Differentiation Matrices

How can numerical differentiation be cast as a matrix-vector operation?

Demo: Taking Derivatives with Vandermonde Matrices [cleared] (Build D)

Finite Difference Formulas from Diff. Matrices

How do the rows of a differentiation matrix relate to FD formulas?

$$D = [dij]_{ij=1}^{n} \Rightarrow f'(x_i) \approx \underset{j \leq i}{\sum} dij f(x_j)$$

e.g. n=3.
let : f'(x_i) \approx d_{i1} f(x_i) + d_{12} f(x_2) + d_{13} f(x_3)
2nd : f'(x_2) \approx d_{21} f(x_1) + d_{22} f(x_2) + d_{23} f(x_3)

Assume a large equispaced grid and 3 nodes w/same spacing. How to use?

Finite Differences: via Taylor

forward difference.

$$f'(x) \gtrsim \frac{f(x+h) - f(x)}{h}$$
first order.

$$f(x+h) = f(x) + f'(x)h + f''(x) \cdot \frac{h^{2}}{2} + \cdots$$

$$\Rightarrow \frac{f(x+h) - f(x)}{h} = f'(x) + f''(x) \cdot \frac{h}{2} + \cdots$$

More Finite Difference Rules

Similarly:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

(Centered differences)

Can also take higher order derivatives:

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2)$$

Can find these by trying to match Taylor terms.

Alternative: Use linear algebra with interpolate-then-differentiate to find FD formulas.

Demo: Finite Differences vs Noise [cleared] **Demo:** Floating point vs Finite Differences [cleared]

Richardson Extrapolation

Deriving high-order methods is hard work. Can I just do multiple low-order approximations (with different h and get a high-order one out?

Suppose we have $F \models \tilde{F}(h) + O(h^p)$ and $\tilde{F}(h_1)$ and $\tilde{F}(h_2)$.

$$F = \widehat{F}(h) + \alpha h^{p} + O(h^{q}) \quad (q = pt))$$

$$T = \alpha \widetilde{F}(h_{1}) + \beta \widehat{F}(h_{1}) + O(h^{q}) \quad hot all how hot all ho$$

Richardson Extrapolation: Observations,

$$\int'(x) \approx \frac{\int(x+h) - f(x)}{h} + O(h^2)$$

What are α and β for a first-order (e.g. finite-difference) method if we choose $h_2 = h_1/2$?

Demo: Richardson with Finite Differences [cleared]

Romberg Integration

Can this be used to get even higher order accuracy?

In-Class Activity: Differentiation and Quadrature

In-class activity: Differentiation and Quadrature

Outline

Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Existence, Uniqueness, Conditioning Numerical Methods (I) Accuracy and Stability Stiffness Numerical Methods (II)

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

What can we solve already?

- ► Linear Systems: yes
- Nonlinear systems: yes
- Systems with derivatives: no

Some Applications

IVPs	BVPs
 Population dynamics	 bridge load pollutant concentration
y' ₁ = y ₁ (α ₁ - β ₁ y ₂) (prey)	(steady state) temperature
y' ₂ = y ₂ (-α ₂ + β ₂ y ₁)	(steady state) waves
(predator) chemical reactions equations of motion	(time-harmonic)

Initial Value Problems: Problem Statement

Want: Function $\boldsymbol{y} : [0, T] \to \mathbb{R}^n$ so that

•
$$\mathbf{y}^{(k)}(t) = \mathbf{f}(t, \mathbf{y}, \mathbf{y}', \mathbf{y}'', \dots, \mathbf{y}^{(k-1)})$$
 (explicit), or

•
$$f(t, y, y', y'', ..., y^{(k)}) = 0$$
 (implicit)

are called explicit/implicit *kth-order ordinary differential equations* (*ODEs*). Give a simple example.

$$\lambda_{r}(t) = \alpha \Lambda \ll \Lambda = C \cdot 6_{\alpha f}$$

Not uniquely solvable on its own. What else is needed?

Initial conditions. y(o)=go. #ICs + #ODEs = k

Reducing ODEs to First-Order Form

A kth order ODE can always be reduced to first order. Do this in this example:

v''(t) = f(v)

Let
$$\begin{cases} y_1 = y \\ y_2 = y' \end{cases} \Rightarrow \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}' = \begin{pmatrix} y_2 \\ f(y_1) \end{pmatrix}'$$

 $\Rightarrow only care about list order wlog$