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Eigenvalues and Eigenvectors
I A matrix A has eigenvector-eigenvalue pair (eigenpair) (λ,x) if

Ax = λx

I For any scalar α, αx is also an eigenvector of A with eigenvalue λ
I Generally, an eigenvalue λ is associated with an eigenspace X ⊆ Cn such that

each x ∈ X is an eigenvector of A with eigenvalue λ.
I The dimensionality of an eigenspace is at most the multiplicity of an eigenvalue

(when less, matrix is defective, otherwise matrix is diagonalizable).
I Each n× n matrix has up to n eigenvalues, which are either real or complex

I The conjugate of any complex eigenvalue of a real matrix is also an eigenvalue.
I The dimensionalities of all the eigenspaces (multiplicity associated with each

eigenvalue) sum up to n for a diagonalizable matrix.
I If the matrix is real, real eigenvalues are associated with real eigenvectors, but

complex eigenvalues may not be.



Eigenvalue Decomposition
I If a matrix A is diagonalizable, it has an eigenvalue decomposition

A =XDX−1

where X are the right eigenvectors, X−1 are the left eigenvectors and D are
eigenvalues

AX =
[
Ax1 · · ·Axn

]
=XD =

[
d11x1 · · · dnnxn

]
.

I If A is symmetric, its right and left singular vectors are the same, and
consequently are its eigenvectors.

I More generally, any normal matrix, AHA = AAH , has unitary eigenvectors.
I A and B are similar, if there exist Z such that A = ZBZ−1

I Normal matrices are unitarily similar (Z−1 = ZH) to diagonal matrices
I Symmetric real matrices are orthogonally similar (Z−1 = ZT ) to real diagonal

matrices
I Hermitian matrices are unitarily similar to real diagonal matrices



Similarity of Matrices

matrix similarity reduced form
SPD orthogonal real positive diagonal

real symmetric orthogonal real tridiagonal
real diagonal

Hermitian unitary real diagonal
normal unitary diagonal

real orthogonal real Hessenberg
diagonalizable invertible diagonal

arbitrary unitary triangular
invertible bidiagonal



Canonical Forms
I Any matrix is similar to a bidiagonal matrix, giving its Jordan form:

A =X

J1 . . .
Jk

X−1, ∀i, Ji =


λi 1

. . . . . .
. . . 1

λi


the Jordan form is unique modulo ordering of the diagonal Jordan blocks.

I Any diagonalizable matrix is unitarily similar to a triangular matrix, giving its
Schur form:

A = QTQH

where T is upper-triangular, so the eigenvalues of A is the diagonal of T .
Columns of Q are the Schur vectors.



Eigenvectors from Schur Form
I Given the eigenvectors of one matrix, we seek those of a similar matrix:

Suppose that A = SBS−1 and B =XDX−1 where D is diagonal,
I The eigenvalues of A are {d11, . . . , dnn}
I A = SBS−1 = SXDX−1S−1 so SX are the eigenvectors of A

I Its easy to obtain eigenvectors of triangular matrix T :
I One eigenvector is simply the first elementary vector.
I The eigenvector associated with any diagonal entry (eigenvalue λ) may be

obtaining by observing that

0 = (T − λI)x =

U11 u T13

0 vT

U33

−U−111 u
1
0

 ,
so it su�ces to solve U11y = −u to obtain eigenvector x.

Activity: Calculating Eigenpairs of a Triangular Matrix

https://relate.cs.illinois.edu/course/cs450-f18/flow/inclass-tri-eig/start/


Rayleigh Quotient

I For any vector x, the Rayleigh quotient provides an estimate for some
eigenvalue of A:

ρA(x) =
xHAx

xHx
.

I If x is an eigenvector of A, then ρA(x) is the associated eigenvalue.
I Moreover, for y = Ax, the Rayleigh quotient is the best possible eigenvalue

estimate given x and y, as it is the solution to xα ∼= y.
I The normal equations for this scalar-output least squares problem are

xTxα = xTy ⇒ α =
xTy

xTx
=
xTAx

xTx
.



