Convexity
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Q: Give an example of a convex, but not strictly convex function.
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Convexity: Consequences

If fis convex, ...
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If f is strictly convex, ...
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Optimality Conditions
If we have found a candidate x* for a minimum, how do we know it
actually is one? Assume f is smooth, i.e. has all needed derivatives.
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Optimization: Observations

Q: Come up with a hypothetical approach for finding minima.
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Q: Is the Hessian symmetric?
—

Yee. ( Schwartz thm) 7?:;7 ¥ = a%'adx

Q: How can we practically test for positive definiteness?
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In-Class Activity: Optimization Theory

In-class activity: Optimization Theory
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Sensitivity and Conditioning (1D)

How does optimization react to a slight perturbation of the minimum?
A
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Sensitivity and Conditioning (nD)

How does optimization react to a slight perturbation of the minimum?
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Unimodality

Would like a method like bisection, but for optimization.
In general: No invariant that can be preserved.
Need extra assumption.

s CaQECl U\"”IWI‘"L P >k ¢

w, €x° ) fkl
<K, \3 O(x.) <




Golden Section Search
Suppose we have an interval with f unimodal:

Would like to maintain unimodality.
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Golden Section Search: Efficiency

Where to put xq, x27?
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Demo: Golden Section Proportions [cleared]
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Newton's Method

Reuse the Taylor approximation idea, but for optimization.
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Demo: Newton's Method in 1D [cleared]
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In-Class Activity: Optimization Methods

In-class activity: Optimization Methods
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Steepest Descent
Given a scalar function f : R” — R at a point x, which way is down?
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Demo: Steepest Descent [cleared] 101




Steepest Descent: Convergence
Consider quadratic model problem: 4{: A X+,

1
f(x) = ExTAx +c'x

where A is SPD. (A good model of f near a minimum.)
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