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Some Distinguishing Features of PDEs

• Interaction of scales.

– e.g., often cannot let �x �! 0 unless �t �! 0 fast enough.

• Size of the systems.

– Time-dependent: solve Ax = b N
step

� 1 times.

– Multiple space dimensions, d > 1: A 2 lRn⇥n

� n = Nd, N := number of points in each direction.

� System bandwidth is O(Nd�1) � 1.

� Systems are typically sparse.

� Iterative solvers important, particularly for d > 2.
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Partial Differential Equations

Partial differential equations (PDEs) involve partial
derivatives with respect to more than one independent
variable

Independent variables typically include one or more space
dimensions and possibly time dimension as well

More dimensions complicate problem formulation: we can
have pure initial value problem, pure boundary value
problem, or mixture of both

Equation and boundary data may be defined over irregular
domain
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Partial Differential Equations, continued

For simplicity, we will deal only with single PDEs (as
opposed to systems of several PDEs) with only two
independent variables, either

two space variables, denoted by x and y, or
one space variable denoted by x and one time variable
denoted by t

Partial derivatives with respect to independent variables
are denoted by subscripts, for example

u

t

= @u/@t

u

xy

= @

2
u/@x@y
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Classification of PDEs

Order of PDE is order of highest-order partial derivative
appearing in equation

For example, advection equation is first order

Important second-order PDEs include

Heat equation : u

t

= u

xx

Wave equation : u

tt

= u

xx

Laplace equation : u

xx

+ u

yy

= 0
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Classification of PDEs, continued

Second-order linear PDEs of general form

au

xx

+ bu

xy

+ cu

yy

+ du

x

+ eu

y

+ fu+ g = 0

are classified by value of discriminant b

2 � 4ac

b

2 � 4ac > 0: hyperbolic (e.g., wave equation)

b

2 � 4ac = 0: parabolic (e.g., heat equation)

b

2 � 4ac < 0: elliptic (e.g., Laplace equation)
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Classification of PDEs, continued

Classification of more general PDEs is not so clean and simple,
but roughly speaking

Hyperbolic PDEs describe time-dependent, conservative
physical processes, such as convection, that are not
evolving toward steady state

Parabolic PDEs describe time-dependent, dissipative
physical processes, such as diffusion, that are evolving
toward steady state

Elliptic PDEs describe processes that have already
reached steady state, and hence are time-independent

Michael T. Heath Scientific Computing 10 / 105



Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Time-Dependent Problems

Time-dependent PDEs usually involve both initial values
and boundary values
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Time-Dependent Problems

Time-dependent PDEs usually involve both initial values
and boundary values
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Example: Advection Equation

Advection equation

u

t

= �c u

x

where c is nonzero constant

Unique solution is determined by initial condition

u(0, x) = u

0

(x), �1 < x < 1
where u

0

is given function defined on R

We seek solution u(t, x) for t � 0 and all x 2 R

From chain rule, solution is given by u(t, x) = u

0

(x� c t)

Solution is initial function u

0

shifted by c t to right if c > 0, or
to left if c < 0
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Example, continued

Typical solution of advection equation, with initial function
“advected” (shifted) over time < interactive example >
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Characteristics
Characteristics for PDE are level curves of solution

For advection equation u

t

= �c u

x

, characteristics are
straight lines of slope c

Characteristics determine where boundary conditions can
or must be imposed for problem to be well-posed

Michael T. Heath Scientific Computing 7 / 105



Matlab Demo:  Convection 



Matlab Demo:  Convection 

Very small ¢x 
required! 

conv_ab3_cd2.m 



Time Stepping for Advection Equation: @u

@t

= �c

@u

@x

• Unlike the di↵usion equation, which smears out the initial condition
(with high wavenumber components decaying particularly fast), the ad-
vection equation simply moves things around, with no decay.

• This property is evidenced by the spatial operator having purely (or close
to purely) imaginary eigenvalues.

• Preserving high-wavenumber content (in space) for all time makes this
problem particularly challenging.

– There is always some spatial discretization error.

– Its e↵ects accumulate over time (with no decay of the error).

– For su�ciently large final time T any fixed grid (i.e., fixed n) simu-
lation for general problems will eventually have too much error.

– Long time-integrations, therefore, typically require relatively fine
meshes and/or high-order spatial discretizations.



CFL, Eigenvalues, and Stability:   Fourier Analysis 
• Consider: u

t

= �cu

x

, u(0) = u(1) (periodic BCs)

• Centered di↵erence formula in space:

du

j

dt

= � c

2�x

(u

j+1 � u

j�1) = C u|
j

C = � 1

2�x

2
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Periodic Matrix 



Periodic Domain

Periodicity: u0 ⌘ un
uj�1

uj

uj+1

x0 x1 x2 · · · xj�1 xj xj+1 · · · xn

• Allows us to run for long times without having to have

a very long domain.

• Allows us to analyze the properties of our spatial discretization.



CFL, Eigenvalues, and Stability:   Fourier Analysis 

• Consider: u

t

= �cu

x

, u(0) = u(1) (periodic BCs)

• Centered di↵erence formula in space:

du

j

dt

= � c

2�x

(u

j+1 � u

j�1) = C u|
j

• Eigenvector: u

j

= e

i2⇡kxj
.

• Eigenvalue:

C u|
j

= � c

2�x

�
e

i2⇡k�x � e

�i2⇡k�x

�
e

i2⇡kxj

= � 2ic

2�x

�
e

i2⇡k�x � e

�i2⇡k�x

�

2i

u

j

= �

k

u

j

�

k

=

�ic

�x

sin(2⇡k�x)

• Eigenvalues are purely imaginary, max modulus is

max

k

|�
k

| =

|c|
�x

• For constant c and �x, we define the CFL for the advection

equation as

CFL =

�t|c|
�x

.

• CFL=1 would correspond to a timestep size where a particle

moving at speed c would move one grid spacing in a single

timestep.

• For centered finite di↵erences in space, CFL=1 also corresponds

��t = 1.
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• Consider: u
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.
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moving at speed c would move one grid spacing in a single
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1
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Courant Number, Eigenvalues, and Stability:   Fourier Analysis 

• Consider: u

t

= �cu

x

, u(0) = u(1) (periodic BCs)

• Centered di↵erence formula in space:

du

j

dt

= � c

2�x

(u

j+1 � u

j�1) = C u|
j

• Eigenvector: u

j

= e

i2⇡kxj
.

