2✏

�
1 + 2✏ � 1 + O(✏2)

�

= 1 + O(✏).

x2 = � 1

2✏
(2 + O(✏)) �! �1. Singular perturbation.

Convection-Diffusion Equation

• Exact solution for our 1D model problem:

u =
x

c
� L

c

ecx/⌫ � 1

ecL/⌫ � 1

�

=
1

c

x � ec(x�L)/⌫ � e�cL/⌫

1 � e�cL/⌫

�
.

• In the convection-dominated limit (cL � ⌫), one of these
is computable in IEEE floating point, one is not.

• Which is which?

Convection-Diffusion Equation

❑  What happens when cL/º À 1 in our numerical example?

Nonlinear Example: The Bratu Equation

• Consider 1D di↵usion with nonlinear right-hand side:

�d

2
u

dx

2
= q(x, u) = � e

u
, u(0) = u(1) = 0.

• Discretizing with finite di↵erences (say),

Au = � e

u
.

• Nonlinear system:

f(u) = 0, f(u) = Au � � e

u
.

• Newton’s method:

u

k+1
= u

k
+ s

k

s

k
= �[J

k
]

�1
f(u

k
).

�
J

k
�
ij

:=

@f

k
i

@u

k
j

.

• ith equation:

f

k
i =

nX

j=1

Aij u
k
j � �e

uk
i �! (Jk)ij =

@fi

@uj
= Aij � �e

ui
.

• If b = �1 and aj = 2 � h

2
�e

uj
, then

• At each iteration, modify the tridiagonal matrix A such that

Jk = A + �e

uk
i
�ij,

and solve this tridiagonal system in ⇡ 8n operations.

• Newton’s method:

u

k+1
= u

k
+ s

k

s

k
= �J

k
f(u

k
).

�
J

k
�
ij

:=

@f

k
i

@u

k
j

.

• ith equation:

f

k
i

=

nX

j=1

Aij u
k
j � �e

uk
i �! (Jk)ij =

@fi

@uj
= Aij � �e

ui
.

• If b = �1 and aj = 2 � h

2
�e

uj
, then

• At each iteration, modify the tridiagonal matrix A such that

Jk = A + �e

uk
i
�ij,

and solve this tridiagonal system in ⇡ 8n operations.

we seek an unknown function u(x) (where x 2 [0, 1] is a spatial coordinate) that satisfies the steady-
state heat (di↵usion) equation

�d2u

dx2
= q, u(0) = u(1) = 0, (3)

where q(x) represents the heat source. For the Bratu problem, we define

q = �eu(x),

where � is a parameter.

Equation (3) is a ordinary di↵erential equation (ODE) and in particular it is a nonlinear two-point
boundary value problem with boundary conditions prescribed as above. To turn this continous
problem into a system of nonlinear equations we first discretize the second derivate term in (3)
using a finite di↵erence appoximation. Through application of Taylor series at points x

j

:= jh,
j = 1, . . . , n, with grid spacing h = 1/(n+ 1). we derive

�u
j�1 � 2u

j

� u
j+1

h2
= �d2u

dx2

����
j

+O(h2) = �euj +O(h2). (4)

If we neglect the O(h2) error term then the system is solvable we can anticipate that our solution
u
j

will approximate u(x
j

) to order h2.

Subtracting the right-hand side from both sides of (4) and changing the sign, we arrive at the
n-dimensional root-finding problem f(u) = 0,

f
j

=
u
j�1 � 2u

j

� u
j+1

h2
+ �euj = 0, j = 1, . . . , n (5)

To apply (1), we need the Jacobian (2), which is given by the tridiagonal matrix

J =
1

h2

0

BBBBBBBBB@

a1 b

b a2 b

b
. . .

. . .

. . .
. . . b

b a
n

1

CCCCCCCCCA

, (6)

with b = 1 and a
j

= �2 + h2�euj . Note that, as is often the case with systems arising from
di↵erential equations, J is sparse. That is, it has a fixed number of nonzeros per row, independent
of n and thus has O(n) nonzeros. Moreover, because this system is tridiagonal, the factor cost is

bratu1a.m / bratu_lin.m

Extension of Finite Difference to Variable Coefficients

x
j� 1

2
x
j+ 1

2

x
j�1 x

j

x
j+1

Figure 1: Grid spacing for variable coe�cient di↵usion operator.

Consider the one-dimesional model problem,

d

dx
a(x)

du

dx
= f(x), u(0) = u(1) = 0. (5)

Let

u
i

:= u(x
i

), a
i+ 1

2
:= a(x

i+ 1
2
). (6)

with x
i

:= i h, i = 0, . . . , n+ 1 and x
i+ 1

2
:= (i+ 1

2)h, i = 0, . . . , n, and h := 1/(n+ 1). Then

w
i

=
d

dx
a(x)

du

dx

����
x

i

⇡ 1

h

2

4
✓
a
du

dx

◆����
x

i+1
2

�
✓
a
du

dx

◆����
x

i� 1
2

3

5 (7)

⇡ 1

h

a
i+ 1

2

✓
u
i+1 � u

i

h

◆
� a

i� 1
2

✓
u
i

� u
i�1

h

◆�
. (8)

Assuming u = 0 at the domain endpoints, then the finite di↵erence appoximation to u0
i+ 1

2

, i =

0, . . . , n can be evaluated as the matrix-vector product, v = Du, where D is the (n+ 1)⇥ n finite
di↵erence matrix illustrated below.

v =

0

BBBBBB@

v 1
2

v 3
2

...

v
n+ 1

2

1

CCCCCCA
=

1

h

2

6666664

1

�1 1

�1
. . .