Perturbation Analysis of Eigenvalue Problems
I Suppose we seek eigenvalues D =X−1AX, but find those of a slightly

perturbed matrix D + δD = X̂−1(A+ δA)X̂:
Note that the eigenvalues of X−1(A+ δA)X =D +X−1δAX are also
D + δD. So if we have perturbation to the matrix ||δA||F , its e�ect on the
eigenvalues corresponds to a (non-diagonal/arbitrary) perturbation
δÂ =X−1δAX of a diagonal matrix of eigenvalues D , with norm

||δÂ||F ≤ ||X−1||2||δA||F ||X||2 = κ(X)||δA||F .

I Gershgorin’s theorem allows us to bound the e�ect of the perturbation on
the eigenvalues of a (diagonal) matrix:
Given a matrix A ∈ Rn×n, let ri =

∑
j 6=i |aij |, define the Gershgorin disks as

Di = {z ∈ C : |z − aii| ≤ ri}.

The eigenvalues λ1, . . . , λn of any matrix A ∈ Rn×n are contained in the union
of the Gershgorin disks, ∀i ∈ {1, . . . , n}, λi ∈

⋃n
j=1Dj .



Gershgorin Theorem Perturbation Visualization

I Top corresponds to Gershgorin disks on complex plane of 4-by-4 real matrix.
I Bottom part corresponds to bounds on Gershgorin disks of X−1(A+ δA)X,

which contain the eigenvalues D of A and the perturbed eigenvalues
D + δD of A+ δA provided that ||δA|| is su�ciently small.



Conditioning of Particular Eigenpairs
I Consider the e�ect of a matrix perturbation on an eigenvalue λ associated

with a right eigenvector x and a left eigenvector y, λ = yHAx/yHx

For a su�ciently small perturbation δA, the eigenvalue λ is perturbed to an
eigenvalue λ̂ of Â = A+ δA. The eigenvalue perturbation,

|λ̂− λ| = |yHδAx/yHx| ≤ ||δA||
|yHx|

,

is small if x is near-parallel to y and large if they are near-perpendicular.
I A more accurate eigenvalue approximation than Rayleigh quotient for a

normalized perturbed eigenvector (e.g. iterative guess) x̂ = x+ δx, can be
obtain with an estimate of both eigenvectors (also ŷ = y + δy),

|λ̂xAx − λ| ≈ |δxHAx+ xHAδx| ≤ |λ|||δx||+
(
|λ||yHx|+ |1− yHx| · ||A||

)
||δx||

|λ̂yAx − λ| ≈
∣∣∣∣δyHAx+ yHAδx

yHx

∣∣∣∣ ≤ |λ| ||δx||+ ||δy|||yHx|



Power Iteration
I Power iteration can be used to compute the largest eigenvalue of a real

symmetric matrix A:

x(i) = Ax(i−1) (typically with normalization of x(i) at each step).

For a random x(0), power iteration converges eigenvalue of A with largest
modulus, limi→∞ ρA(x(i)) = λmax(A). If this eigenvalue has multiplicity one,
power iteration converges to dominant eigenvector.

I The error of power iteration decreases at each step by the ratio of the
largest eigenvalues:
Assuming A is diagonalizable with eigenvectors U and V H = U−1,

x(k) = Akx(0) = (UDV H)kx(0) = UDkV Hx(0) =

n∑
i=1

ui λ
k
i v

H
i x

(0)︸ ︷︷ ︸
α(i,k)

.

The coe�cient α(i,k) associated with the maximum λi and dominant
eigenvector ui grows relatively, since |α(i,k)/α(j,k)| = (|λi|/|λj |)k |α(i,0)/α(j,0)|︸ ︷︷ ︸

constant

.