• Eigenvalue:

C u|
j

= � c

2�x

�
e

i2⇡kxj+1 � e

i2⇡kxj�1
�
e

i2⇡kxj

= �

k

u

j

�

k

= � c

2�x

sin 2⇡k�x

2i

=

ic

�x

sin(2⇡k�x)

• Eigenvalues are purely imaginary, max modulus is

max

k

|�
k

| =

|c|
�x

• For constant c and �x, we define the CFL for the advection

equation as

CFL =

�t|c|
�x

.

• CFL=1 would correspond to a timestep size where a particle

moving at speed c would move one grid spacing in a single

timestep.

• For centered finite di↵erences in space, CFL=1 also corresponds

��t = 1.

• From our IVP stability analysis, we know that we need

|��t| < .7236 for AB3 and < 2.828 for RK4.

• This would correspond to CFL < .7236 and 2.828, respectively.
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CFL, Eigenvalues, and Stability:   Fourier Analysis 

❑  MATLAB EXAMPLE:  conv_ab3.m 



Advection

• For advection, no decay in physical solution.

• Solution is persistent.

• Numerical method is either dispersive, dissipative, or both.

• If C = �CT
, discrete operator is skew-symmetric (imaginary eigenval-

ues) and numerical method has no decay (due to spatial error, at least).

• But it will be dispersive.

• We come back to dissipative shortly.



• Long time-integration �! accumulation of error.

• Second-order, O(�x2), accuracy is not su�cient.

• Modulo boundary conditions (or with periodicity), we can easily extend

our 2nd-order centered-di↵erence formula to O(�x4) through Richardson

extrapolation.

• Let

Chu|j :=

c

2�x
[uj+1 � uj�1]

and

C2hu|j :=

c

4�x
[uj+2 � uj�2]

for j = 1, . . . , n (with wrap for periodic ends).

• Instead of

du

dt
= �Chu

now use

du

dt
= �


4

3

Chu � 1

3

C2hu

�
.

• For AB3, say,

u

k+1
= u

k
+ �t

✓
23

12

f

k � 16

12

f

k�1
+

5

12

f

k�2

◆

f

k
= �


4

3

Chu
k � 1

3

C2hu
k

�
.

• Don’t re-evaluate f

k�1
or f

k�2
.

• Just re-use the previously computed values.



• Long time-integration �! accumulation of error.

• Second-order, O(�x2), accuracy is not su�cient.

• Modulo boundary conditions (or with periodicity), we can easily extend

our 2nd-order centered-di↵erence formula to O(�x4) through Richardson

extrapolation.

• Let

Chu|j :=

c

2�x
[uj+1 � uj�1]

and

C2hu|j :=

c

4�x
[uj+2 � uj�2]

for j = 1, . . . , n (with wrap for periodic ends).

• Instead of

du

dt
= �Chu

now use

du

dt
= �


4

3

Chu � 1

3

C2hu

�
.

• For AB3, say,

u

k+1
= u

k
+ �t

✓
23

12

f

k � 16

12

f

k�1
+

5

12

f

k�2

◆

f

k
= �


4

3

Chu
k � 1

3

C2hu
k

�
.

• Don’t re-evaluate f

k�1
or f

k�2
.

• Just re-use the previously computed values.

conv_ab3_cd4.m 



Numerical Dissipation 

Numerical Dissipation

• So far, we’ve consider only central di↵erence formulas.

• Upwind discretizations o↵er more stability, through the introduction of

numerical dissipation.

• You must be very careful about the wind direction!



Alternative Discretizations for Advection

Periodic Domain: u0 ⌘ u
n u

j�1

u
j

u
j+1

x0 x1 x2 · · · x
j�1 x

j

x
j+1 · · · x

n

• First-order upwinding:

du
j

dt
= � c

�x
(u

j

� u
j�1) if c > 0,

du
j

dt
= � c

�x
(u

j+1 � u
j

) if c < 0.

• Questions:

– What is the order of accuracy?

– Do we preserve skew-symmetry?

– Do we have stability?

– Under which conditions?



Alternative Discretizations for Advection

Periodic Domain: u0 ⌘ u
n u

j�1

u
j

u
j+1

x0 x1 x2 · · · x
j�1 x

j

x
j+1 · · · x

n

• First-order upwinding:

du
j

dt
= � c

�x
(u

j

� u
j�1) if c > 0,

du
j

dt
= � c

�x
(u

j+1 � u
j

) if c < 0.

• Questions:

– What is the order of accuracy?

– Do we preserve skew-symmetry?

– Do we have stability?

– Under which conditions?



• Consider c > 0. With some rearranging, we find:

du
j

dt
= � c

�x
(u

j

� u
j�1)

= � c

2�x
(2u

j

� 2u
j�1)

= � c

2�x
(u

j+1 � u
j+1 + 2u

j

� 2u
j�1)

= � c

2�x
((u

j+1 � u
j�1) + (�u

j+1 + 2u
j

� u
j�1))

= �c
u
j+1 � u

j�1

2�x
+

c�x

2

�u
j+1 + 2u

j

� u
j�1

�x2

= �Cu � ⌫
h

Au.

• Here, ⌫
h

= c�x

2 is the numerical di↵usivity and the term

� ⌫
h

Au

represents numerical dissipation.

• ⌫
h

= c�x

2 �! 0 as �x �! 0 (but only linearly in �x).

• This method is thus first-order, O(�x), accurate in space and dissipative.

conv_ab3_b.m demo 



conv_ab3_b.m demo 



• Eigenvalues.

• For our periodic boundary conditions, the eigenvectors are

u
j

= ei2⇡kxj (i :=
p
�1).

• With ✓ := 2⇡k�x, we have:

Cu =
c

2�x
· 2i


ei✓ � e�i✓

2i

�
ei2⇡kxj

=
ic

�x
sin(2⇡k�x) ei2⇡kxj .

⌫
h

Au =
⌫
h

�x2
[2 � 2 cos(2⇡k�x)] ei2⇡kxj

�(J) = � ic

�x
sin(2⇡k�x) � ⌫

h

�x2
(2 � 2 cos(2⇡k�x)) .



• Eigenvalues.

• For our periodic boundary conditions, the eigenvectors are

u
j

= ei2⇡kxj (i :=
p
�1).

• With ✓ := 2⇡k�x, we have:

Cu =
c

2�x
· 2i


ei✓ � e�i✓

2i

�
ei2⇡kxj

=
ic

�x
sin(2⇡k�x) ei2⇡kxj .