. . . 1

�1

3

7777775

0

BBBBB@

u1

u2

...

u
n

1

CCCCCA
= Du. (9)

Note that 1
h

(u
i+1 � u

i

) is generally regarded as a first-order accurate approximation to du

dx

, it is in
fact second-order accurate at the midpoint x

i+ 1
2
.

Given v
i+ 1

2
, it remains to evaluate the outer finite di↵erence in (7), which maps data from the

(n+ 1) half-points to the n integer points. Let

q
i+ 1

2
:= a

i+ 1
2
v
i+ 1

2
. (10)

Then

w =

0

BBBBB@

w1

w2

...

w
n

1

CCCCCA
=

1

h

2

6664

�1 1

�1 1
. . .

. . .

�1 1

3

7775

0

BBBBBB@

q 1
2

q 3
2

...

q
n+ 1

2

1

CCCCCCA
= �DT q. (11)

2

Extension of Finite Difference to Variable Coefficients

x
j� 1

2
x
j+ 1

2

x
j�1 x

j

x
j+1

Figure 1: Grid spacing for variable coe�cient di↵usion operator.

Consider the one-dimesional model problem,

d

dx
a(x)

du

dx
= f(x), u(0) = u(1) = 0. (5)

Let

u
i

:= u(x
i

), a
i+ 1

2
:= a(x

i+ 1
2
). (6)

with x
i

:= i h, i = 0, . . . , n+ 1 and x
i+ 1

2
:= (i+ 1

2)h, i = 0, . . . , n, and h := 1/(n+ 1). Then

w
i

=
d

dx
a(x)

du

dx

����
x

i

⇡ 1

h

2

4
✓
a
du

dx

◆����
x

i+1
2

�
✓
a
du

dx

◆����
x

i� 1
2

3

5 (7)

⇡ 1

h

a
i+ 1

2

✓
u
i+1 � u

i

h

◆
� a

i� 1
2

✓
u
i

� u
i�1

h

◆�
. (8)

Assuming u = 0 at the domain endpoints, then the finite di↵erence appoximation to u0
i+ 1

2

, i =

0, . . . , n can be evaluated as the matrix-vector product, v = Du, where D is the (n+ 1)⇥ n finite
di↵erence matrix illustrated below.

v =

0

BBBBBB@

v 1
2

v 3
2

...

v
n+ 1

2

1

CCCCCCA
=

1

h

2

6666664

1

�1 1

�1
. . .

. . . 1

�1

3

7777775

0

BBBBB@

u1

u2

...

u
n

1

CCCCCA
= Du. (9)

Note that 1
h

(u
i+1 � u

i

) is generally regarded as a first-order accurate approximation to du

dx

, it is in
fact second-order accurate at the midpoint x

i+ 1
2
.

Given v
i+ 1

2
, it remains to evaluate the outer finite di↵erence in (7), which maps data from the

(n+ 1) half-points to the n integer points. Let

q
i+ 1

2
:= a

i+ 1
2
v
i+ 1

2
. (10)

Then

w =

0

BBBBB@

w1

w2

...

w
n

1

CCCCCA
=

1

h

2

6664

�1 1

�1 1
. . .

. . .

�1 1

3

7775

0

BBBBBB@

q 1
2

q 3
2

...

q
n+ 1

2

1

CCCCCCA
= �DT q. (11)

2

Extension of Finite Difference to Variable Coefficients

Finally, note that if A is an (n+ 1)⇥ (n+ 1) diagonal matrix with entries (a 1
2
, a 3

2
, . . . a

n+ 1
2
), then

(10) can be expressed as q = Av, and the finite-di↵erence approximation (7) can be compactly
expressed in matrix form as

w = �DTADu (12)

Assuming a
i+ 1

2
> 0, it is easy to show that the matrix

L := DTAD (13)

is symmetric positive definite, which is a requirement if the system is to be solved with conjugate
gradient iteration or Cholesky factorization. Fortunately, this property carries over into the mul-
tidimensional case, which we consider in the next section. We further remark that L is a map
from data (u1 . . . u

j

. . . u
n

) to (w1 . . . w
j

. . . w
n

). That is, once defined, it does not generate data at
the half gridpoint locations. This is a particularly attractive feature in multiple space dimensions
where having multiple grids leads to an explosion of notational di�culties.

2.2 Finite Di↵erences in Two Dimensions

We extend the results of the preceding section to the two-dimensional case. Assume we have
a tensor-product domain in x � y with interior gridpoints (x

i

, y
j

) = (i�x, j�y), i = 1, . . . ,m,
j = 1, . . . , n, and gridspacing �x = L

x

/m and �y = L
y

/n. Let u
ij

⇡ u(x
i

, y
j

) and assume that
u = 0 for x = 0, x = L

x

, and y = 0, y = L
y

.

Here, we consider the specific PDE

� @

@x
H3 @p

@x
� @

@y
H3 @p

@y
= f(x, y) (14)

with H = H(x), only. In this case, the PDE simplifies to

� @

@x
H3 @p

@x
� H3 @

2p

@y2
= f(x, y). (15)

The first term gives rise to the matrix form of the preceding section, while the second leads to a stan-
dard second-derivative approximation in the y direction with a multiplier (H3) that is independent
of y.

Let P = p
ij

be the field of values to which we wish to apply the finite di↵erence approximation of
(15). We can view P = (p

1
. . . p

j

. . . p
n

y

) as a sequence of rows of data at di↵erent y locations, y
j

.

Let L
x

be the n
x

⇥ n
x

matrix given by (13). Then, for each row j, one would apply the derivative
operator as w

j

= L
x

p
j

to approximate the first term in (15). Let L
y

be the n
y

⇥ n
y

matrix

L
y

:=
1

�y2

2

66666664

2 �1

�1 2
. . .

