Does a solution even exist? How sensitive are they?

General case is harder than root finding, and we couldn't say much there. \rightarrow Only consider linear BVP

 $(*) \begin{cases} \mathbf{y}'(x) = A(x)\mathbf{y}(x) + \mathbf{b}(x) \\ B_a \mathbf{y}(a) + B_b \mathbf{y}(b) = \mathbf{c} \end{cases}$

To solve that, consider homogeneous IVP

$$\boldsymbol{y}_i'(x) = A(x)\boldsymbol{y}_i(x)$$

with initial condition

$$\boldsymbol{y}_i(a) = \boldsymbol{e}_i.$$

Note: $y \neq y_i$. e_i is the *i*th unit vector. With that, build the fundamental solution matrix

$$Y(x) = \begin{bmatrix} | & | \\ \mathbf{y}_1 & \cdots & \mathbf{y}_n \\ | & | \end{bmatrix}$$

y(=) =

ODE Systems: Existence

Let

$$Q := B_a Y(a) + B_b Y(b)$$

Then (*) has a unique solution if and only if Q is invertible. Solve to find coefficients:

$$Q oldsymbol{lpha} = oldsymbol{c}$$

+() D + () + -1()

Then $Y(x)\alpha$ solves (*) with $\boldsymbol{b}(x) = 0$. Define $\Phi(x) := Y(x)Q^{-1}$. So $\Phi(x)\boldsymbol{c}$ solves (*) with $\boldsymbol{b}(x) = 0$. Define *Green's function*

$$G(x,y) := \begin{array}{c} \Phi(x)B_a\Phi(a)\Phi^{-1}(y) \quad y \leq x, \\ -\Phi(x)B_b\Phi(b)\Phi^{-1}(y) \quad y > x. \end{array}$$

$$\mathbf{y} := \sum_{j=1}^{h} G_{j}(j) \cdot \mathbf{y}, \quad \mathbf{y} := \sum_{j=1}^{h} G_{j}(j) \cdot \mathbf{y} := \sum_{j=1}^{h} G_{j}(j) \cdot \mathbf{y}, \quad \mathbf{y} := \sum_{j=1}^{h} G_{j}(j) \cdot \mathbf{y} := \sum_{j=1}^$$

Then

Can verify that this solves (*) by plug'n'chug.

ODE Systems: Conditioning

For perturbed problem with $\boldsymbol{b}(x) + \Delta \boldsymbol{b}(x)$ and $\boldsymbol{c} + \Delta \boldsymbol{c}$:

$$\|\Delta \boldsymbol{y}\|_{\infty} \leq \max(\|\Phi\|_{\infty}, \|G\|_{\infty})\left(\|\Delta \boldsymbol{c}\|_{1} + \int \|\Delta \boldsymbol{b}(\boldsymbol{y})\|_{1} \, \mathrm{d}\boldsymbol{y}\right).$$

- Conditioning bound implies uniqueness.
- Also get continuous dependence on data.

Shooting Method

Idea: Want to make use of the fact that we can already solve IVPs. Problem: Don't know *all* left BCs. $q'' = \int (q', y')$

Demo: Shooting method [cleared]

What about systems?

Cammons aim in more than 11)

What are some downsides of this method?

What's an alternative approach?

SHY

9 1 (a) = 5

Finite Difference Method

Idea: Replace u' and u'' with finite differences. For example: second-order centered

$$u'(x) = \frac{u(x+h) - u(x-h)}{2h} + O(h^2)$$

$$u''(x) = \frac{u(x+h) - 2u(x) + u(x-h)}{h^2} + O(h^2)$$

Newka

Demo: Finite differences [cleared]

What happens for a nonlinear ODE?

Demo: Sparse matrices [cleared]

Collocation Method

$$(*) \begin{cases} y'(x) = f(y(x)), \\ g(y(a), y(b)) = 0. \end{cases}$$

1. Pick a basis (for example: Chebyshev polynomials)

$$\hat{y}(x) = \sum_{i=1}^{n} \alpha_i T_i(x) \qquad \overset{\text{tr} \ p \ \sigma \ r}{\vdash} \ r$$

Want \hat{y} to be close to solution y. So: plug into (*).

