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Partial Di�erential Equations
I Partial di�erential equations (PDEs) describe physical laws and other

continuous phenomena:

I The advection PDE describes basic phenomena in fluid flow,

ut = −a(t, x)ux
where ut = ∂u/∂t and ux = ∂u/∂x.



Types of PDEs
I Some of the most important PDEs are second order:

I The discriminant determines the canonical form of second-order PDEs:

Demo: Time-dependent PDEs

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/11-sparse-matrices-pdes/Time-dependent PDEs.html


Characteristic Curves
I A characteristic of a PDE is a level curve in the solution:

I More generally, characteristic curves describe curves in the solution field
u(t, x) that correspond to solutions of ODEs, e.g. for ut = −a(t, x)ux with
u(0, x) = u0(x),



Method of Lines
I Semidiscrete methods obtain an approximation to the PDE by solving a

system of ODEs. Consider the heat equation,

ut = cuxx on 0 ≤ x ≤ 1, u(0, x) = f(x), u(t, 0) = u(t, 1) = 0.

I This method of lines often yields a sti� ODE:



Semidiscrete Collocation
I Instead of finite-di�erences, we can express u(t, x) in a spatial basis
φ1(x), . . . , φn(x) with time-dependent coe�cients α1(t), . . . , αn(t):

I For the heat equation ut = cuxx, we obtain a linear constant-coe�cient
vector ODE:



Fully Discrete Methods
I Generally, both time and space dimensions are discretized, either by

applying an ODE solver to a semidiscrete method or using finite di�erences.
I Again consider the heat equation ut = cuxx and discretize so u(k)i ≈ u(tk, xi),

I This iterative scheme corresponds to a 3-point stencil,



Implicit Fully Discrete Methods
I Using Euler’s method for the heat equation, stability requirement is

I This step-size restriction on stability can be circumvented by use of implicit
time-stepper, such as backward Euler,

I Using the trapezoid method to solve the ODE we obtain the second-order
Crank-Nicolson method,



Convergence and Stability

I Lax Equivalence Theorem: consistency + stability = convergence
I Consistency means that the local truncation error goes to zero, and is easy to

verify by Taylor expansions.
I Stability implies that the approximate solution at any time t must remain

bounded.
I Together these conditions are necessary and su�cient for convergence.

I Stability can be ascertained by spectral or Fourier analysis:
I In the method of lines, we saw that the eigenvalues of the resulting ODE define

the stability region.
I Fourier analysis decomposes the solution into a sum of harmonic functions and

bounds their amplitudes.



CFL Condition
I The domain of dependence of a PDE for a given point (t, x) is the portion of

the problem domain influencing this point through the PDE:

I The Courant, Friedrichs, and Lewy (CFL) condition states that for an explicit
finite-di�erencing scheme to be stable for a hyperbolic PDE, it is necessary
that the domain of the dependence of the PDE must be contained in the
domain of dependence of the scheme:



Time-Independent PDEs
I We now turn our focus to time-independent PDEs as exemplified by the

Helmholtz equation:
uxx + uyy + λu = f(x, y)

I We discretize as before, but no longer perform time stepping:



Finite-Di�erencing for Poisson
I Consider the Poisson equation with equispaced mesh-points on [0, 1]:



Multidimensional Finite Elements
I There are many ways to define localized basis functions, for example in the

2D FEM method2:

2Source: Comsol Multiphysics Cyclopedia https://www.comsol.com/multiphysics/finite-element-method

https://www.comsol.com/multiphysics/finite-element-method


Sparse Linear Systems
I Finite-di�erence and finite-element methods for time-independent PDEs give

rise to sparse linear systems:
I typified by the 2D Laplace equation, where for both finite di�erences and FEM,

I Direct methods apply LU or other factorization to A, while iterative methods
refine x by minimizing r = Ax− b, e.g. via Krylov subspace methods.



Direct Methods for Sparse Linear Systems
I It helps to think of A as the adjacency matrix of graph G = (V,E) where
V = {1, . . . n} and aij 6= 0 if and only if (i, j) ∈ E:

I Factorizing the lth row/column in Gaussian elimination corresponds to
removing node i, with nonzeros (new edges) introduces for each k, l such
that (i, k) and (i, l) are in the graph.



Vertex Orderings for Direct Methods
I Select the node of minimum degree at each step of factorization:

I Graph partitioning also serves to bound fill, remove vertex separator S ⊂ V
so that V \ S = V1 ∪ · · · ∪ Vk become disconnected, then order V1, . . . , Vk, S:

I Nested dissection ordering partitions graph into halves recursively, ordering
each separator last.

Demo: Sparse Matrix Factorizations and Fill-In

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/11-sparse-matrices-pdes/Sparse Matrix Factorizations and Fill-In.html


Sparse Iterative Methods

I Sparse iterative methods avoid overhead of fill in sparse direct factorization.
Matrix splitting methods provide the most basic iterative methods:



Sparse Iterative Methods
I The Jacobi method is the simplest iterative solver:

I The Jacobi method converges if A is strictly row-diagonally-dominant:



Gauss-Seidel Method
I The Jacobi method takes weighted sums of x(k) to produce each entry of

x(k+1), while Gauss-Seidel uses the latest available values, i.e. to compute
x
(k+1)
i it uses a weighted sum of

x
(k+1)
1 , . . . x

(k+1)
i−1 , x

(k)
i , . . . , x(k)n .

I Gauss-Seidel provides somewhat better convergence than Jacobi:



Successive Over-Relaxation
I The successive over-relaxation (SOR) method seeks to improve the spectral

radius achieved by Gauss-Seidel, by choosing

M =
1

ω
D +L, N =

( 1

ω
− 1

)
D −U

I The parameter ω in SOR controls the ‘step-size’ of the iterative method:

Demo: Stationary Iterative Methods

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/11-sparse-matrices-pdes/Stationary Iterative Methods.html


Conjugate Gradient
I The solution to Ax = b when A is symmetric positive definite is the minima

of the quadratic optimization problem,

min
x

xTAx− xTb

I Conjugate gradient works by picking A-orthogonal descent directions

I The convergence rate of CG is linear with coe�cient
√
κ(A)−1√
κ(A)+1

:

Demo: Jacobi vs Conjugate Gradient

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/11-sparse-matrices-pdes/Jacobi vs Conjugate Gradient.html


Preconditioning
I Preconditioning techniques choose matrix M ≈ A that is easy to invert and

solve a modified linear system with an equivalent solution to Ax = b,

M−1Ax = M−1b

I M is chosen to be an e�ective approximation to A with a simple structure:
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