. . .
. . .

. . .
. . .

. . . �1
�1 2

3

77777775

(16)

3

Convergence Behavior: Finite Difference

❑  In differential equations, we are interested in the rate of convergence
– i.e., the rate at which the error goes to zero vs. n, the number of
unknowns in the system.

❑  For finite difference methods and methods using Lagrangian
interpolants, n is the number of gridpoints (but, depends on the type
of boundary conditions…..)

❑  The next figure shows the error vs. n for a 2nd-order (i.e., O(h2)) finite
difference solution of the steady-state convection-diffusion equation
in 1D.

❑  For n > ~ ²M-1/3, the error goes up, due to round-off associated with
the approximation to the 2nd-order derivative.

❑  As we’ve seen in past homework assignments, the minimum error is
around ²M-1/2

Finite Difference Convergence Rate

round-off
~ º ²M n2

50/n2

Finite difference error
 ~ 50/n2

conv1d.m

Properties of Finite Difference Methods

❑  Pros
❑  Easy to formulate (for simple problems)
❑  Easy to analyze “
❑  Easy to code “
❑  Closed-form expressions for eigenvalues/eigenvectors for uniform

grid with constant coefficients.

❑  Cons –
❑  Geometric complexity for 2D/3D is not as readily handled as FEM.
❑  Difficult to extend to high-order (because of boundary conditions).
❑  Do not always (e.g., because of BCs) get a symmetric matrix for

�⌫

d

2
u

dx

2
+ c

du

dx

= 1, u(0) = u(1) = 0,

Apply finite di↵erence: Lu = Au + Cu = f

A =

⌫

�x

2

2

66666664

2 �1

�1 2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. �1

�1 2

3

77777775

C =

c

2�x

2

66666664

0 �1

�1 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. �1

�1 0

3

77777775

• A is symmetric positive definite.

• C is skew-symmetric.

• L = A + C is neither SPD nor skew-symmetric.

d

2
u

dx

2
or

d

dx

⌫(x)

du

dx

1

Eigenvalues, Continuous and Discrete

❑  One of the great features of finite difference methods is that one can
readily compute the eigenvalues of the discrete operators and thus
understand their spectrum and convergence rates.

❑  The latter is important for understanding accuracy.

❑  The former is important for understanding stability of time-stepping
schemes in the case of PDEs, which we’ll see in the next chapter.

❑  The reason it is easy to find the eigenvalues for finite difference
methods is that, for the constant coefficient case, they often share
the same eigenfunctions as their continuous counterparts.

Eigenvalue Example:

• Consider the analytical (i.e., continuous) eigenvalue problem

� d

2
ũ

dx

2
=

˜

� ũ, ũ(0) = ũ(1) = 0.

• The eigenfunctions/eigenvalues for the continuous problem are

ũ = sin(k⇡x) :

�ũ

00
= k

2
⇡

2
sin(k⇡x) = k

2
⇡

2
ũ =

˜

�k ũ

˜

�k = k

2
⇡

2

1

k=1 mode k=2 mode

The modes are like the vibrations of a guitar string.
Higher wavenumbers, k, correspond to higher frequency.
Here, the k=2 mode would be a harmonic – one octave higher.

Finite Di↵erence Eigenvectors/values:

• Consider s = [sin(k⇡xj)]
T
:

As|j =

�1

�x

2
[sin k⇡xj+1 � 2 sin k⇡xj + sin k⇡xj�1]

=

�1

�x

2
[sin(k⇡xj +�x) � 2 sin(k⇡xj) + sin(k⇡xj ��x)]

• Use the identity:

sin(a+ b) = sin a cos b + cos a sin b

sin(k⇡xj+1) = sin k⇡xj cos k⇡�x + cos k⇡xj sin k⇡�x

sin(k⇡xj�1) = sin k⇡xj cos k⇡�x � cos k⇡xj sin k⇡�x

sum = 2 sin k⇡xj cos k⇡�x

• As|j =

�1

�x

2
[sj+1 � 2sj + sj�1] = � 1

�x

2
[2 cos k⇡�x� 2] sin k⇡xj

= �ks|j

�k =

2

�x

2
[1� cos k⇡�x] .

2

Eigenvalue Properties for �u

00
= �u, u(0) = u(1) = 0:

• max�k ⇠ Cn

2
˜

�n

�n
⇠ ⇡

2

4

• For k�x ⌧ 1, (with ✓ := k�x):

�k = (k⇡)

2

1 � (k⇡�x)

2

12

+ · · ·
�

1

Eigenvalue Properties for �u

00
= �u, u(0) = u(1) = 0:

• max�k ⇠ Cn

2
˜

�n

�n
⇠ ⇡

2

4

• For k�x ⌧ 1, (with ✓ := k�x):

�k = (k⇡)

2

1 � (k⇡�x)

2

12

+ · · ·
�

�k
˜

�k

1

Eigenvalue Properties for �u

00
= �u, u(0) = u(1) = 0:

• max�k ⇠ Cn

2
˜

�n

�n
⇠ ⇡

2

4

• For k�x ⌧ 1, (with ✓ := k�x):

�k = (k⇡)

2

1 � (k⇡�x)

2

12

+ · · ·
�

�k
˜

�k

1

Boundary Value Problems
Numerical Methods for BVPs

Shooting Method
Finite Difference Method
Collocation Method
Galerkin Method

Collocation Method

Collocation method approximates solution to BVP by finite
linear combination of basis functions

For two-point BVP

u

00
= f(t, u, u

0
), a < t < b

with BC
u(a) = ↵, u(b) = �

we seek approximate solution of form

u(t) ⇡ v(t,x) =

nX

i=1

xi�i(t)

where �i are basis functions defined on [a, b] and x is
n-vector of parameters to be determined