Demo: Power iteration and its Variants

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/04-eigenvalues/Power iteration and its Variants.html


Inverse and Rayleigh Quotient Iteration
I Inverse iteration uses LU/QR/SVD of A to run power iteration on A−1

I For a randomly chosen x(0), solving

Ax(i) = x(i−1) (typically with normalization of x(i) at each step).

converges to limi→∞ ρA(x(i)) = λmin(A) provided there is a unique eigenvalue
with minimum magnitude.

I Inverse iteration on A− σI converges to the eigenvalue closes to σ, since all
eigenvalues are shifted by σ.

I Rayleigh quotient iteration provides rapid convergence to an eigenpair

(A− ρA(x(i−1))I)x(i) = x(i−1),

since at each step the relative magnitude largest eigenvalue of
(A− ρA(x(i−1))I)−1 grows. Formally, it achieves cubic convergence, but
requires matrix refactorization at each step.

Activity: Inverse Iteration with a Shift
Activity: Rayleigh Quotient Iteration

https://relate.cs.illinois.edu/course/cs450-f18/flow/inclass-eig/start/
https://relate.cs.illinois.edu/course/cs450-f18/flow/inclass-rayleigh/start/


Deflation
I Power, inverse, and Rayleigh-quotient iteration compute a single eigenpair,

to obtain further eigenpairs, can perform deflation

I Given eigenvalue λ1 and right eigenvector x1, seek v so that B = A− λ1uvT
has eigenvalues λ2, . . . , λn, where

A =XD Y T︸︷︷︸
X−1

=

n∑
i=1

λixiy
T
i .

I Ideal choice would be v = yT
1 , i.e. the left eigenvector associated with λ1, as

then the n− 1 other eigenvectors of B would be the same as those of A.
I For symmetric matrices y1 = x1, but for nonsymmetric, obtaining y1 may

require more work.
I Good alternative choice for nonsymmetric is to select v = x1, as then the Schur

vectors are unmodified, since for A = QTQT , with t11 = λ1, q1 = x1, we get

B = QTQT − λ1q1qT1 = Q(T − λ1QTq1q
T
1 Q)QT = Q(T − λ1e1eT1 )QT .



Direct Matrix Reductions
I We can always compute an orthogonal similarity transformation to reduce a

general matrix to upper-Hessenberg (upper-triangular plus the first
subdiagonal) matrix H , i.e. A = QHQT :
We can perform successive two-sided application of Householder reflectors

A =

h11 a12 · · ·
a21 a22

... . . .

 = Q1

h11 a12 · · ·
h21 t22 · · ·

0
... . . .

 = Q1

h11 h12 · · ·
h21 h22 · · ·

0
... . . .

QT
1 = · · ·

subsequent columns can be reduced by induction, so we can always stably
reduce to upper-Hessenberg with roughly the same cost as QR.

I In the symmetric case, Hessenberg form implies tridiagonal:
If A = AT then H = QAQT =HT , and a symmetric upper-Hessenberg
matrix must be tridiagonal.

Demo: Householder Similarity Transforms

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/04-eigenvalues/Householder Similarity Transforms.html


Simultaneous and Orthogonal Iteration
I Simultaneous iteration provides the main idea for computing many

eigenvectors at once:

I Initialize X0 ∈ Rn×k to be random and perform

Xi+1 = AXi.

I Observe that limi→∞ span(Xi) = S where S is the subspace spanned by the k
eigenvectors of A with the largest eigenvalues in magnitude.

I Can use this to compute the right singular vectors of matrix M by using
A =MTM (no need to form A, just multiply Xi by MT then M ).

I Small number of iterations su�ce to obtain reasonable low-rank approximation
of M , and ultimately X converge to singular vectors in truncated SVD.

I Orthogonal iteration performs QR at each step to ensure stability
Qi+1Ri+1 = AQi

I Qi has the same span as Xi in orthogonal iteration.
I QR has cost O(nk2) while product has cost O(n2k) per iteration.

