Gaussian Quadrature

So far: nodes chosen from outside.

Can we gain something if we let the quadrature rule choose the nodes, too? Hope: More design freedom \rightarrow Exact to higher degree.

Demo: Gaussian quadrature weight finder [cleared]

High-order polynomial interpolation requires a high degree of smoothness of the function.

Idea: Stitch together multiple lower-order quadrature rules to alleviate smoothness requirement.

Error in Composite Quadrature

What can we say about the error in the case of composite quadrature?

Evor for one pould
$$|\int_{1}^{1} p_{n-1}| \leq C \cdot ||p^{(n)}|_{W} \cdot h^{n+1}$$

 $|\int_{a}^{b} f(x) dx - \sum_{j=1}^{m} \sum_{i=1}^{m} G_{ij} f(x_{i,j})|$
 $\leq C \cdot ||p^{(n)}||_{W} \cdot \sum_{j=1}^{m} (a_{ij} - a_{j-1})^{n+1} (a_{ij} - a_{j-1})^{n+1}$
 $\leq C \cdot ||p^{(n)}||_{W} \cdot \sum_{j=1}^{m} (a_{ij} - a_{j-1})^{n} (a_{ij} - a_{j-1})$
 $\leq C \cdot ||p^{(n)}||_{W} (b-a) h^{n}$

Observation: Composite quadrature loses an order compared to non-composite.

Idea: If we can estimate errors on each subinterval, we can shrink (e.g. by splitting in half) only those contributing the most to the error. (adaptivity, \rightarrow hw)

Taking Derivatives Numerically

Why shouldn't you take derivatives numerically?

Demo: Taking Derivatives with Vandermonde Matrices [cleared]

Taking Derivatives Numerically

Why shouldn't you take derivatives numerically?

Demo: Taking Derivatives with Vandermonde Matrices [cleared]

Finite Differences

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

forward difference.
first 6ider.
$$f(x+h) = f(x) + h \cdot f'(x) + D(h^{2})$$

=) eff = O(h)

More Finite Difference Rules

Similarly:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

(Centered differences)

Can also take higher order derivatives:

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2)$$

Can find these by trying to match Taylor terms.

Alternative: Use linear algebra with interpolate-then-differentiate to find FD formulas.

Demo: Finite Differences vs Noise [cleared] **Demo:** Floating point vs Finite Differences [cleared]