Michael T. Heath Scientific Computing 26 / 45

Boundary Value Problems
Numerical Methods for BVPs

Shooting Method
Finite Difference Method
Collocation Method
Galerkin Method

Collocation Method, continued

To determine vector of parameters x, define set of n
collocation points, a = t1 < · · · < tn = b, at which
approximate solution v(t,x) is forced to satisfy ODE and
boundary conditions

Common choices of collocation points include
equally-spaced points or Chebyshev points

Suitably smooth basis functions can be differentiated
analytically, so that approximate solution and its derivatives
can be substituted into ODE and BC to obtain system of
algebraic equations for unknown parameters x

Michael T. Heath Scientific Computing 28 / 45

Collocation
• Collocation is essentially the method of undetermined coe�cients.

– Start with

u(x) =

nX

j=0

ûj�j(x)

.

– Find coe�cients ûj such that BVP is satisfied at gridpoints xi.

• Instead of using monomials, �j = x

j
, could use Lagrange polynomials

on Chebyshev or Legendre quadrature points.

• Normally, one would use Gauss-Lobatto-Legendre or Gauss-Lobatto-Chebyshev

points, which include ±1 (i.e., the endpoints of the interval) in the nodal set.

• If the solution is to be zero at those boundaries one would have u0 = un = 0.

• In many cases, these methods are exponentially convergent.

(Counter-example: sines and cosines, unless problem is periodic.)

• For several reasons conditioning, symmetry, robustness, and ease

of boundary condtions, collocation has lost favor to Galerkin methods.

1

Finite Difference Convergence Rate

round-off
~ º ²M n2

50/n2

Finite difference error
 ~ 50/n2

Convergence Behavior: High-Order Methods

❑  The 2nd-order convergence of standard finite difference methods
looks reasonable.

❑  However, higher-order methods are generally much faster in that the
same error can be achieved with a lower n, once n is large enough
for the asymptotic convergence behavior to apply.

❑  High-order methods suffer the same round-off issue, with error
growing like ²Mn2.

❑  However, their truncation error goes to zero more rapidly so that the
value of n where truncation and round-off errors balance is lower.
The minimum error is thus much smaller for high-order methods.

❑  Usually, we are more interested in a small error at small n, rather
than realizing the minimum possible error.

❑  For PDEs on an (n x n x n) grid cost generally scales as n3, so a
smaller n is a significant win.

Revisiting our finite difference result, we contrast the second-order
convergence with nth-order collocation on the next slide.

round-off
~ º ²M n2

50/n2

Finite difference error
 ~ 50/n2

Spectral Collocation vs. Finite Difference

round-off
~ º ²M n2

10/n2

Finite difference error
 ~ 10/n2

Legendre
collocation

conv1d.m
collocation.m
plotcol.m

Spectral Collocation vs. Finite Difference (semilogy)

round-off
~ º ²M n2

10/n2

Finite difference error
 ~ 10/n2

Legendre
collocation

Boundary Value Problems
Numerical Methods for BVPs

Shooting Method
Finite Difference Method
Collocation Method
Galerkin Method

Galerkin Method
Rather than forcing residual to be zero at finite number of
points, as in collocation, we could instead minimize
residual over entire interval of integration

For example, for Poisson equation in one dimension,

u

00
= f(t), a < t < b,

with homogeneous BC u(a) = 0, u(b) = 0,

subsitute approx solution u(t) ⇡ v(t,x) =

Pn
i=1 xi�i(t)

into ODE and define residual

r(t,x) = v

00
(t,x)� f(t) =

nX

i=1

xi�
00
i (t)� f(t)

Michael T. Heath Scientific Computing 33 / 45

Boundary Value Problems
Numerical Methods for BVPs

Shooting Method
Finite Difference Method
Collocation Method
Galerkin Method

Galerkin Method, continued

More generally, weighted residual method forces residual
to be orthogonal to each of set of weight functions or test

functions wi,
Z b

a
r(t,x)wi(t) dt = 0, i = 1, . . . , n

This yields linear system Ax = b, where now

aij =

Z b

a
�

00
j (t)wi(t) dt, bi =

Z b

a
f(t)wi(t) dt

whose solution gives vector of parameters x

Michael T. Heath Scientific Computing 35 / 45

Boundary Value Problems
Numerical Methods for BVPs

Shooting Method
Finite Difference Method
Collocation Method
Galerkin Method

Galerkin Method, continued

Matrix resulting from weighted residual method is generally
not symmetric, and its entries involve second derivatives of
basis functions

Both drawbacks are overcome by Galerkin method, in
which weight functions are chosen to be same as basis
functions, i.e., wi = �i, i = 1, . . . , n

Orthogonality condition then becomes
Z b

a
r(t,x)�i(t) dt = 0, i = 1, . . . , n

or
Z b

a
v

00
(t,x)�i(t) dt =

Z b

a
f(t)�i(t) dt, i = 1, . . . , n

Michael T. Heath Scientific Computing 36 / 45

Boundary Value Problems
Numerical Methods for BVPs

Shooting Method
Finite Difference Method
Collocation Method
Galerkin Method

Galerkin Method, continued

Degree of differentiability required can be reduced using
integration by parts, which gives

Z b

a
v

00
(t,x)�i(t) dt = v

0
(t)�i(t)|ba �

Z b

a
v

0
(t)�

0
i(t) dt

= v

0
(b)�i(b)� v

0
(a)�i(a)�

Z b

a
v

0
(t)�

0
i(t) dt

Assuming basis functions �i satisfy homogeneous
boundary conditions, so �i(0) = �i(1) = 0, orthogonality
condition then becomes

