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Scientific Computing

What is scientific computing?
Design and analysis of algorithms for numerically solving
mathematical problems in science and engineering
Traditionally called numerical analysis

Distinguishing features of scientific computing
Deals with continuous quantities
Considers effects of approximations

Why scientific computing?

Simulation of natural phenomena
Virtual prototyping of engineering designs
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Example:  Numerical Integration with Trapezoid Rule 

❑  Evaluate f(x) at n+1 points, xj = a+jh,   h:=(b-a)/n 
❑  Sum the areas under the n trapezoidal panels; denote result as Tn. 

❑  Q:  How large must n be for “suitably small” error, En ? 
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Example:  Numerical Integration Using Trapezoid Rule 

❑  For f(x)=sin(¼ x), we see that the error scales like 1/n2. 

❑  This is generally the expected behavior for the trapezoid rule, but not 
always.  
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Example:  Numerical Integration Using Trapezoid Rule 

❑  For f(x)=sin(¼ x), we see that the error scales like 1/n2 

❑  For f(x) = ecos ¼x, the error scales like e-cn, for some positive constant, c. 



Example:  Convective Transport 

❑  Examples: 
❑  Ocean currents: 

❑  Pollution 
❑  Saline 
❑  Thermal transport 

❑  Atmosphere 
❑  Climate 
❑  Weather 

❑  Industrial processes 
❑  Combustion 

❑  Automotive engines 
❑  Gas turbines 

❑  Problem Characteristics: 
❑  Large (sparse) linear systems 

❑  millions to billions of degrees of 
freedom 

❑  Demands 
❑  Speed 
❑  Accuracy 
❑  Stability (ease of use) 

Example: Convective Transport

@u

@t

= �c

@u(x, t)

@x

+

⇢
� initial conditions

� boundary conditions

(See Fig. 11.1 in text.)

<example: convect demo>



Example:  Convective Transport Example: Convective Transport

@u

@t

= �c

@u(x, t)

@x

+

⇢
� initial conditions

� boundary conditions

(See Fig. 11.1 in text.)

<example: convect demo>



Characteristics of Numerical Computations 

❑  NOTES: 
❑  Trust, but verify ! 
❑  If initial problem is ill-posed, it may be 

possible to reformulate to an easier 
problem to solve. 

 

• Problem (given):

- Easy (well-posed)

- Hard (ill-posed)

• Method:

- Good (stable & accurate)

- Bad (unstable or inaccurate)

• Outcome:

- Good

- Garbage

- Partially Garbage
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Well-Posed Problems

Problem is well-posed if solution
exists
is unique
depends continuously on problem data

Otherwise, problem is ill-posed

Even if problem is well posed, solution may still be
sensitive to input data

Computational algorithm should not make sensitivity worse
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General Strategy

Replace difficult problem by easier one having same or
closely related solution

infinite ! finite
differential ! algebraic
nonlinear ! linear
complicated ! simple

Solution obtained may only approximate that of original
problem
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Sources of Approximation

Before computation
modeling
empirical measurements
previous computations

During computation
truncation or discretization
rounding

Accuracy of final result reflects all these

Uncertainty in input may be amplified by problem

Perturbations during computation may be amplified by
algorithm
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Example: Approximations

Computing surface area of Earth using formula A = 4⇡r2

involves several approximations

Earth is modeled as sphere, idealizing its true shape

Value for radius is based on empirical measurements and
previous computations

Value for ⇡ requires truncating infinite process

Values for input data and results of arithmetic operations
are rounded in computer
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Absolute Error and Relative Error

Absolute error : approximate value � true value

Relative error :
absolute error

true value

Equivalently, approx value = (true value) ⇥ (1 + rel error)

True value usually unknown, so we estimate or bound

error rather than compute it exactly

Relative error often taken relative to approximate value,
rather than (unknown) true value
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Data Error and Computational Error

Typical problem: compute value of function f : R ! R for
given argument

x = true value of input
f(x) = desired result
x̂ = approximate (inexact) input
f̂ = approximate function actually computed

Total error: f̂(x̂)� f(x) =

f̂(x̂)� f(x̂) + f(x̂)� f(x)

computational error + propagated data error

Algorithm has no effect on propagated data error
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Taylor Series (Very important for SciComp!)