Problem: \hat{y} won't satisfy the ODE at all points at least. We do not have enough unknowns for that.

- 2. Idea: Pick *n* points where we would like (*) to be satisfied. \rightarrow Get a big (non-)linear system
- 3. Solve that $(LU/Newton) \rightarrow done$.

Galerkin/Finite Element Method

$$u''(x) = f(x),$$
 $u(a) = u(b) = 0.$

Problem with collocation: Big dense matrix. Idea: Use piecewise basis. Maybe it'll be sparse.



one "finite element"

What's the problem with that?

u' does not exist u⁴ ~ ~ ~

Weak solutions/Weighted Residual Method

Idea: Enforce a 'weaker' version of the ODE.

= moments,
$$\int_{a}^{b} u^{q} \cos \psi \cos dx = -\int_{a}^{b} u^{i} \cos \psi^{i} \cos dx + [u^{i} \cos \psi^{i} \cos dx]_{a}^{b}$$

 $+ [u^{i} \cos \psi \cos dx]_{a}^{b}$
Solve: $\int_{a}^{b} u^{i} \cos \psi \cos dx = \int_{a}^{b} f \cos \psi \cos dx$
 $\int_{a}^{b} [u^{i} \cos - f \cos] \cdot \psi \cos dx = 0$
 $\equiv \tau \cos \psi \sin dx = 0$
 $\equiv \tau \sin \psi \sin \psi \sin dx = 0$
 $\equiv \tau \sin \psi \sin \psi \sin dx = 0$
 $\equiv \pi \sin \psi \sin \psi \sin dx = 0$
 $\equiv \pi \sin \psi \sin \psi \sin dx = 0$
 $\equiv \pi \sin \psi \sin \psi \sin dx = 0$

Galerkin: Choices in Weak Solutions

Make some choices:

- Solve for $u \in \text{span} \{ \text{hat functions } \varphi_i \}$
- Choose $\psi \in W = \text{span} \{ \text{hat functions } \varphi_i \}$ with $\psi(a) = \psi(b) = 0$. $\rightarrow \text{ Kills boundary term } [u'(x)\psi(x)]_a^b$.

These choices are called the Galerkin method. Also works with other bases.

Discrete Galerkin

Assemble a matrix for the Galerkin method.

Outline

Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra Sparse Linear Algebra PDEs

Fast Fourier Transform

Additional Topics

Remark: Both PDEs and Large Scale Linear Algebra are big topics. Will only scratch the surface here. Want to know more?

- ▶ CS555 \rightarrow Numerical Methods for PDEs \leftarrow spin
- CS556 \rightarrow Iterative and Multigrid Methods $\leftarrow \bigcirc \square$

► CS554 \rightarrow Parallel Numerical Algorithms \sub{f} {

Solving $A\mathbf{x} = \mathbf{b}$ has been our bread and butter.

Typical approach: Use factorization (like LU or Cholesky) Why is this problematic?

Idea: Don't factorize, iterate. Demo: Sparse Matrix Factorizations and "Fill-In" [cleared]

'Stationary' Iterative Methods

Idea: Invert only part of the matrix in each iteration. Split

$$A = M - N$$

where M is the part that we are actually inverting. Convergence?

$$A\mathbf{x} = \mathbf{b}$$

$$M\mathbf{x} = N\mathbf{x} + \mathbf{b}$$

$$M\mathbf{x}_{k+1} = N\mathbf{x}_{k} + \mathbf{b}$$

$$\mathbf{x}_{k+1} = M^{-1}(N\mathbf{x}_{k} + \mathbf{b})$$

- These methods are called *stationary* because they do the same thing in every iteration.
- They carry out fixed point iteration.
 - \rightarrow Converge if contractive, i.e. $\rho(M^{-1}N) < 1$.
- Choose M so that it's easy to invert.

Choices in Stationary Iterative Methods

What could we choose for M (so that it's easy to invert)?

Name	M	Ν
Jacobi	D	-(L+U)
Gauss-Seidel	D+L	-U
SOR	$\frac{1}{\omega}D + L$	$\left(rac{1}{\omega}-1 ight)D-U$
where L is the below-diagonal part of A, and U the above-diagonal.		

Demo: Stationary Methods [cleared]