⌫
h

Au =
⌫
h

�x2
[2 � 2 cos(2⇡k�x)] ei2⇡kxj

�(J) = � ic

�x
sin(2⇡k�x)

| {z }
2 Im

� ⌫
h

�x2
(2 � 2 cos(2⇡k�x)) .

| {z }
< 0, 2 lR

• Thus, the eigenvalues are complex and in the left (stable) half of the
complex plane.



• Q: What happens if c < 0 ??

• Now, ⌫
h

< 0 and

�(J) = � ic

�x
sin(2⇡k�x)

| {z }
2 Im

� ⌫
h

�x2
(2 � 2 cos(2⇡k�x)) .

| {z }
> 0, 2 lR

• Here, we will have very rapid instability.

• We must in this case use the one-sided derivative

du
j

dt
= � c

�x
(u

j+1 � u
j

) if c < 0. (1)

• Consider the logic of this statement.

• Suppose we use Euler forward, with c = 1 > 0 and �t = �x.

• Then, the update step is

u

n+1 � u

n

�t
= Jun, or (2)

un+1
j

� un
j

�t
= �c

un
j

� un
j�1

�x
, (3)

implying

un+1
j

= un
j

� c�t

�x

�
un
j

� un
j�1

�
. (4)

• If our CFL = 1, then

un+1
j

= un
j�1, (5)

which corresponds to a perfect shift of data from the left.

conv_ab3_bb.m demo 



• Q: What happens if c < 0 ??

• Now, ⌫
h

< 0 and

�(J) = � ic

�x
sin(2⇡k�x)

| {z }
2 Im

� ⌫
h

�x2
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| {z }
> 0, 2 lR

• Here, we will have very rapid instability.

• We must in this case use the one-sided derivative

du
j

dt
= � c

�x
(u

j+1 � u
j

) if c < 0. (1)

• Consider the logic of this statement.

• Suppose we use Euler forward, with c = 1 > 0 and �t = �x.

• Then, the update step is

u

n+1 � u

n

�t
= Jun, or (2)

un+1
j

� un
j

�t
= �c

un
j

� un
j�1

�x
, (3)

implying

un+1
j

= un
j

� c�t

�x

�
un
j

� un
j�1

�
. (4)

• If our CFL = 1, then

un+1
j

= un
j�1, (5)

which corresponds to a perfect shift of data from the left.



• Being in Illinois, we take our prediction of tomorrow’s weather, un+1
j

,
from today’s weather in Iowa, un

j�1.

• Not from Indiana (un
j+1).



Numerical Dispersion: Finite Di↵erences

• Analytical advection, periodic boundary conditions:

u

t

= �c u

x

= Lu, u(0) = u(1),

• Analytical eigenfunctions: s

k

(x) = e

i2⇡kx
.

• Analytical eigenvalues. Set u(x, t = 0) = u0 = s

k

(x). Then,

Lu = �c u

x

= �ic2⇡k u =

˜

�

k

u

˜

�

k

= �ic2⇡k

• Numerical eigenvalues:

�

k

= �ic

sin 2⇡k�x

�x

⇠ �ic2⇡k

✓
1 � (2⇡k�x)

2

3!

· · ·
◆
.
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Advection Demos 

❑  Numerical dispersion (spatial error dominating) 
❑  High wavenumber components have more error than low wavenumbers 
❑  Longer time-integrations yield larger error 

❑  Instability if CFL too large  
❑  CFL < .72 (say, for AB3) for standard 2nd-order finite difference scheme 
❑  Smaller CFL required for 4th-order finite difference scheme 

❑  First-order upwinding: 
❑  unstable if the wind direction (“c”) changes without changing the stencil 

(e.g., uj – uj-1  to uj+1 – uj ). 
❑  Perfect shift if CFL == 1 
❑  Dissipative if CFL < 1 
❑  Explosive if CFL > 1 

 
conv_sine.m 



Time Dependent Problems

• We’ll consider two examples: di↵usion (heat equation) and advection.

heat equation:

@u

@t

= ⌫

@

2
u

@x

2
+ BCs and IC

advection:

@u

@t

= �c

@u

@x

+ BCs and IC



@

2
u

@x

2
< 0 =) @u

@t

< 0

@

2
u

@x

2
> 0 =) @u

@t

> 0

@

2
u

@x

2
> 0

� + �

@

2
u

@x

2
< 0 =) @u

@t

< 0

@

2
u

@x

2
> 0 =) @u

@t

> 0

@

2
u

@x

2
> 0

� + �

@

2
u

@x

2
< 0 =) @u

@t

< 0

@

2
u

@x

2
> 0 =) @u

@t

> 0

@

2
u

@x

2
> 0

� + �

Heat Equation:
@u

@t

= ⌫

@

2
u

@x

2
, ⌫ > 0

• For the heat equation, the solution evolves in the direction of

local curvature.

– If the the solution is locally concave down, u decreases there.

– If the the solution is concave up, u increases.



Example Solutions (eigenfunctions): u

t

= ⌫u

xx

, u(0) = u(1) = 0

u(x, t) = û(t) sin ⇡x

@u

@t

=

dû

dt

sin ⇡x = �⌫⇡

2
û sin ⇡x

dû

dt

= �⌫⇡

2
û

û = e

�⌫⇡2t
û(0)

u(x, t) = û(t) sin 10⇡x

@u

@t

=

dû

dt

sin ⇡x = �⌫100⇡

2
û sin ⇡x

dû

dt

= �⌫100⇡

2
û

û = e

�⌫100⇡2t
û(0)

(1) + 0.5(2)

Example Solutions (eigenfunctions): u

t

= ⌫u

xx

, u(0) = u(1) = 0

u(x, t) = û(t) sin ⇡x

@u

@t

=

dû

dt

sin ⇡x = �⌫⇡

2
û sin ⇡x

dû

dt

= �⌫⇡

2
û

û = e

�⌫⇡2t
û(0)

u(x, t) = û(t) sin 10⇡x

@u

@t

=

dû

dt

sin ⇡x = �⌫100⇡

2
û sin ⇡x

dû

dt

= �⌫100⇡

2
û

û = e

�⌫100⇡2t
û(0)

�! Very rapid decay.

(1) + 0.5(2)



Solution of Partial Di↵erential Equations

• Unsteady Heat Equation:

u
t

= ⌫ u
xx

+ q(x, t), u(x = 0, t) = u(x = L, t) = 0, u(x, t = 0) = u0(x).

• Discretize in space:

– Finite di↵erence

– Weighted residual technique (FEM, Galerkin + high-order polynomials, etc.)