• If f
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with the net result that the Taylor series converges as h �! 0 for m and

x fixed.



Taylor Series

• Basically, assuming that f

0
(x) 6= 0, this implies that f(x) looks like a

line as you zoom in near x.

• Moreover, we can use this result to derive approximations to derivatives

of f(x).

• Take m = 2:

f(x+ h) � f(x)
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• Take m = 2:

f(x+ h) � f(x)

h| {z }
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truncation error

• Truncation error: |h2f
00(⇠)| ⇡ |h2f

00(x)| as h �! 0.

• Q: Suppose |f 00(x)| ⇡ 1.

Can we take h = 10�30 and expect
����
f(x+ h) � f(x)

h

� f
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����  10�30

2 ?

• A: Only if we can compute every term in finite-di↵erence formula
(our algorithm) with su�cient accuracy.



• Take m = 2:

f(x+ h) � f(x)

h| {z }
computable

= f

0(x)| {z }
desired result

+
h

2
f

00(⇠)
| {z }

truncation error

• Truncation error: |h2f
00(⇠)| ⇡ |h2f

00(x)| as h �! 0.

• Q: Suppose |f 00(x)| ⇡ 1.

Can we take h = 10�30 and expect
����
f(x+ h) � f(x)

h

� f

0(x)

����  10�30

2 ?

• A: Only if we can compute every term in finite-di↵erence formula
(our algorithm) with su�cient accuracy.



Scientific Computing
Approximations

Computer Arithmetic

Sources of Approximation
Error Analysis
Sensitivity and Conditioning

Example: Finite Difference Approximation
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Example: Finite Difference Approximation

Error in finite difference approximation

f

0(x) ⇡ f(x+ h)� f(x)

h

exhibits tradeoff between rounding error and truncation
error

Truncation error bounded by Mh/2, where M bounds
|f 00(t)| for t near x

Rounding error bounded by 2✏/h, where error in function
values bounded by ✏

Total error minimized when h ⇡ 2
p
✏/M

Error increases for smaller h because of rounding error
and increases for larger h because of truncation error
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Round-Off Error 

❑  In general, round-off error will prevent us from representing f(x) 
and f(x+h) with sufficient accuracy to reach machine precision. 

❑  Round-off is a principal concern in scientific computing.     
(Though once you’re aware of it, you generally know how to avoid 
it as an issue.) 

❑  Round-off results from having finite-precision arithmetic and finite-
precision storage in the computer.   (e.g., how would you ever 
store ¼ in a computer?) 

❑  Most scientific computing is done either with 32-bit or 64-bit 
arithmetic, which 64-bit being predominant. 

     (Machine Learning is moving towards 16-bit precision…) 
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Forward and Backward Error

Suppose we want to compute y = f(x), where f : R ! R,
but obtain approximate value ŷ

Forward error : �y = ŷ � y

Backward error : �x = x̂� x, where f(x̂) = ŷ

Michael T. Heath Scientific Computing 13 / 46



Scientific Computing
Approximations

Computer Arithmetic

Sources of Approximation
Error Analysis
Sensitivity and Conditioning

Example: Forward and Backward Error

As approximation to y =
p
2, ŷ = 1.4 has absolute forward

error

|�y| = |ŷ � y| = |1.4� 1.41421 . . . | ⇡ 0.0142

or relative forward error of about 1 percent

Since
p
1.96 = 1.4, absolute backward error is

|�x| = |x̂� x| = |1.96� 2| = 0.04

or relative backward error of 2 percent
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Backward Error Analysis

Idea: approximate solution is exact solution to modified
problem

How much must original problem change to give result
actually obtained?

How much data error in input would explain all error in
computed result?