Demo: Orthogonal Iteration
Activity: Orthogonal Iteration

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/04-eigenvalues/Orthogonal Iteration.html
https://relate.cs.illinois.edu/course/cs450-f18/flow/inclass-orthogonal-iteration/start/


QR Iteration
I QR iteration reformulates orthogonal iteration for n = k to reduce cost/step,

I Orthogonal iteration computes Q̂i+1R̂i+1 = AQ̂i

I QR iteration computes Ai+1 = RiQi at iteration i

I Using induction, we assume Ai = Q̂
T
i AQ̂i and show that QR iteration

obtains Ai+1 = Q̂
T
i+1AQ̂i+1

I QR iteration performs QR to obtain QiRi = Ai

I Orthogonal iteration performs QR

Q̂i+1R̂i+1 = AQ̂i =︸︷︷︸
inductive assumption

Q̂iAi = Q̂iQi︸ ︷︷ ︸
Q̂i+1

Ri︸︷︷︸
R̂i+1

consequently, we can observe that Ri = Q
T
i Q̂

T

i︸ ︷︷ ︸
Q̂

T
i+1

AQ̂i

I QR iteration performs product Ai+1 = RiQi = Q̂
T

i+1AQ̂i+1



QR Iteration with Shift
I QR iteration can be accelerated using shifting:

QiRi = Ai − σiI
Ai+1 = RiQi + σiI

note that Ai+1 is similar to Ai, since we can reorganize the above as

RiQi = Q
T
i (Ai − σiI)Qi,

Qi(Ai+1 − σiI)QT
i = QiRi,

and observe that RiQi is similar to QiRi.
I The shift is typically selected to accelerate convergence with respect to a

particular eigenvalue:
We can select the shift as the bottom right element of Ai, which would be the
smallest eigenvalue if Ai is triangular (we have converged). Such shifting
should accelerate convergence of the last column of Ai, once finished we
should operate only on the first n− 1 columns, and so on.

Activity: QR Iteration

https://relate.cs.illinois.edu/course/cs450-f18/flow/inclass-qr-iteration/start/


QR Iteration Complexity
I QR iteration is accelerated by first reducing to upper-Hessenberg or

tridiagonal form:
Reduction to upper-Hessenberg or tridiagonal in the symmetric case, costs
O(n3) operations and can be done in a similar style to Householder QR.

Given an upper-Hessenberg matrix, Hi = Ai

I reduction to upper-triangular requires n− 1 Givens rotations, if Gi rotates the
(i+ 1)th row into the ith to eliminate the ith element on the first subdiagonal,
Ri = G

T
1 · · ·GT

n−1Hi

I computation of Hi+1 = RQ can be done by application of the n− 1 Givens
rotations to R from the right Hi+1 = RiGn−1 · · ·G1.

Both cost O(n2), for O(n3) overall if QR iteration converges in O(n) steps.

Given a tridiagonal matrix, the same two general steps are required, but now
each step costs O(n), so overall the eigenvalues and eigenvectors of a
tridiagonal matrix can be computed with O(n2) work.



Solving Tridiagonal Symmetric Eigenproblems
A variety of methods exists for the tridiagonal eigenproblem:

I QR iteration requires O(1) QR factorizations per eigenvalue, O(n2) cost to get
eigenvalues, O(n3) for eigenvectors. The last cost is not optimal.

I Divide and conquer reduces tridiagonal T by a similarity transformation to a

rank-1 perturbation of identity, then computes its eigenvalues using roots of
secular equation

T =

[
T1 tn/2+1,n/2en/2e

T
1

tn/2+1,n/2e1e
T
n/2 T2

]
=

[
T̂1

T̂2

]
+ tn/2+1,n/2

[
en/2
e1

] [
eTn/2 eT1

]
=

[
Q1D1Q

T
1

Q2D2Q
T
2

]
+ . . .