• Finite Di↵erence Case:
u
j�1

u
j

u
j+1

0 =: x0 x1 x2 · · · x
j�1 x

j

x
j+1 · · · x

n+1 := 1

du
i

dt
= �⌫ (Au)

i

+ q
i

, i = 1, . . . , n

• In ODE form:
du

dt
= �⌫Au + q, u(t = 0) = u0.

• Here, �x = 1/(n+ 1) and A is the SPD tridiagonal matrix

A =
1

�x2

0

BBBBBBBB@

2 �1

�1 2 �1

�1 . . . . . .

. . . . . . �1

�1 2

1

CCCCCCCCA

.

• Eigenvalues:

�(A) =
2

�x2
(1 � cos(k⇡�x)) 2

�
⇡2(1 +O(�x2)), 4(n+ 1)2

�

2
✓
⇡2(1 +O(�x2)),

4

�x2

◆
.



• Finite Di↵erence Case:
u
j�1

u
j

u
j+1

0 =: x0 x1 x2 · · · x
j�1 x

j

x
j+1 · · · x

n+1 := 1

du
i

dt
= �⌫ (Au)

i

+ q
i

, i = 1, . . . , n

• In ODE form:
du

dt
= �⌫Au + q, u(t = 0) = u0.

• Here, �x = 1/(n+ 1) and A is the SPD tridiagonal matrix

A =
1

�x2

0

BBBBBBBB@

2 �1

�1 2 �1

�1 . . . . . .

. . . . . . �1

�1 2

1

CCCCCCCCA

.

• Eigenvalues:

�(A) =
2

�x2
(1 � cos(k⇡�x)) 2

�
⇡2(1 +O(�x2)), 4(n+ 1)2

�

2
✓
⇡2(1 +O(�x2)),

4

�x2

◆
.



• Can view this semi-discrete form as a system of ODEs:

du

dt
= f(u) := �⌫Au + q(x, t).

• Jacobian df
i

du
j

= �⌫ a
ij

J = �⌫ A.

• Stability is determined by the eigenvalues of J and by the choice of
timestepper.

• Some possible explicit timesteppers

EF: uk+1 = uk + �t fk

AB3: uk+1 = uk + �t

✓
23

12
fk � 16

12
fk�1 +

5

12
fk�2

◆

• Stable, as long as �(J)�t in the stability region.



• Stability:

• �(J) = �⌫�(A) = � 2⌫

�x2
(1� cos k⇡�x) .

• Worst case is |�(J)| ⇠
����
4⌫

�x2

���� .

• For Euler forward (EF), require

|�t�(J)| < 2

or

�t <
2�x2

4⌫
=

�x2

2⌫
,

which is a very severe timestep restriction.

• Question:
What is the maximum allowable timestep size for AB3 in this case?

Stability Regions, EF, AB2, AB3. 



• Question:
What is the maximum allowable timestep size for AB3 in this case?

Stability Regions, EF, AB2, AB3. 



• Severity of explicit timestep restriction:

– Suppose ⌫ = 1 and you want error ⇡ 10�6.
�! �x ⇡ 10�3.
�! �t ⇡ 10�6, just for stability.

• This is an example of a sti↵ system.

• High wavenumbers (�(A)) are uninteresting but restrict the timestep
size.

• For this reason, the heat equation is most often treated implicitly.



• Possible Implicit Approaches:

du

dt
= f(u)

8
<

:

EB
Trapezoid (aka Crank-Nicolson)
BDF2 or BDF3

• Examples:

EB: uk+1 = uk + �t
⇥
�⌫ Auk+1 + q(x, tk+1)

⇤

CN:
uk+1 � uk

�t
= +

1

2

�
�⌫Auk+1 + qk+1 � ⌫Auk + qk

�

BDF2:
3uk+1 � 4uk + uk�1

2�t
= �⌫ Auk+1 + q(x, tk+1)



• EB Example:

uk+1 + ⌫�tAuk+1 = uk + �tqk+1

[I + ⌫�tA]uk+1 = uk + �tqk+1

Huk+1 = uk + �tqk+1.

• Here, H := [I + ⌫�tA] is SPD, tridiagonal, and strongly diagonally
dominant. (In all number of space dimensions.)

• Hu = f is easier to solve than Au = f .

• Jacobi- (diagonal-) preconditioned conjugate gradient iteration is often
the best choice of solver, particularly in higher space dimensions.

• Note that all the implicit solvers end up with the form Hu = f and
generally have the same costs for the linear heat equation considered
here.

• Note that CN (aka trapezoid method) is not L-stable and will have po-
tential di�culties noted in our discussion of IVPs.



• Discretization Based on Weighted Residual Technique in Space

• Coming back to the heat equation (with BCs/ICs),

u
t

= ⌫ u
xx

+ q(x, t),

• WRT - residual orthogonal to test functions
Z

v(⌫ u
xx

+ q(x, t) � u
t

) dx = 0 8 v XN

0 .

• If u =
nX

j=1

u
j

(t)�
j

(x) and v = �
i

(x), then

LHS:

Z
v
@u

@t
dx =

 
nX

j=1

�
i

�
j

dx

!
u
j

(t) = B
du

dt
,

with the mass matrix B having entries

B
ij

:=

Z
�
i

(x)�
j

(x) dx.



• On the right, we have

RHS = ⌫

Z
v
@2u

@x2
dx +

Z
vq dx

= �⌫

Z
@v

@x

@u

@x
dx +

Z
vq dx.

• Setting v = �
i

and u =
P

j

�
j

u
j

(t),

RHS = �⌫
nX

j=1

✓Z
d�

i

dx

d�
i

dx
dx

◆
u
j

(t) +

Z
�
i

q dx

= �⌫Au + b,

8
><

>:

a
ij

:=

Z
d�

i

dx

d�
i

dx
dx

b
i

:=

Z
�
i

q dx
.



• In summary, the WRT formulation is, Find u(x, t) 2 XN

0 such that,
Z

v
@u

@t
dx = �⌫

Z
@v

@x

@u

@x
dx +

Z
vq dx 8 v 2 XN

0 ,

which leads to the ODE

B
du

dt
= �⌫Au + b, plus initial condition u(t = 0) = u0.

• In standard form,

du

dt
= �⌫B�1Au + B�1b,

• Stability is thus governed by �(J) = �⌫�(B�1A), not just �⌫�(A).

• Presence of B in front of du
dt

must not be ignored.