Approximate solution is good if it is exact solution to nearby

problem

Backward error is often easier to estimate than forward
error
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Example: Backward Error Analysis

Approximating cosine function f(x) = cos(x) by truncating
Taylor series after two terms gives

ŷ = f̂(x) = 1� x

2
/2

Forward error is given by

�y = ŷ � y = f̂(x)� f(x) = 1� x

2
/2� cos(x)

To determine backward error, need value x̂ such that
f(x̂) = f̂(x)

For cosine function, x̂ = arccos(f̂(x)) = arccos(ŷ)
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Example, continued

For x = 1,

y = f(1) = cos(1) ⇡ 0.5403

ŷ = f̂(1) = 1� 12/2 = 0.5

x̂ = arccos(ŷ) = arccos(0.5) ⇡ 1.0472

Forward error: �y = ŷ � y ⇡ 0.5� 0.5403 = �0.0403

Backward error: �x = x̂� x ⇡ 1.0472� 1 = 0.0472
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Sensitivity and Conditioning

Problem is insensitive, or well-conditioned, if relative
change in input causes similar relative change in solution

Problem is sensitive, or ill-conditioned, if relative change in
solution can be much larger than that in input data

Condition number :

cond =
|relative change in solution|
|relative change in input data|

=
|[f(x̂)� f(x)]/f(x)|

|(x̂� x)/x| =
|�y/y|
|�x/x|

Problem is sensitive, or ill-conditioned, if cond � 1
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Note About Condition Number 

❑  It’s tempting to say that a large condition number indicates that a 
small change in the input implies a large change in the output. 

❑  However, to be dimensionally correct, we need to be more precise. 

❑  A large condition number indicates that a small relative change in 
input implies a large relative change in the output: 
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Condition Number

Condition number is amplification factor relating relative
forward error to relative backward error

����
relative

forward error

���� = cond ⇥
����

relative
backward error

����

Condition number usually is not known exactly and may
vary with input, so rough estimate or upper bound is used
for cond, yielding

����
relative

forward error

���� / cond ⇥
����

relative
backward error

����
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Example: Evaluating Function

Evaluating function f for approximate input x̂ = x+�x

instead of true input x gives

Absolute forward error: f(x+�x)� f(x) ⇡ f

0(x)�x

Relative forward error:
f(x+�x)� f(x)

f(x)
⇡ f

0(x)�x

f(x)

Condition number: cond ⇡
����
f

0(x)�x/f(x)

�x/x

���� =
����
xf

0(x)

f(x)

����

Relative error in function value can be much larger or
smaller than that in input, depending on particular f and x
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Example: Sensitivity

Tangent function is sensitive for arguments near ⇡/2
tan(1.57079) ⇡ 1.58058⇥ 105

tan(1.57078) ⇡ 6.12490⇥ 104

Relative change in output is quarter million times greater
than relative change in input

For x = 1.57079, cond ⇡ 2.48275⇥ 105
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Condition Number Examples 

Using the formula, cond =

����
x f

0
(x)

f(x)

���� , what is

the condition number of the following?

f(x) = a x

f(x) =

a

x

f(x) = a+ x

❑  Q:  In our finite difference example, where did things go wrong? 

 



Condition Number Examples 

cond =

����
x f 0(x)

f(x)

���� ,

For f(x) = ax, f 0 = a, cond =
��x a
ax

�� = 1.

For f(x) =
a

x
, f 0 = �ax�2, cond =

����
(�a

x

2 )x
a

x

���� = 1.

For f(x) = a+ x, f 0 = 1, cond =
�� x·1
a+x

�� = |x|
|a+x| .

• The condition number for (a+ x) is <1 if a and x are of the same sign,
but it is >1 if they are of opposite sign, and potentially � 1 if they are
of opposite sign but close in magnitude.

• Subtraction of two positive (or negative) values of nearly the same
magnitude is ill-conditioned.

• Multiplication and division are benign.

• Addition of two positive (or negative) values is also OK.

• In our finite di↵erence example, the culprit is the subtraction, more
than the division by a small number.

x̂ = x+�x

For IEEE double-precision

p = 53 ✏mach = 2�p = 2�53 ⇡ 10�16

L = �1022 UFL = 2L = 2�1022 ⇡ 10�308

U = 1023 OFL ⇡ 2U = 21023 ⇡ 10308

Q: How many atoms in the Universe?