=

[
Q1

Q2

]([
D1

D2

]
+ tn/2+1,n/2

[
QT

1 en/2
QT

2 e1

] [
eTn/2Q1 eT1Q2

]
︸ ︷︷ ︸

D+αuuT

)[
QT

1

QT
2

]



Solving the Secular Equation for Divide and Conquer
To solve the eigenproblem at each step, the divide and conquer method needs to
diagonalize a rank-1 perturbation of a diagonal matrix

A =D + αuuT .

I The zeros of the characteristic polynomial define the eigenvalues,

f(λ) = det(D + αuuT − λI) = 1 + αuT (D − λI)−1u = 1 + α

n∑
i=1

u2i
dii − λ

= 0.

I This nonlinear equation can be solved e�ciently by a variant of Newton’s
method (covered in the next chapter) that uses hyperbolic rather than linear
extrapolations at each step.

I Major alternatives to divide and conquer include spectral bisection and the
MRRR algorithm.



Introduction to Krylov Subspace Methods
I Krylov subspace methods work with information contained in the n× k matrix

Kk =
[
x0 Ax0 · · · Ak−1x0

]
We seek to best use the information from the matrix vector product results
(columns of Kk) to solve eigenvalue problems.

I The matrix K−1n AKn is a companion matrix C:
Letting k(i)n = Ai−1x, we observe that

AKn =
[
Ak

(1)
n · · · Ak

(n−1)
n Ak

(n)
n

]
=
[
k
(2)
n · · · k

(n)
n Ak

(n)
n

]
,

therefore premultiplying by K−1m transforms the first n− 1 columns of AKn

into the last n− 1 columns of I,

K−1n AKn =
[
K−1n k

(2)
n · · · K−1n k

(n)
n K−1n Ak

(n)
n

]
=
[
e2 · · · en K−1n Ak

(n)
n

]



Krylov Subspaces

I Given QkRk =Kk, we obtain an orthonormal basis for the Krylov subspace,

Kk(A,x0) = span(Qk) = {p(A)x0 : deg(p) < k},

where p is any polynomial of degree less than k.
I The Krylov subspace includes the k − 1 approximate dominant eigenvectors

generated by k − 1 steps of power iteration:
I The approximation obtained from k − 1 steps of power iteration starting from x0

is given by the Rayleigh-quotient of y = Akx0.
I This vector is within the Krylov subspace, y ∈ Kk(A,x0).
I Consequently, Krylov subspace methods will generally obtain strictly better

approximations of the dominant eigenpair than power iteration.



Krylov Subspace Methods

I The k × k matrix Hk = Q
T
kAQk minimizes ||AQk −QkHk||2:

The minimizer X for the linear least squares problem QkX ∼= AQk is (via the
normal equations) X = QT

kAQk =Hk.
I Hk is Hessenberg, because the companion matrix Ck is Hessenberg:

Hk = Q
T
kAQk = RkK

−1
k AKkR

−1
k = RkCkR

−1
k

is a product of three matrices: upper-triangular Rk, upper-Hessenberg Ck ,
and upper-triangular R−1k , which results in upper-Hessenberg Hk.



Rayleigh-Ritz Procedure
I The eigenvalues/eigenvectors of Hk are the Ritz values/vectors:

Hk =XDX
−1

eigenvalue approximations based on Ritz vectors X are given by QkX.
I The Ritz vectors and values are the ideal approximations of the actual

eigenvalues and eigenvectors based on only Hk and Qk:
Assuming A is a symmetric matrix with positive eigenvalues, the largest Ritz
value λmax(Hk) will be the maximum Rayleigh quotient of any vector in
Kk = span(Qk),

max
x∈span(Qk)

xTAx

xTx
= max

y 6=0

yTQT
kAQky

yTy
= max

y 6=0

yTHky

yTy
= λmax(Hk),

which is the best approximation to λmax(A) = maxx6=0
xTAx
xTx

available in Kk.
The quality of the approximation can also be shown to be optimal for other
eigenvalues/eigenvectors.