• Choice of timestepper motivated by same concerns as for finite-di↵erences:

– |�(J)| ⇠ O(�x2)

– Implicit timestepping generally preferred

– SPD systems

– Jacobi (diagonal) preconditioned conjugate gradient iteration is gen-
erally the solver of choice.



Time Stepping for Di↵usion Equation:

• Recall, with boundary conditions u(0) = u(1) = 0, the finite di↵erence
operator

Au = � ⌫

h

2
[u

j+1 � u

j

� u

j�1]

with h := 1/(n+ 1) has eigenvalues in the interval [0,M ] with

M = max
k

�

k

= max
k

2⌫

h

2
[1 � cos k⇡h] ⇠ 4

h

2

• Our ODE is u
t

= �Au, so we are concerned with ��

k

.

• With Euler Forward, we require |��t| < 2 for stability,

– �! �t <

h

2

2

– no matter how smooth the initial condition.

• This intrinsic sti↵ness motivates the use of implicit methods for the heat
equation (BDF2 is a good one).

• matlab example: heat1d.m

heat1d_ef.m  and  heat1d_eb.m and heat1d_cn.m 





Steady State Problems 

❑  Heat equation evolves to a steady state: 

        ut = º uxx  + q(x)      [  + BCs and IC ] 
 
❑  After waiting long enough, u(x,t=1) satisfies: 

 - º uxx  = q(x)      [  + BCs  ] 

❑  In 2D, we have: 
 - º ( uxx  +  uyy)  = q(x,y)      [  + BCs  ], 

 
     which can also be solved by time evolving  
 

 ut = º (uxx + uyy)  + q(x,y)      [  + BCs and arbitrary IC ] 
 
 



Example: Poisson Equation in 2D

⌦

@⌦

u = 0

�
✓
@2u

@x2
+

@2u

@y2

◆
= f(x, y) in⌦

u = 0 on @⌦

• Ex 1: If f(x, y) = sin ⇡x sin ⇡y,

u(x, y) =
1

2⇡2
sin ⇡x sin ⇡y

• Ex 2: If f(x, y) = 1,

u(x, y) =
1,1X

k,l odd

16

⇡4kl(k2 + l2)
sin k⇡x sin l⇡y.

– Q: How large must k and l be for “exact” solution to be correct to ✏
M

?

– Spectral collocation would yield u = uexact ± ✏
M

by N ⇡ 15.



Numerical Solution: Finite Di↵erences

i = 0

1 2 3 4 n

x

+ 1

j = 0

1

2

3

4

n

y

+ 1

ui�1,j

ui,j�1

uij ui+1,j

ui,j+1

“5-point finite-di↵erence stencil”

�
✓
@2u

@x2
+

@2u

@y2

◆
⇡

✓
u
i+1,j � 2u

ij

� u
i�1,j

�x2

+
u
i,j+1 � 2u

ij

� u
i,j�1

�y2

◆
= f

ij

i = 1 . . . n
x

j = 1 . . . n
y

• Here, the unknowns are u = [u11, u21, . . . , un

x

,n

y

]T .

• This particular (so-called natural or lexicographical) ordering gives rise to
a banded system matrix for u.

• As in the 1D case, the error is O(�x2) + O(�y2) = O(h2) if we take �x = �y =: h.

• Assuming for simplicity that N = n
x

= n
y

, we have n = N2 unknowns.

- 



• For i, j 2 [1, . . . , N ]2, the governing finite di↵erence equations are

�
✓
u
i+1,j � 2u

i,j

+ u
i�1,j

�x2
+

u
i,j+1 � 2u

i,j

+ u
i,j�1

�y2

◆
= f

ij

.

• Assuming a lexicographical ordering in which the i- (x-) index advances fastest, the
system matrix has the form

1

h

2

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

4 �1 �1
�1 4 �1 �1

�1
. . .

. . .
. . .

. . .
. . . �1

. . .
�1 4 �1

�1 4 �1
. . .

�1 �1 4 �1
. . .

. . . �1
. . .

. . .
. . .

. . .
. . .

. . . �1
. . .

�1 �1 4
. . .

. . .
. . . �1

. . .
. . . �1

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . . �1

�1 4 �1

�1 �1 4
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . �1
�1 �1 4

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

| {z }
A

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

u11
u21
...
...

u

N1

u12
u22
...
...

u

N2

...

...

...

...

...

u1N
u2N
...
...

u

NN

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

| {z }
u

=

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

f11
f21
...
...

f

N1

f12
f22
...
...

f

N2

...

...

...

...

...

f1N
f2N
...
...

f

NN

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

| {z }
f



• The system matrix A is

– sparse, with 5 nonzeros per row (good)

– and has a bandwith N (bad).

• The di�culty is that solving Au = f using Gaussian elimination results in signifcant
fill— each of the factors L and U have N3 = n3/2 nonzeros.

• Worse, for 3D problems with N3 unknowns, u = [u111, u211, . . . , un

x

,n

y

,n

z

]T , A is

– sparse, with 7 nonzeros per row (good)

– and has a bandwith N2 (awful).

• In 3D, LU decomposition yields N5=n5/3 nonzeros in L and U .

• The situation can be rescued in 2D with a reordering of the unknowns (e.g., via nested-
dissection) to yield O(n log n) nonzeros in L and U .

• In 3D, nested-dissection yields O(n3/2) nonzeros in the factors. Direct solution is not
scalable for more than two space dimensions.

• The following Matlab examples illustrate the issue of fill:

– fd poisson 2d.m

– fd poisson 3d.m



Matrix-Fill for 2D and 3D Poisson, Lexicographical Ordering
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Matrix-Fill for 2D and 3D Poisson, Lexicographical Ordering

error – 2D, 3D

nnz – 2D

nnz – 3D

error – 2D

N3

Matrix-Fill for 2D and 3D Poisson, symamd Ordering

• As expected, the error scales like h2 ⇠ 1/N2 in both 2D and 3D.

• The resepctive storage costs (and work per rhs) are ⇠ N3 and N5.

• Alternative orderings are asymptotically better, but the
constants tend to be large.

• We see for N = 80 (n = 6400) a 5⇥ reduction in number
of nonzeros by reording with matlab’s symamd function.

• The requirements for indirect addressing to access elements
of the complacty-stored matrix further adds to overhead.

• Gains tend to be realized only for very large N and are
even less beneficial in 3D.