Condition Number Examples 

cond =

����
x f

0(x)

f(x)

���� ,

For f(x) = ax, f 0 = a, cond =
��x a
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�� = 1.

For f(x) =
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2
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x

��� = 1.

For f(x) = a+ x, f 0 = 1, cond =
�� x·1
a+x

�� = 1
|a+x| .

• The condition number for (a+ x) is <1 if a and x are of the same sign,
but it is >1 if they are of opposite sign, and potentially � 1 if the are
of opposite sign but close to the same magnitude.

• Subtraction of two positive (or negative) values of nearly the same
magnitude is ill-conditioned.

• Multiplication and division are benign.

• Addition of two positive (or negative) values is also OK.

• In our finite di↵erence example, the culprit is the subtraction, more
than the division by a small number.
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Stability

Algorithm is stable if result produced is relatively
insensitive to perturbations during computation

Stability of algorithms is analogous to conditioning of
problems

From point of view of backward error analysis, algorithm is
stable if result produced is exact solution to nearby
problem

For stable algorithm, effect of computational error is no
worse than effect of small data error in input
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Accuracy

Accuracy : closeness of computed solution to true solution
of problem

Stability alone does not guarantee accurate results

Accuracy depends on conditioning of problem as well as
stability of algorithm

Inaccuracy can result from applying stable algorithm to
ill-conditioned problem or unstable algorithm to
well-conditioned problem

Applying stable algorithm to well-conditioned problem
yields accurate solution
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Examples of Potentially Unstable Algorithms 

❑  Examples of potentially unstable algorithms include 
❑  Gaussian elimination without pivoting 

❑  Using the normal equations to solve linear least squares problems 

❑  High-order polynomial interpolation with unstable bases (e.g., 
uniformly distributed sample points or monomials) 



Unavoidable Source of Noise in the Input 

❑  Numbers in the computer are represented in finite precision. 

❑  Therefore, unless our set of input numbers, x, are perfectly 
representable in the given mantissa, we already have an 
error, ¢x, and our actual input is thus 

   

❑  The next topic discusses the set of representable numbers. 

❑  We’ll primarily be concerned with two things – 
❑  the relative precision,  
❑  the maximum absolute value representable. 

cond =

����
x f

0(x)

f(x)

���� ,

For f(x) = ax, f 0 = a, cond =
��x a
ax

�� = 1.

For f(x) =
a

x

, f 0 = �ax

�2, cond =
���x

�a

x

2
a

x

��� = 1.

For f(x) = a+ x, f 0 = 1, cond =
�� x·1
a+x

�� = 1
|a+x| .

• The condition number for (a+ x) is <1 if a and x are of the same sign,
but it is >1 if they are of opposite sign, and potentially � 1 if the are
of opposite sign but close to the same magnitude.

• Subtraction of two positive (or negative) values of nearly the same
magnitude is ill-conditioned.

• Multiplication and division are benign.

• Addition of two positive (or negative) values is also OK.

• In our finite di↵erence example, the culprit is the subtraction, more
than the division by a small number.

x̂ = x+�x



Relative Precision Example 

Let’s look at the highlighted entry from the preceding slide.

x = 3141592653589793238462643383279502884197169399375105820974944.9230781... = ⇡ ⇥ 1060

x̂ = 3141592653589793000000000000000000000000000000000000000000000.0000000... ⇡ ⇡ ⇥ 1060

x� x̂ = 238462643383279502884197169399375105820974944.9230781... = 2.3846...⇥ 1044

⇡ .7590501687441757⇥ 10�16 ⇥ x

< 1.110223024625157e� 16 ⇥ x

⇡ ✏mach ⇥ x.

• The di↵erence between x := ⇡ ⇥ 10

60
and x̂ := fl(⇡ ⇥ 10

60
) is large:

x� x̂ ⇡ 2.4⇥ 10

44
.

