


Improving on Newton?

How would we do “Newton + 1” (i.e. even faster, even better)?

180



Improving on Newton?

How would we do “Newton + 1” (i.e. even faster, even better)?

Easy:
▶ Use second order Taylor approximation, solve resulting

quadratic
▶ Get cubic convergence!
▶ Get a method that’s extremely fast and extremely brittle
▶ Need second derivatives
▶ What if the quadratic has no solution?
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Root Finding with Interpolants
Secant method uses a linear interpolant based on points f (xk), f (xk−1),
could use more points and higher-order interpolant:

What about existence of roots in that case?
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Achieving Global Convergence

The linear approximations in Newton and Secant are only good locally.
How could we use that?
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Achieving Global Convergence

The linear approximations in Newton and Secant are only good locally.
How could we use that?

▶ Hybrid methods: bisection + Newton
▶ Stop if Newton leaves bracket

▶ Fix a region where they’re ‘trustworthy’ (trust region methods)
▶ Limit step size
▶ Sufficient conditions for convergence of Newton (under strong

assumptions) are available.
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Fixed Point Iteration

x0 = ⟨starting guess⟩
xk+1 = g(xk)

When does this converge?
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Newton’s Method
What does Newton’s method look like in n dimensions?

Downsides of n-dim. Newton?

Demo: Newton’s method in n dimensions [cleared]
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Secant in n dimensions?
What would the secant method look like in n dimensions?
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Numerically Testing Derivatives
Getting derivatives right is important. How can I test/debug them?
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Constrained Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs
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Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics
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Optimization: Problem Statement

Have: Objective function f : Rn → R
Want: Minimizer x∗ ∈ Rn so that

f (x∗) = min
x

f (x) subject to g(x) = 0 and h(x) ≤ 0.

▶ g(x) = 0 and h(x) ≤ 0 are called constraints.
They define the set of feasible points x ∈ S ⊆ Rn.

▶ If g or h are present, this is constrained optimization.
Otherwise unconstrained optimization.

▶ If f , g , h are linear, this is called linear programming.
Otherwise nonlinear programming.
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Optimization: Observations
Q: What if we are looking for a maximizer not a minimizer?
Give some examples:

What about multiple objectives?
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Existence/Uniqueness
Terminology: global minimum / local minimum

Under what conditions on f can we say something about
existence/uniqueness?
If f : S → R is continuous on a closed and bounded set S ⊆ Rn, then

f : S → R is called coercive on S ⊆ Rn if

If f is coercive and continuous and S is closed, . . .
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