• Despite this, it’s still a reasonable idea to reorder
in matlab because it’s available and easy to use.
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More on 2D Systems Matrices for Poisson Equation 

1.2 Poisson Equation in lR2

Our principal concern at this point is to understand the (typical) matrix structure that arises from the 2D
Poisson equation and, more importantly, its 3D counterpart. The essential features of this structure will
be similar for other discretizations (i.e., FEM, SEM), other PDEs, and other space dimensions, so there is
merit to starting with this relatively simple system.

The steady-state heat equation in two dimensions is:

�r · krT = q000(x, y), plus BCs. (9)

For constant thermal conductivity k this equation reduces to the standard Poisson equation in ⌦ := [0, 1]2 ⇢
lR2, which we usually express in terms of u for notational convenience:

�r2u = f(x, y), plus BCs (10)

= �
✓
@2u

@x2
+

@2u

@y2

◆

= �
✓
�2u

�x2
+

�2u

�y2

◆
+O(h2),

where we have substituted the finite di↵erence approximations, assumed to be about the point x
ij

:= (x
i

, y
j

),

�2u

�x2
:=

u
i+1,j � 2u

i,j

+ u
i�1,j

�x2
(11)

�2u

�y2
:=

u
i,j+1 � 2u

i,j

+ u
i,j�1

�y2
,

with the further assumption of uniform grid spacing, �x = �y = h. We’ll also consider homogeneous
Dirichlet boundary conditions, that is, u(x, y)|

@⌦ ⌘ 0. The respective unknowns and data in this case are
u
ij

and f
ij

, governed by the following system of equations

�
✓
u
i+1,j � 2u

i,j

+ u
i�1,j

�x2
+

u
i,j+1 � 2u

i,j

+ u
i,j�1

�y2

◆
= f

ij

, (12)

for i, j 2 [1, . . . , N ]2.

Assuming a lexicographical ordering in which the i- (x-) index advances fastest, the system takes on the
following matrix structure for �x = �y = h.



1
h2

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

4 �1 �1
�1 4 �1 �1

�1
. . .

. . .
. . .

. . .
. . . �1

. . .
�1 4 �1

�1 4 �1
. . .

�1 �1 4 �1
. . .

. . . �1
. . .

. . .
. . .

. . .
. . .

. . . �1
. . .

�1 �1 4
. . .

. . .
. . . �1

. . .
. . . �1

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . . �1

�1 4 �1

�1 �1 4
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . �1
�1 �1 4

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

| {z }
A2D

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

u11
u21
...
...

uM1

u12
u22
...
...

uM2

...

...

...

...

...

u1N
u2N
...
...

uMN

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

| {z }
u

=

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

f11
f21
...
...

fM1

f12
f22
...
...

fM2

...

...

...

...

...

f1N
f2N
...
...

fMN

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

| {z }
f
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where we have introduced the Kronecker (or tensor) product, ⌦. For two matrices A and B, their
Kronecker product C = A⌦B is defined as the block matrix
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We will soon explore a few properties of this form, but for now simply note that it allows a clean
expression of the discretized Poisson operator in 2D. Consider the following splitting of A2D.
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We see that we can express A2D as (I
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⌦A
x

) + (A
y

⌦ I
x

). The first term is nothing other than �
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being applied to each row (j) of u
ij

and the second term amounts to applying �

2

�y

2 to each column

(i) on the grid.

1.3 Matlab Kronecker Product Demos

close all; format compact;

% Kronecker Product Demo

%

% NOTE: It is important to use SPARSE matrices throughout.

%

% Otherwise, your run times will be very long and

% you will likely run out of memory!

Lx=2; Ly=1;

nx=15; ny=3; % Number of _interior_ points

dx=Lx/(nx+1); dy=Ly/(ny+1);

% USE help spdiags

e = ones(nx,1); Ax = spdiags([-e 2*e -e], -1:1, nx, nx)/(dx*dx);

e = ones(ny,1); Ay = spdiags([-e 2*e -e], -1:1, ny, ny)/(dy*dy);

Ix=speye(nx); Iy=speye(ny);

A = kron(Iy,Ax) + kron(Ay,Ix); %%% FINITE DIFFERENCE STIFFNESS MATRIX

% A couple of demo cases without the 1/(dx*dx) scaling.

nd= 5;

e = ones(nd,1); Ad = spdiags([-e 2*e -e], -1:1, nd, nd);

T = kron(Iy,Ad); full(T)

nd= 15;

e = ones(nd,1); Ad = spdiags([-e 2*e -e], -1:1, nd, nd);

T = kron(Iy,Ad); spy(T)

title(’I_y \otimes A_x’,’fontsize’,16)

set(gcf,’PaperUnits’,’normalized’);set(gcf,’PaperPosition’,[0 0 1 1])

print -dpdf iyax.pdf

pause; figure

nd= 5;

e = ones(nd,1); Ad = spdiags([-e 2*e -e], -1:1, nd, nd);

T = kron(Ad,Ix); full(T)

nd= 15;

e = ones(nd,1); Ad = spdiags([-e 2*e -e], -1:1, nd, nd);

T = kron(Ad,Ix); spy(T)

title(’A_y \otimes I_x’,’fontsize’,16)

set(gcf,’PaperUnits’,’normalized’);set(gcf,’PaperPosition’,[0 0 1 1])

print -dpdf ayix.pdf
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Note that our finite-di↵erence sti↵ness matrix in matlab would be written as

A = kron(Iy,Ax) + kron(Ay,Ix)

where Ax and Ay are formed using the matlab spdiags command (help spdiags), and Iy and Ix
are formed using speye.

It is important to use sparse matrices in matlab for these higher-dimensional (2D and 3D)
problems or you will run out of memory and it will take very long to solve these problems.

This problem is known in scientific computing and the curse of dimensionality.
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Note that our finite-di↵erence sti↵ness matrix in matlab would be written as

A = kron(Iy,Ax) + kron(Ay,Ix)

where Ax and Ay are formed using the matlab spdiags command (help spdiags), and Iy and Ix
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Note that our finite-di↵erence sti↵ness matrix in matlab would be written as

A = kron(Iy,Ax) + kron(Ay,Ix)

where Ax and Ay are formed using the matlab spdiags command (help spdiags), and Iy and Ix
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It is important to use sparse matrices in matlab for these higher-dimensional (2D and 3D)
problems or you will run out of memory and it will take very long to solve these problems.
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1.4 Poisson Equation in lR3

We now extend the 1D and 2D concepts to the most important 3D case. The short story is that
the 3D sti↵ness matrix takes the wonderfully symmetric form

A3D = (I
z

⌦A2D) + (A
z

⌦ I2D) (15)

= (I
z

⌦ I
y

⌦A
x

) + (I
z

⌦A
y

⌦ I
x

) + (A
z

⌦ I
y

⌦ I
x

).

and the discrete system is as before A3Du = f . This of course is the form that arises for a finite
di↵erence discretization of �r2u = f in ⌦ = [0, 1]3, u = 0 on @⌦, or, more explicitly,

�
✓
�2u

�x2
+

�2u

�y2
+

�2u

�z2

◆
= f(x

i

, y
j

, z
k

), (16)

with

�2u

�z2

����
ijk

:=
u
ij,k+1 � 2u

ijk

+ u
ij,k�1

�z2
, (17)

and equivalent expressions for �

2
u

�x

2 and �

2
u

�y

2 .