�
Z b

a
v

0
(t)�

0
i(t) dt =

Z b

a
f(t)�i(t) dt, i = 1, . . . , n

Michael T. Heath Scientific Computing 37 / 45

Boundary Value Problems
Numerical Methods for BVPs

Shooting Method
Finite Difference Method
Collocation Method
Galerkin Method

Galerkin Method, continued

This yields system of linear equations Ax = b, with

aij = �
Z b

a
�

0
j(t)�

0
i(t) dt, bi =

Z b

a
f(t)�i(t) dt

whose solution gives vector of parameters x

A is symmetric and involves only first derivatives of basis
functions

Michael T. Heath Scientific Computing 38 / 45

Boundary Value Problems
Numerical Methods for BVPs

Shooting Method
Finite Difference Method
Collocation Method
Galerkin Method

Example: Galerkin Method
Consider again two-point BVP

u

00
= 6t, 0 < t < 1,

with BC u(0) = 0, u(1) = 1

We will approximate solution by piecewise linear
polynomial, for which B-splines of degree 1 (“hat”
functions) form suitable set of basis functions

To keep computation to minimum, we again use same
three mesh points, but now they become knots in
piecewise linear polynomial approximation

Michael T. Heath Scientific Computing 39 / 45

Boundary Value Problems
Numerical Methods for BVPs

Shooting Method
Finite Difference Method
Collocation Method
Galerkin Method

Example, continued

Thus, we seek approximate solution of form

u(t) ⇡ v(t,x) = x1�1(t) + x2�2(t) + x3�3(t)

From BC, we must have x1 = 0 and x3 = 1

To determine remaining parameter x2, we impose Galerkin
orthogonality condition on interior basis function �2 and
obtain equation

�
3X

j=1

✓Z 1

0
�

0
j(t)�

0
2(t) dt

◆
xj =

Z 1

0
6t�2(t) dt

or, upon evaluating these simple integrals analytically

2x1 � 4x2 + 2x3 = 3/2

Michael T. Heath Scientific Computing 40 / 45

Boundary Value Problems
Numerical Methods for BVPs

Shooting Method
Finite Difference Method
Collocation Method
Galerkin Method

Example, continued

Substituting known values for x1 and x3 then gives
x2 = 1/8 for remaining unknown parameter, so piecewise
linear approximate solution is

u(t) ⇡ v(t,x) = 0.125�2(t) + �3(t)

We note that v(0.5,x) = 0.125

Michael T. Heath Scientific Computing 41 / 45

Boundary Value Problems
Numerical Methods for BVPs

Shooting Method
Finite Difference Method
Collocation Method
Galerkin Method

Example, continued

More realistic problem would have many more interior
mesh points and basis functions, and correspondingly
many parameters to be determined

Resulting system of equations would be much larger but
still sparse, and therefore relatively easy to solve, provided
local basis functions, such as “hat” functions, are used

Resulting approximate solution function is less smooth
than true solution, but nevertheless becomes more
accurate as more mesh points are used

< interactive example >

Michael T. Heath Scientific Computing 42 / 45

Weighted Residual Example: �d

2
ũ

dx

2
= f (x), ũ(0) = ũ(1) = 0.

• Trial function (n unknowns.)

u(x) =

nX

j=1

u

j

�

j

(x) 2 X

N

0 : �

j

(0) = �

j

(1) = 0, j = 1, . . . , n.

• Residual (w.r.t. u): r(u) := f +
d

2
u

dx

2

• Orthogonality condition:

(v, r) :=

Z 1

0
v r dx = 0 8 v 2 X

N

0 .

• So, for i = 1, . . . , n, v = �

i

(n equations):

(�
i

, r) :=

Z 1

0
�

i

r dx = 0 =

Z 1

0
�

i

✓
f +

d

2
u

dx

2

◆
dx.

• Or, �
Z 1

0
�

i

d

2
u

dx

2
dx = �

Z 1

0
�

i

f dx.

Weighted Residual Example: �d

2
ũ

dx

2
= f (x), ũ(0) = ũ(1) = 0.

• Trial function (n unknowns.)

u(x) =

nX

j=1

u

j

�

j

(x) 2 X

N

0 : �

j

(0) = �

j

(1) = 0, j = 1, . . . , n.

• Residual (with respect to u):r(u) := f +
d

2
u

dx

2

• Orthogonality condition:

(v, r) :=

Z 1

0
v r dx = 0 8 v 2 X

N

0 .

• So, for i = 1, . . . , n, v = �

i

(n equations):

(�
i

, r) :=

Z 1

0
�

i

r dx = 0 =

Z 1

0
�

i

✓
f +

d

2
u

dx

2

◆
dx.

• Or, �
Z 1

0
�

i

d

2
u

dx

2
dx =

Z 1

0
�

i

f dx.

• An important refinement:

�
Z 1

0
�

i

d

2
u

dx

2
dx =

Z 1

0
�

i

f dx.

• We can avoid requiring existence of u00 by interpolating the expression

on the left by parts:

I := �
Z 1

0
�

i|{z}
“v”

d

2
u

dx

2|{z}
“du”

dx =

Z 1

0

du

dx

d�

i

dx

dx � �

i

du

dx

����
x=1

x=0

=

Z 1

0

d�

i

dx

du

dx

dx (�
i

(0) = �

i

(1) = 0 for these boundary conditions).

• Now the test and trial functions require only the existence of a first

derivative. (Admits a larger search space for approximate solutions.)