• The relative error, however, is

x� x̂

x

⇡ 2.4⇥ 10

44

⇡ ⇥ 10

60
⇡ 0.8⇥ 10

�16
< ✏

mach
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Floating-Point Numbers

Floating-point number system is characterized by four
integers

� base or radix
p precision
[L,U ] exponent range

Number x is represented as

x = ±
✓
d0 +

d1

�

+
d2

�

2
+ · · ·+ d

p�1

�

p�1

◆
�

E

where 0  d

i

 � � 1, i = 0, . . . , p� 1, and L  E  U

Michael T. Heath Scientific Computing 24 / 46



Scientific Computing
Approximations

Computer Arithmetic

Floating-Point Numbers
Floating-Point Arithmetic

Floating-Point Numbers, continued

Portions of floating-poing number designated as follows
exponent : E
mantissa : d0d1 · · · dp�1

fraction : d1d2 · · · dp�1

Sign, exponent, and mantissa are stored in separate
fixed-width fields of each floating-point word
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Typical Floating-Point Systems

Parameters for typical floating-point systems
system � p L U

IEEE SP 2 24 �126 127
IEEE DP 2 53 �1022 1023
Cray 2 48 �16383 16384
HP calculator 10 12 �499 499
IBM mainframe 16 6 �64 63

Most modern computers use binary (� = 2) arithmetic

IEEE floating-point systems are now almost universal in
digital computers
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Normalization

Floating-point system is normalized if leading digit d0 is
always nonzero unless number represented is zero

In normalized systems, mantissa m of nonzero
floating-point number always satisfies 1  m < �

Reasons for normalization
representation of each number unique
no digits wasted on leading zeros
leading bit need not be stored (in binary system)

Michael T. Heath Scientific Computing 27 / 46
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Binary Representation of ⇡

• In 64-bit floating point,

⇡ ⇡ 1.1001001000011111101101010100010001000010110100011⇥ 2

1

• In reality,

⇡ = 1.10010010000111111011010101000100010000101101000110000100011010 · · ·⇥ 2

1

• They will (potentially) di↵er in the 53rd bit...

⇡ = 0.00000000000000000000000000000000000000000000000000000100011010 · · ·⇥ 2

1

In this case, we get lucky and we have more than 53 bits 
correct because of the trail of 0 bits after the 53rd… 
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Properties of Floating-Point Systems

Floating-point number system is finite and discrete

Total number of normalized floating-point numbers is

2(� � 1)�p�1(U � L+ 1) + 1

Smallest positive normalized number: UFL = �

L

Largest floating-point number: OFL = �

U+1(1� �

�p)

Floating-point numbers equally spaced only between
successive powers of �

Not all real numbers exactly representable; those that are
are called machine numbers
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Example: Floating-Point System

Tick marks indicate all 25 numbers in floating-point system
having � = 2, p = 3, L = �1, and U = 1

OFL = (1.11)2 ⇥ 21 = (3.5)10

UFL = (1.00)2 ⇥ 2�1 = (0.5)10

At sufficiently high magnification, all normalized
floating-point systems look grainy and unequally spaced

< interactive example >
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Rounding Rules

If real number x is not exactly representable, then it is
approximated by “nearby” floating-point number fl(x)

This process is called rounding, and error introduced is
called rounding error

Two commonly used rounding rules
chop : truncate base-� expansion of x after (p� 1)st digit;
also called round toward zero

round to nearest : fl(x) is nearest floating-point number to
x, using floating-point number whose last stored digit is
even in case of tie; also called round to even

Round to nearest is most accurate, and is default rounding
rule in IEEE systems

< interactive example >
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Machine Precision

Accuracy of floating-point system characterized by unit

roundoff (or machine precision or machine epsilon)
denoted by ✏mach

With rounding by chopping, ✏mach = �

1�p

With rounding to nearest, ✏mach = 1
2�

1�p

Alternative definition is smallest number ✏ such that
fl(1 + ✏) > 1

Maximum relative error in representing real number x
within range of floating-point system is given by

����
fl(x)� x

x

����  ✏mach
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Rounded Numbers in Floating Point Representation 

❑  The relationship on the preceding slide, 

     can be conveniently thought of as: 
 

❑  The nice thing is the expression above has an equality, which is 
easier to work with. 

fl(x) = x (1 + ✏

x

)

|✏
x

|  ✏mach
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Machine Precision, continued

For toy system illustrated earlier
✏mach = (0.01)2 = (0.25)10 with rounding by chopping
✏mach = (0.001)2 = (0.125)10 with rounding to nearest

For IEEE floating-point systems
✏mach = 2�24 ⇡ 10�7 in single precision
✏mach = 2�53 ⇡ 10�16 in double precision

So IEEE single and double precision systems have about 7
and 16 decimal digits of precision, respectively
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Advantage of Floating Point 

❑  By sacrificing a few bits to the exponent, floating point allows us 
to represent a huge range of numbers…. 