Note that, with (15), we really have not restricted ourselves to uniform mesh spacing in each
direction. We could have di↵erent grid spacing �x, �y, and �z and number of mesh points N

x

,
N

y

, and N
z

, in each of the space directions. Then, I
x

would be the N
x

⇥N
x

identity matrix and
A

x

would be the corresponding sti↵ness matrix, as would also be the case for y and z.



Iterative Solvers

• The curse of dimensionality for d > 2 resulted in a move towards iterative (rather

than direct-, LU -based) linear solvers once computers became fast enough to tackle 3D

problems in the mid-80s.

• With iterative solvers, factorization

Au = f =) u = A�1f = U�1L�1f

is replaced by, say,

uk+1 = uk + M�1
(f � Auk) ,

which only requires matrix-vector products.

• With ek := u � uk, we have

ek+1 =

�
I � M�1A

�
ek, (as we’ve seen before).

• This is known as Richardson iteration.

• For the particular case M = D = diag(A), it is Jacobi iteration.

• We can derive Jacobi iteration (and multigrid by looking at a parabolic PDE, known as

the (unsteady) heat equation. (The Poisson equation is sometimes referred to as the

steady-state heat equation.)



• The intrinsic advantage of iterative solvers is that there is no fill associated with matrix
factorization.

• Often one does not even construct the matrix. Rather, we simply evaluate the residual
rk := f � Auk and set uk+1

= uk +M�1rk.

• For a sparse matrix A, the operation count is O(n) per iteration.

• Assuming the preconditioner cost is also sparse, the overall cost is O(n k
max

), where
k
max

is the number of iterations required to reach a desired tolerance.

• The choice of iteration (Richardson, conjugate gradient, GMRES) can greatly influence
k
max

.

• Even more significant is the choice of M .

• Usually, one seeks an M such that the cost of solving Mz = r is O(n) and that
k
max

= O(1). That is, the iteration count is bounded, independent of n.

• The overall algorithm is therefore O(n), which is optimal.



Iterative Solvers - Linear Elliptic Problems

• PDEs give rise to large sparse linear systems of the form

Au = f .

Here, we’ll take A to be the (SPD) matrix arising from finite di↵erences
applied to the Poisson equation
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• Assuming uniform spacing in x and y we have
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• Our finite di↵erence formula is thus,
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• Rearranging, we can solve for u
ij
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• Jacobi iteration uses the preceding expression as a fixed-point iteration:
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4
,

which is Euler forward applied to

du

dt
= �Au + f .

• We note that we have stability if |��t| < 2

! FOR 2D Poisson! 



• Recall that the eigenvalues for the 1D di↵usion operator are

�
j

=
2

h2

(1� cos j⇡�x) <
4

h2

• In 2D, we pick up contributions from both �

2
u

�x

2 and �

2
u

�y

2 , so

max |�| <
8

h2

and we have stability since

max |��t| <
8

h2

h2

4
= 2

• So, Jacobi iteration is equivalent to solving Au = f by time marching
du
dt

= �Au + f using EF with maximum allowable timestep size,

�t =
h2

4
.



MULTIGRID ITERATION 



Jacobi Iteration in Matrix Form

• Our unsteady heat equation has the matrix form

u

k+1

= u

k

+ �t (f � Au
k

)

• For variable diagonal entries, Richardson iteration is

u

k+1

= u

k

+ �M�1 (f � Au
k

)

• If � = 1 and M = D�1 =diag(A) [d
ii

= 1/a
ii

, d
ij

= 0, i 6= j],
we have standard Jacobi iteration.

• If � < 1 we have damped Jacobi.

• M is generally known as a smoother or a preconditioner,
depending on context.



Rate of Convergence for Jacobi Iteration

• Let e
k

:= u� u

k

.

• Since Au = f , we have

u

k+1

= u

k

+ �t (Au� Au
k

)

�u = �u

��� � ����������

�e

k+1

= �e

k

� ��tAe
k

�e

k+1

= � (I � ��tA) e
k

e

k

= (I � ��tA)k e
0

= (I � ��tA)k u if u
0

= 0.

• If � < 1, then the high wavenumber error components will decay because
��t will be well within the stability region for EF.



• The low-wavenumber components of the solution (and error) evolve like
e����tk, because these will be well-resolved in time by Euler forward.

• Thus, we can anticipate

||e
k

|| ⇡ ||u||e��min��tk

with �
min

⇡ 2⇡2 (for 2D).

• If � ⇡ 1, we have

||e
k

|| ⇡ ||u||e�2⇡

2
(h

2
/4)k  tol

• Example, find the number of iterations when tol=10�12.

e�(⇡

2
h

2
/4)k ⇡ 10�12

�(⇡2h2/4)k ⇡ ln 10�12 ⇡ 24 (27.6...)

k ⇡ 28 · 2
⇡2h2

⇡ 6N 2

Here, N=number of points in each direction. 



Recap

• Low-wavenumber components decay at a fixed rate: e��min�tk.

• Stability mandates �t < h2/4 = 1/4(N + 1)�2.

• Number of steps scales like N 2.

• Note, if � = 1, then highest and lowest wavenumber components
decay at same rate.

• If 1

2

< � < 1, high wavenumber components of error decay very fast.
We say that damped Jacobi iteration is a smoother.



Example:  1D Jacobi Iteration 

Solution after 
1 iteration 

 
 
 
 
 

Solution after 
5 itierations 

Error after 1 
iteration 
 
 
 
 
 
Error after 5 
itierations 



Observations:

• Error, ek is smooth after just a few iterations:

– Error components are ⇡ ûje
�j2kh2⇡2/4

sin k⇡xj, and components

for j > 1 rapidly go to zero.

• Exact solution is u = uk + ek (ek unknown, but smooth).

• Error satisfies, and can be computed from,

Aek = rk ( := f � Auk = Au � Auk = Aek) .