• Inserting the expansion for
du

dx

:

Z 1

0

d�

i

dx

du

dx

dx =

Z 1

0

d�

i

dx

0

@
nX

j=1

u

j

d�

j

dx

1

A
dx =

Z 1

0
�

i

(x) f (x) dx =: b

i

.

nX

j=1

✓Z 1

0

d�

i

dx

d�

j

dx

dx

◆

| {z }
=:aij

u

j

= b

i

.

• In matrix form:

Au = b

8
>>><

>>>:

a

ij

:=

Z 1

0

d�

i

dx

d�

j

dx

dx = (
d�

i

dx

,

d�

j

dx

) =: a(�
i

,�

j

).

b

i

:=

Z 1

0
�

i

f dx = (�
i

, f)

• We refer to a(�
i

,�

j

) as the a inner product.

Example: Linear Finite Elements in 1D

• Piecewise-linear basis functions, �
i

(x), i = 1, . . . , n, x 2 ⌦ = [0, 1]:

�

i

(x) =
x� x

i�1

x

i

� x

i�1
x 2 [x

i�1, xi]

=
x

i+1 � x

x

i+1 � x

i

x 2 [x
i

, x

i+1]

= 0, otherwise.

d�

i

dx

=
1

h

i

x 2 [x
i�1, xi]

=
1

h

i+1
x 2 [x

i

, x

i+1]

= 0, otherwise.

• Sti↵ness matrix entries:

a

ij

=

Z 1

0

d�

i

dx

d�

j

dx

dx =
h

i

h

2
i

+
h

i+1

h

2
i+1

j = i,

= �h

i

h

2
i

j = i� 1,

= �h

i+1

h

2
i+1

j = i + 1,

= 0, otherwise.

Example: Linear Finite Elements in 1D

• Piecewise-linear basis functions, phi
i

(x), i = 1, . . . , n, x 2 ⌦ = [0, 1]:

�

i

(x) =
x� x

i�1

x

i

� x

i�1
x 2 [x

i�1, xi]

=
x

i+1 � x

x

i+1 � x

i

x 2 [x
i

, x

i+1]

= 0, otherwise.

d�

i

dx

=
1

h

i

x 2 [x
i�1, xi]

=
1

h

i+1
x 2 [x

i

, x

i+1]

= 0, otherwise.

• Sti↵ness matrix entries:

a

ij

=

Z 1

0

d�

i

dx

d�

j

dx

dx =
h

i

h

2
i

+
h

i+1

h

2
i+1

j = i,

= �h

i

h

2
i

j = i� 1,

= �h

i+1

h

2
i+1

j = i + 1,

= 0, otherwise.

• For uniform gridspacing h,

a

ij

=

Z 1

0

d�

i

dx

d�

j

dx

dx =
1

h

2

666664

2 �1

�1 2 �1

�1
. �1

�1 2

3

777775
.

• For the right-hand side,

b

i

=

Z 1

0
�

i

f dx ⇡
Z

�

i

0

@
n+1X

j=0

�

j

(x)f
j

1

A
dx

=

n+1X

j=0

b

ij

f

j

dx =
�
B̄f

�
i

.

• B̄ is rectangular (mass matrix):

�
B̄

�
ij

:=

Z 1

0
�

i

�

j

dx =
1

3
(h

i

+ h

j

) if j = i

=
1

6
h

i

if j = i� 1

=
1

6
h

i+1 if j = i + 1

• For uniform gridspacing h,

a

ij

=

Z 1

0

d�

i

dx

d�

j

dx

dx =
1

h

2

666664

2 �1

�1 2 �1

�1
. �1

�1 2

3

777775
.

• For the right-hand side,

b

i

=

Z 1

0
�

i

f dx ⇡
Z

�

i

0

@
n+1X

j=0

�

j

(x)f
j

1

A
dx

=

n+1X

j=0

b

ij

f

j

dx =
�
B̄f

�
i

.

• B̄ is rectangular (mass matrix):

�
B̄

�
ij

:=

Z 1

0
�

i

�

j

dx =
1

3
(h

i

+ h

j

) if j = i

=
1

6
h

i

if j = i� 1

=
1

6
h

i+1 if j = i + 1

Note Limits!

• If h = 1
n+1 is uniform, the n⇥ (n + 2) matrix B̄ is,

B̄ = h

2

666666664

1
6

2
3

1
6

1
6

2
3

1
6

.

.

1
6

2
3

1
6

3

777777775

.

The system to be solved is then

Au = B̄f .

• Example: �d

2
ũ

dx

2
= 1, u(0) = u(1) = 0.

• Exact solution: ũ =
1

2
x (1� x).

• FEM solution with n = 2, h = 1
3,

Au =
1

h

"
2 �1

�1 2

u1

u2

!
= h

"
1
6

2
3

1
6

1
6

2
3

1
6

#

0

BBBBB@

1

1

1

1

1

CCCCCA

= h

0

@
1

1

1

A
.

• Solving for u:
0

@
u1

u2

1

A =

"
2 �1

�1 2

#�1

· h2

0

@
1

1

1

A
.

• Recall,
"

a b

c d

#�1

=
1

ad� bc

"
d �b

�c a

#
=

1

3

"
2 1

1 2

#

• So,
0

@
u1

u2

1

A =
1

9
· 1
3
·
"

2 1

1 2

0

@
1

1

1

A =

0

@
1
9

1
9

1

A
.

• Example: �d

2
ũ

dx

2
= 1, u(0) = u(1) = 0.

• Exact solution: ũ =
1

2
x (1� x).

• FEM solution with n = 2, h = 1
3,

Au =
1

h

"
2 �1

�1 2

u1

u2

!
= h

"
1
6

2
3

1
6

1
6

2
3

1
6

#

0

BBBBB@

1

1

1

1

1

CCCCCA

= h

0

@
1

1

1

A
.