❑  All numbers have same relative precision. 
❑  The numbers are not uniformly spaced. 

❑  Many more between 0 and 10 than between 10 and 100! 



Relative Precision Example 

Let’s look at the highlighted entry from the preceding slide.

x = 3141592653589793238462643383279502884197169399375105820974944.9230781... = ⇡ ⇥ 1060

x̂ = 3141592653589793000000000000000000000000000000000000000000000.0000000... ⇡ ⇡ ⇥ 1060

x� x̂ = 238462643383279502884197169399375105820974944.9230781... = 2.3846...⇥ 1044

⇡ .7590501687441757⇥ 10�16 ⇥ x

< 1.110223024625157e� 16 ⇥ x

⇡ ✏mach ⇥ x.

• The di↵erence between x := ⇡ ⇥ 10

60
and x̂ := fl(⇡ ⇥ 10

60
) is large:

x� x̂ ⇡ 2.4⇥ 10

44
.

• The relative error, however, is

x� x̂

x

⇡ 2.4⇥ 10

44

⇡ ⇥ 10

60
⇡ 0.8⇥ 10

�16
< ✏

mach
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Machine Precision, continued

Though both are “small,” unit roundoff ✏mach should not be
confused with underflow level UFL

Unit roundoff ✏mach is determined by number of digits in
mantissa of floating-point system, whereas underflow level
UFL is determined by number of digits in exponent field

In all practical floating-point systems,

0 < UFL < ✏mach < OFL
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Summary of Ranges for IEEE Double Precision 

p = 53 ✏mach = 2�p = 2�53 ⇡ 10�16

L = �1022 UFL = 2L = 2�1022 ⇡ 10�308

U = 1023 OFL ⇡ 2U = 21023 ⇡ 10308

Q: How many atoms in the Universe?

p = 53 ✏mach = 2�p = 2�53 ⇡ 10�16

L = �1022 UFL = 2L = 2�1022 ⇡ 10�308

U = 1023 OFL ⇡ 2U = 21023 ⇡ 10308

Q: How many atoms in the Universe?
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Subnormals and Gradual Underflow

Normalization causes gap around zero in floating-point
system

If leading digits are allowed to be zero, but only when
exponent is at its minimum value, then gap is “filled in” by
additional subnormal or denormalized floating-point
numbers

Subnormals extend range of magnitudes representable,
but have less precision than normalized numbers, and unit
roundoff is no smaller

Augmented system exhibits gradual underflow
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Denormalizing:  normal(ized) and subnormal numbers 

❑  With normalization, the smallest (positive) number you can represent is: 

❑  UFL = 1.00000… x 2L = 1. x 2-1022 ~= 10-308 

❑  With subnormal numbers you can represent: 
❑  x = 0.00000…01 x 2L = 1. x 2-1022-53 ~= 10-324 

 
❑  Q:  Would you want to denormalize?? 

❑  Cost:   Often, subnormal arithmetic handled in software – slooooow. 
❑  Number of atoms in universe:  ~ 1080  

❑  Probably, UFL is small enough. 