• These observations suggest that the error can be well approximated

on a coarser grid and added back to uk to improve the current guess.

• The two steps, smooth and coarse-grid correction are at the heart of

one of the fastest iteration strategies, known as multigrid.



Multigrid:

• Solve Aek = rk approximately on a coarse grid and set

˜uk = uk +

˜ek.

• Approximation strategy is similar to least squares. Let

˜ek = V ec, and

AV ec ⇡ r,

where V is an n⇥ nc matrix with nc ⇡ n/2.

• Typically, columns of V interpolate coarse point values to their mid-

points.

• Most common approach (for A SPD) is to require ec to solve

V T
[AV ec � r] = 0

=) ˜ek = V
�
V TAV

��1
V T r = V

�
V TAV

��1
V T A ek.

• For A SPD,

˜ek is the A-orthogonal projection of ek onto R(V ).



An example of V for n = 5 and nc=2 is

V =

2

66664

1
2
1

1
2

1
2
1

1
2

3

77775 +

+ + +

+

i = 0 1 2 3 4 5 n
x

+ 1

Coarse-to-fine interpolation

poisson_mg.m demo 



Example:  Damped Jacobi (Richardson) Iteration 

Solution after 
1 iteration 

 
 
 
 
 
 
 

Solution after 
5 itierations 

Error after 1 
iteration 
 
 
 
 
 
 
 
Error after 5 
itierations 



Multigrid Summary – Main Ideas 

Solution after 
5 iterations 

Error after 5 
iterations 

Multigrid Summary – Main Ideas:

• Take a few damped-Jacobi steps (smoothing the error), to get uk.

• Approximate this smooth error, ek := u � uk, on a coarser grid.

• Exact error satisfies

Aek = Au � Auk = f � Au =: rk.

• Let ef := V ec be the interpolant of ec, the coarse-grid approximation to ek.

• ef is closest element in R(V ) to ek (in the A-norm), given by the projection:

ef = V
�
V TAV

��1
V TAek = V

�
Ac)

�1
�
V T

rk.

• Update uk with the coarse-grid correction: uk  � uk + ef .

• Smooth again and repeat.



Example:  Two-Level Multigrid   

Solution after 
1 iteration 

 
 
 
 
 

Solution after 
5 itierations 

Error after 1 
iteration 
 
 
 
 
 
Error after 5 
itierations 



Example:  Two-Level Multigrid   

Solution after 
1 iteration 

 
 
 
 
 

Iteration  
History 

Error after 1 
iteration 
 
 
 
 
 
Error after 5 
itierations 



Multigrid Comments 

❑  Smoothing can be improved using under-relaxation ( ¾ = 2/3 is optimal for 1D case). 
❑  Basically – want more of the high-end error spectrum to be damped. 

❑  We’ve described in the previous slides two-level multigrid. 

❑  System in Ac is less expensive to solve, but is typically best solved by repeating the 
smooth/coarse-grid correct pair on yet another level down. 

❑  Can recur until nc ~ 1, at which point system is easy to solve. 

❑  Typical MG complexity is O(n) or O(n log n), with very good constants in higher 
space dimensions  (Nc = N/2 à nc = n/8 in 3D). 

❑  For high aspect-ratio cells, variable coefficients, etc., smoothing and coarsening 
strategies require more care, so this continues to be an active research area. 



A Two-Level Multigrid Algorithm:

Solve Ax = r0, starting with x0 = 0.

for j = 1 : n
smooth

sj = �S�1
rj�1

xj = xj�1 + sj

rj = b � Axj = rj�1 � Asj
end

˜

rc = V T
rj

˜

ec = A�1
c ˜

rc, Ac := V TAV

ef = V ˜

ec = V A�1
c V T

rj, = V A�1
c V TAej

xc = xj + ef (coarse-grid correction)

Return to smoothing step or return xc.

• Produces a polynomial in AS�1
and PV := V A�1

c V T
.

• Does not produce the best-fit (i.e., projection) in {sj}
S
{ef}.

• Best fit can be realized by coupling multigrid with GMRES or

conjugate gradient iteration.

• This is known as preconditioned GMRES or CG or,

multigrid-preconditioned GMRES or CG.

• These are state-of-the-art methods as they are fast and robust.



Recall GMRES/CG Projection for Ax = b:

Solve Ax = b starting with x

0

= 0 and r

0

:= b.

for k = 1 : k
max

pk = rk�1

�
k�1X

j=1

�jpj such that p

T
kApj = 0

wk = Apk

↵k =

p

T
kAek

p

T
kApk

=

p

T
k rk

p

T
kwk

xk = xk + ↵kpk

rk = rk � ↵kwk

end

• CG: Produces best-fit in Kk(A,b) in the || · ||A norm, assuming A is SPD.

• CG: Short-term recurrence in computation of pk (�j = 0 if j < k � 1).

• GMRES: If A not SPD, used ↵k = (w

T
k rk)/(w

T
kwk) to get best fit in ATA norm,

and insist that (w

T
kwj) = 0.

• GMRES: No short term recurrence.

• (Both algorithms have more standard formulations, which should be used.)



Preconditioned GMRES/CG Projection for Ax = b:

Solve Ax = b starting with x

0

= 0 and r

0

:= b.

for k = 1 : k
max

Solve Mzk = rk�1

Precondtioning step.

pk = rk �
k�1X

j=1

�jpj such that p

T
kApj = 0

wk = Apk

↵k =

p

T
kAek

p

T
kApk

=

p

T
k rk

p

T
kwk

xk = xk + ↵kpk

rk = rk � ↵kwk

end

• Produces best-fit in Kk(M�1A,M�1

b).

• For CG, M must be SPD to get short-term recurrence in pk step.

• To solve the Mz = r step, can use, for example, multigrid.







Stability Region for Euler’s Method 

 |                 | 
-2              -1 

Stable 

Unstable 

Region where

|1 + �h| < 1.

1



Growth Factors for Real  ̧

¸¢t ¸¢t ¸¢t 

G 

❑  Each growth factor approximates  e¸¢t  for ¸¢t à 0 

❑  For EF, |G| is not bounded by 1 

❑  For Trapezoidal Rule, local (small¸¢t) approximation is O(¸¢t2), but     
|G| à -1 as  ¸¢t à -1 .   [ Trapezoid method is not L-stable. ] 

❑  BDF2 will give 2nd-order accuracy, stability, and |G|à0 as ¸¢t à -1 . 

e¸¢t 

G 