• Exact solution: ũ(x = 1/3) =
1

2
· 1
3

✓
1� 1

3

◆
=

1

9
.

• Solving for u:
0

@
u1

u2

1

A =

"
2 �1

�1 2

#�1

· h2

0

@
1

1

1

A
.

• Recall,
"

a b

c d

#�1

=
1

ad� bc

"
d �b

�c a

#
=

1

3

"
2 1

1 2

#

• So,
0

@
u1

u2

1

A =
1

9
· 1
3
·
"

2 1

1 2

0

@
1

1

1

A =

0

@
1
9

1
9

1

A
.

• Example: �d

2
ũ

dx

2
= 1, u(0) = u(1) = 0.

• Exact solution: ũ =
1

2
x (1� x).

• FEM solution with n = 2, h = 1
3,

Au =
1

h

"
2 �1

�1 2

u1

u2

!
= h

"
1
6

2
3

1
6

1
6

2
3

1
6

#

0

BBBBB@

1

1

1

1

1

CCCCCA

= h

0

@
1

1

1

A
.

• Solving for u:
0

@
u1

u2

1

A =

"
2 �1

�1 2

#�1

· h2

0

@
1

1

1

A
.

• Recall,
"

a b

c d

#�1

=
1

ad� bc

"
d �b

�c a

#
=

1

3

"
2 1

1 2

#

• So,
0

@
u1

u2

1

A =
1

9
· 1
3
·
"

2 1

1 2

0

@
1

1

1

A =

0

@
1
9

1
9

1

A
.

Extensions:

• Variable coe�cients

• Neuman boundary conditions

• High-order polynomial bases

• Best-fit property

Variable Coe�cients

• Consider k(x) > 0 for x 2 ⌦ := [0, 1],

� d

dx

k

dũ

dx

= f, ũ(0) = ũ(1) = 0.

• WRT: find u 2 X

N

0 such that

�
Z

⌦
v

✓
d

dx

k

du

dx

◆
dx =

Z

⌦
v f dx 8 v 2 X

N

0 .

• Integrate by parts

a(v, u) :=

Z

⌦

dv

dx

k

du

dx

dx =

Z

⌦
v f dx.

• Set v = �

i

(x), u =
P

j

�

j

(x)u
j

,

Au = B̄f , a

ij

:=

Z 1

0

d�

i

dx

k

d�

j

dx

dx.

• Becasuse k > 0, A is SPD. (!)

Neumann Boundary Conditions

• Consider k(x) > 0 for x 2 ⌦ := [0, 1],

� d

dx

k

dũ

dx

= f, ũ(0) = 0,
du

dx

����
x=1

= 0.

• Now, include �
n+1(x) as a valid basis function:

u =

n+1X

j=1

�

j

(x)u
j

, v = �

i

(x), i = 1, . . . , n + 1.

• Integration by parts

�
Z

⌦
v

✓
d

dx

k

du

dx

◆
dx =

Z

⌦

dv

dx

k

du

dx

dx �
✓
v

du

dx

����
x=1

� v

du

dx

����
x=0

◆

=

Z

⌦

dv

dx

k

du

dx

dx =

Z

⌦
v f dx.

• Set v = �

i

(x), u =
P

j

�

j

(x)u
j

,

Au = B̄f , a

ij

:=

Z 1

0

d�

i

dx

k

d�

j

dx

dx.

• Same system! (“Natural” boundary conditions)

• A is (n + 1)⇥ (n + 1)

6
2

Inhomogeneous Neumann Condition (1/4)

6
3

Inhomogeneous Neumann Condition (2/4)

6
4

Inhomogeneous Neumann Condition (3/4)

6
5

Inhomogeneous Neumann Condition (4/4)

6
6

Inhomogeneous Dirichlet Condition

Example: �
d

2
ũ

dx

2
= f (x)

(
ũ(�1) = ↵

ũ

0(1) = g

Standard Derivation: Rewrite as

�d

2
u0

dx

2
= f (x) +

d

2
u

b

dx

2

and proceed in usual way, setting

u = u0 + u

b

for any u

b

2 X

N

b

satisfying u

b

(�1) = ↵.

6
7

Questions that arise:

• Implementation

• Cost (strongly dependent on number of space dimensions)

• Accuracy

• Spectrum

• Other (e.g., optimality)

6
8

Choice of Spaces & Bases

❑  An important choice is the space, X0
N, and associated basis { φi }.

❑  The former influences convergence, i.e.,
❑  How large or small n must be for a given error.

❑  The latter influences implementation, i.e.,
❑  details and level of complexity, and
❑  performance (time to solution, for a given error)

6
9

Unstable and Stable Bases within the Elements

❑  Examples of unstable bases are:
❑  Monomials (modal): φi = xi
❑  High-order Lagrange interpolants (nodal) on uniformly-spaced points.

❑  Examples of stable bases are:
❑  Orthogonal polynomials (modal), e.g.,

❑  Legendre polynomials: Lk(x), or

❑  bubble functions: φk(x) := Lk+1(x) – Lk-1(x).
❑  Lagrange (nodal) polynomials based on Gauss quadrature points (e.g.,

Gauss-Legendre, Gauss-Chebyshev, Gauss-Lobatto-Legendre, etc.)

7
0

Lagrange Polynomials: Good and Bad Point Distributions

N=4

N=7

 φ2 φ4

N=8

 Uniform Gauss-Lobatto-Legendre

7
1

Condition Number of A vs. Polynomial Order

Monomials: xk

 Uniformly spaced nodes

 GLL Points ~ N 3

n  Monomials and Lagrange interpolants on uniform points
exhibit exponentional growth in condition number.

n  With just a 7x7 system the monomials would lose 10
significant digits (of 15, in 64-bit arithmetic).