❑  Similarly, for IEEE DP, OFL ~ 10308 >> number of atoms in universe. 
 à Overflow will never be an issue (unless your solution goes unstable). 
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Exceptional Values

IEEE floating-point standard provides special values to
indicate two exceptional situations

Inf, which stands for “infinity,” results from dividing a finite
number by zero, such as 1/0

NaN, which stands for “not a number,” results from
undefined or indeterminate operations such as 0/0, 0 ⇤ Inf,
or Inf/Inf

Inf and NaN are implemented in IEEE arithmetic through
special reserved values of exponent field
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Floating-Point Arithmetic

Addition or subtraction : Shifting of mantissa to make
exponents match may cause loss of some digits of smaller
number, possibly all of them

Multiplication : Product of two p-digit mantissas contains up
to 2p digits, so result may not be representable

Division : Quotient of two p-digit mantissas may contain
more than p digits, such as nonterminating binary
expansion of 1/10

Result of floating-point arithmetic operation may differ from
result of corresponding real arithmetic operation on same
operands
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Example: Floating-Point Arithmetic

Assume � = 10, p = 6

Let x = 1.92403⇥ 102, y = 6.35782⇥ 10�1

Floating-point addition gives x+ y = 1.93039⇥ 102,
assuming rounding to nearest

Last two digits of y do not affect result, and with even
smaller exponent, y could have had no effect on result

Floating-point multiplication gives x ⇤ y = 1.22326⇥ 102,
which discards half of digits of true product
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Floating-Point Arithmetic, continued

Real result may also fail to be representable because its
exponent is beyond available range

Overflow is usually more serious than underflow because
there is no good approximation to arbitrarily large
magnitudes in floating-point system, whereas zero is often
reasonable approximation for arbitrarily small magnitudes

On many computer systems overflow is fatal, but an
underflow may be silently set to zero
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Example: Summing Series

Infinite series
1X

n=1

1

n

has finite sum in floating-point arithmetic even though real
series is divergent
Possible explanations

Partial sum eventually overflows
1/n eventually underflows
Partial sum ceases to change once 1/n becomes negligible
relative to partial sum

1

n

< ✏mach

n�1X

k=1

1

k

< interactive example >
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Q:  How long would it take to realize failure? 
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Floating-Point Arithmetic, continued

Ideally, x flop y = fl(x op y), i.e., floating-point arithmetic
operations produce correctly rounded results

Computers satisfying IEEE floating-point standard achieve
this ideal as long as x op y is within range of floating-point
system

But some familiar laws of real arithmetic are not
necessarily valid in floating-point system

Floating-point addition and multiplication are commutative
but not associative

Example: if ✏ is positive floating-point number slightly
smaller than ✏mach, then (1 + ✏) + ✏ = 1, but 1 + (✏+ ✏) > 1
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Standard Model for Floating Point Arithmetic 
• Ideally, x flop y = fl(x op y), with op = +, -, / , *.

• This standard met by IEEE.

• Analysis is streamlined using the Standard Model:

fl(x op y) = (x op y)(1 + �), |�|  ✏

mach

,

which is more conveniently analyzed by backward error analysis.

• For example, with op = +,

fl(x+ y) = (x+ y)(1 + �) = x(1 + �) + y(1 + �).

• With this type of analysis, we can examine, say, floating-point multiplication.

x(1 + �

x

) · y(1 + �

y

) = x · y(1 + �

x

+ �

y

+ �

x

· �
y

) ⇡ x · y(1 + �

x

+ �

y

),

which says that our relative error in multiplication is approximately (�

x

+ �

y

).
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Cancellation

Subtraction between two p-digit numbers having same sign
and similar magnitudes yields result with fewer than p

digits, so it is usually exactly representable

Reason is that leading digits of two numbers cancel (i.e.,
their difference is zero)

For example,

1.92403⇥ 102 � 1.92275⇥ 102 = 1.28000⇥ 10�1

which is correct, and exactly representable, but has only
three significant digits
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Cancellation, continued

Despite exactness of result, cancellation often implies
serious loss of information

Operands are often uncertain due to rounding or other
previous errors, so relative uncertainty in difference may be
large

Example: if ✏ is positive floating-point number slightly
smaller than ✏mach, then (1 + ✏)� (1� ✏) = 1� 1 = 0 in
floating-point arithmetic, which is correct for actual
operands of final subtraction, but true result of overall
computation, 2✏, has been completely lost

Subtraction itself is not at fault: it merely signals loss of
information that had already occurred
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Cancellation Example 