Demo: Arnoldi vs Power Iteration
Activity: Computing the Maximum Ritz Value

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/04-eigenvalues/Arnoldi vs Power Iteration.html
https://relate.cs.illinois.edu/course/cs450-f18/flow/inclass-ritz/start/


Arnoldi Iteration

I Arnoldi iteration computes H =Hn directly using the recurrence
qTi Aqj = hij , where ql is the lth column of Qn:
We have that

qTi Aqj = q
T
i (QnHnQ

T
n )qj = e

T
i Hnej = hij .

I After each matrix-vector product, orthogonalization is done with respect to
each previous vector:
Given uj = Aqj , compute hij = qTi uj for each i ≤ j, forming a column of the
H matrix at a time.

Demo: Arnoldi Iteration
Demo: Arnoldi Iteration with Complex Eigenvalues

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/04-eigenvalues/Arnoldi Iteration.html
https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/04-eigenvalues/Arnoldi Iteration with Complex Eigenvalues.html


Lanczos Iteration

I Lanczos iteration provides a method to reduce a symmetric matrix to a
tridiagonal matrix:
Arnoldi iteration on a symmetric matrix will result in an upper-Hessenberg
matrix Hn as before, except that it must also be symmetric, since

HT
n = (QT

nAQn)
T = QT

nA
TQn = QT

nAQn =Hn,

which implies that Hn must be tridiagonal.
I After each matrix-vector product, it su�ces to orthogonalize with respect to

two previous vectors:
Since hij = 0 if |i− j| > 1, given uj = Aqj , it su�ces to compute only
hjj = q

T
j uj and hj−1,j = hj,j−1 = q

T
j−1uj .

Activity: Approximation with Orthogonal Iteration and Lanczos

https://relate.cs.illinois.edu/course/cs450-f18/flow/inclass-eig-methods-for-low-rank/start/


Cost Krylov Subspace Methods

I The cost of matrix-vector multiplication when the matrix has m nonzeros is
m multiplications and at most m additions, so roughly 2m in total.

I The cost of orthogonalization at the kth iteration of a Krylov subspace
method is

I O(nk) for k inner products in Arnoldi,
I O(n) in Lanczos, since only 2 orthogonalizations needed.
I For Arnoldi with k-dimensional subspace, orthogonalization costs O(nk2),

matrix-vector products cost O(mk), so generally desire nk < m.



Restarting Krylov Subspace Methods
I In finite precision, Lanczos generally loses orthogonality, while

orthogonalization in Arnoldi can become prohibitively expensive:
I Arnoldi cost of orthogonalization dominates if k > m/n.
I In Lanczos, reorthogonalizing iterate to previous guesses can ensure

orthogonality.
I Selective orthogonalization strategies control when and with respect to what

previous columns of Q, each new iterate uj = Aqj should be orthogonalized.

I Consequently, in practice, low-dimensional Krylov subspace methods are
constructed repeatedly using carefully selected new starting vectors:
If we wish to find a particular eigenvector isolate some eigenspaces,
restarting is beneficial

I can orthogonalize to previous eigenvector estimates to perform deflation,
I can pick starting vector as Ritz vector estimate associated with desired

eigenpair,
I given new starting vector, can discard previous Krylov subspace, which helps

make storing the needed parts of Q possible.



Generalized Eigenvalue Problem
I A generalized eigenvalue problem has the form Ax = λBx,

AX = BXD

B−1A =XDX−1

Generalized eigenvalue problems arise frequently, especially in solving partial
di�erential equations.

I When A and B are symmetric and B is SPD, we can perform Cholesky on B,
multiply A by the inverted factors, and diagonalize it:

AX = LLTXD

L−1AL−T︸ ︷︷ ︸
Ã

LTX︸ ︷︷ ︸
X̃

= LTX︸ ︷︷ ︸
X̃

D

I Alternative canonical forms and methods exist that are specialized to the
generalized eigenproblem.
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