7
2

Implementation, Start to Finish

• Assume ⌦ = [�1, 1] and we have the two-point BVP

� d

dx

⌫(x)
du

dx

= f, u(�1) = u(1) = 0.

• WRT: Find u 2 X

N

0 such that

a(v, u) = (v, f) 8 v 2 X

N

0

a(�
i

, u) = (�
i

, f) i = 1, . . . , N � 1

a(�
i

, u) = a

0

@
�

i

,

N�1X

j=1

u

j

�

j

1

A =
N�1X

j=1

u

j

a (�
i

,�

j

)

=
N�1X

j=1

a

ij

u

j

a

ij

= a (�
i

,�

j

) =

Z 1

�1

d�

i

dx

⌫(x)
d�

j

dx

dx

7
3

• Each a

ij

is an integral:

a

ij

=

Z 1

�1

d�

i

dx

⌫(x)
d�

j

dx

dx

⇡
NX

k=0

⇢

k

d�

i

dx

����
⇠k

⌫(⇠
k

)
d�

j

dx

����
⇠k

=
NX

k=0

⇢

k

D̂

ki

B̂

k

⌫

k

D̂

kj

(B̂ := diag(⇢
k

))

A = D̂

T

⇣
⌫B̂

⌘
D̂.

var_coef.m

7
4

Piecewise Polynomial Bases: Linear and Quadratic

❑  Linear case results in A being tridiagonal (b.w. = 1)

❑  Q: What is matrix bandwidth for piecewise quadratic case?

7
5

 Basis functions for N=1, E=5 on element 3.

Ω 1 Ω 2 Ω 3 Ω 4 Ω 5

x0

7
6

 Basis functions for N=1, E=5 on element 3.

Ω 1 Ω 2 Ω 3 Ω 4 Ω 5

Ω 1 Ω 2 Ω 3 Ω 4 Ω 5

7
7

Basis functions for N=2, E=5

Ω 1 Ω 2 Ω 3 Ω 4 Ω 5

7
8

Basis functions for N=3, E=5

Ω 1 Ω 2 Ω 3 Ω 4 Ω 5

7
9

Important Properties of the Galerkin Formulation
❑  An essential property of the Galerkin formulation for the Poisson

equation is that the solution is the best fit in the approximation space,
with respect to the energy norm.

Specifically, we consider the bilinear form,

 and associated semi-norm,

 which is in fact a norm for all u satisfying the boundary conditions.

❑  It is straightforward to show that our Galerkin solution, u, is the closest
solution to the exact ũ in the a-norm. That is,

 || u – ũ ||a ≤ || w – ũ ||a for all w ∈ X0
N

❑  In fact, u is closer to ũ than the interpolant of ũ.

8
0

Best Fit Property, 1/4

8
1

Best Fit Property, 2/4

8
2

Best Fit Property, 3/4

8
3

Best Fit Property 4/4

8
4

Best Fit Viewed as a Projection

Best Fit Property Summary

❑  A significant advantage of the WRT over collocation is that the
choice of basis for a given approximation space, X0

N, is immaterial
– you will get the same answer for any equivalent basis, modulo
round-off considerations, because of the best fit property.

❑  That is, the choice of Ái influences the condition number of A, but
would give the same answer (in inifinite-precision arithmetic)
whether one used Lagrange polynomials on uniform points,
Chebyshev points, or even monomial bases.

❑  This is not the case for collocation – so WRT is much more robust.

❑  Of course, Lagrange polynomials on Chebyshev or Gauss-Lobatto-
Legndre points are preferred from a conditioning standpoint.

Boundary Value Problems
Numerical Methods for BVPs

Shooting Method
Finite Difference Method
Collocation Method
Galerkin Method

Eigenvalue Problems

Standard eigenvalue problem for second-order ODE has
form

u

00
= �f(t, u, u

0
), a < t < b

with BC
u(a) = ↵, u(b) = �

where we seek not only solution u but also parameter �

Scalar � (possibly complex) is eigenvalue and solution u is
corresponding eigenfunction for this two-point BVP

Discretization of eigenvalue problem for ODE results in
algebraic eigenvalue problem whose solution
approximates that of original problem

Michael T. Heath Scientific Computing 43 / 45

Boundary Value Problems
Numerical Methods for BVPs

Shooting Method
Finite Difference Method
Collocation Method
Galerkin Method

Example: Eigenvalue Problem

Consider linear two-point BVP

u

00
= �g(t)u, a < t < b

with BC
u(a) = 0, u(b) = 0

Introduce discrete mesh points ti in interval [a, b], with
mesh spacing h and use standard finite difference
approximation for second derivative to obtain algebraic
system

yi+1 � 2yi + yi�1

h

2
= �giyi, i = 1, . . . , n

where yi = u(ti) and gi = g(ti), and from BC y0 = u(a) = 0

and yn+1 = u(b) = 0

Michael T. Heath Scientific Computing 44 / 45

Boundary Value Problems
Numerical Methods for BVPs

Shooting Method
Finite Difference Method
Collocation Method
Galerkin Method

Example, continued

Assuming gi 6= 0, divide equation i by gi for i = 1, . . . , n, to
obtain linear system

Ay = �y

where n⇥ n matrix A has tridiagonal form

A =

1

h

2

2

66666664

�2/g1 1/g1 0 · · · 0

1/g2 �2/g2 1/g2
.

0

.
0

... . . .
1/gn�1 �2/gn�1 1/gn�1

0 · · · 0 1/gn �2/gn

3

77777775

This standard algebraic eigenvalue problem can be solved
by methods discussed previously

Michael T. Heath Scientific Computing 45 / 45