❑  Cancellation leads to promotion of garbage into “significant” digits 

x = 1 . 0 1 1 0 0 1 0 1 b b g g g g e

y = 1 . 0 1 1 0 0 1 0 1 b

0
b

0
g g g g e

x� y = 0 . 0 0 0 0 0 0 0 0 b

00
b

00
g g g g e

= b

00 . b

00
g g g g ? ? ? ? ? ? ? ? ? e� 9
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Cancellation, continued

Despite exactness of result, cancellation often implies
serious loss of information

Operands are often uncertain due to rounding or other
previous errors, so relative uncertainty in difference may be
large

Example: if ✏ is positive floating-point number slightly
smaller than ✏mach, then (1 + ✏)� (1� ✏) = 1� 1 = 0 in
floating-point arithmetic, which is correct for actual
operands of final subtraction, but true result of overall
computation, 2✏, has been completely lost

Subtraction itself is not at fault: it merely signals loss of
information that had already occurred
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•  Of the basic operations, + - * / , with arguments of the same sign, 
only subtraction has cond. number significantly different from 
unity.   Division, multiplication, addition (same sign) are OK. 
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Cancellation, continued

Digits lost to cancellation are most significant, leading

digits, whereas digits lost in rounding are least significant,
trailing digits

Because of this effect, it is generally bad idea to compute
any small quantity as difference of large quantities, since
rounding error is likely to dominate result

For example, summing alternating series, such as

e

x = 1 + x+
x

2

2!
+

x

3

3!
+ · · ·

for x < 0, may give disastrous results due to catastrophic
cancellation
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Example: Cancellation

Total energy of helium atom is sum of kinetic and potential
energies, which are computed separately and have opposite
signs, so suffer cancellation

Year Kinetic Potential Total
1971 13.0 �14.0 �1.0
1977 12.76 �14.02 �1.26
1980 12.22 �14.35 �2.13
1985 12.28 �14.65 �2.37
1988 12.40 �14.84 �2.44

Although computed values for kinetic and potential energies
changed by only 6% or less, resulting estimate for total energy
changed by 144%
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Example: Quadratic Formula
Two solutions of quadratic equation ax

2 + bx+ c = 0 are
given by

x =
�b±

p
b

2 � 4ac

2a
Naive use of formula can suffer overflow, or underflow, or
severe cancellation
Rescaling coefficients avoids overflow or harmful underflow
Cancellation between �b and square root can be avoided
by computing one root using alternative formula

x =
2c

�b⌥
p
b

2 � 4ac

Cancellation inside square root cannot be easily avoided
without using higher precision

< interactive example >
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Example: Standard Deviation

Mean and standard deviation of sequence x

i

, i = 1, . . . , n,
are given by

x̄ =
1

n

nX

i=1

x

i

and � =

"
1

n� 1

nX

i=1

(x
i

� x̄)2

# 1
2

Mathematically equivalent formula

� =

"
1

n� 1

 
nX

i=1

x

2
i

� nx̄

2

!# 1
2

avoids making two passes through data
Single cancellation at end of one-pass formula is more
damaging numerically than all cancellations in two-pass
formula combined
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Finite Di↵erence Example

• What happens when we use first-order finite di↵erences to approximate f

0
(x).

fl

✓
�f

�x

◆
=

ˆ

f(x̂+

ˆ

h) � ˆ

f(x̂)

ˆ

h

=:

ˆ

f1 � ˆ

f0

ˆ

h

.

• We know that f(x) will be represented only to within relative tolerance of ✏

mach

.

ˆ

f1 = f(x̂+

ˆ

h)(1 + ✏1)

ˆ

f0 = f(x̂)(1 + ✏0)

with |✏0|  ✏

mach

and |✏1|  ✏

mach

.

• The other error terms are smaller in magnitude (i.e., higher powers in h and/or ✏

mach

),

and we have

fl

✓
�f

�x

◆
⇡ f1 � f0

h

+

f1✏1 � f0✏0

h

⇡ f1 � f0

h

+

✏1 � ✏0

h

f(x).

• The last term is bounded by

����
✏1 � ✏0

h

f(x)

����  2

✏

mach

h

|f(x)|.

fdiff_demo.m 


