


Nonlinear Least Squares: Setup
What if the f to be minimized is actually a 2-norm?

f (x) = ∥r(x)∥2 , r(x) = y − a(x)
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Gauss-Newton
For brevity: J := Jr (x).
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Gauss-Newton: Observations?

Demo: Gauss-Newton [cleared]

Observations?
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Gauss-Newton: Observations?

Demo: Gauss-Newton [cleared]

Observations?

▶ Newton on its own is still only locally convergent
▶ Gauss-Newton is clearly similar
▶ It’s worse because the step is only approximate

→ Much depends on the starting guess.
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Levenberg-Marquardt
If Gauss-Newton on its own is poorly conditioned, can try
Levenberg-Marquardt:
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Interpolation: Setup

Given: (xi )
N
i=1, (yi )

N
i=1

Wanted: Function f so that f (xi ) = yi

How is this not the same as function fitting? (from least squares)
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Interpolation: Setup

Given: (xi )
N
i=1, (yi )

N
i=1

Wanted: Function f so that f (xi ) = yi

How is this not the same as function fitting? (from least squares)

It’s very similar–but the key difference is that we are asking for exact
equality, not just minimization of a residual norm.
→ Better error control, error not dominated by residual

Idea: There is an underlying function that we are approximating from
the known point values.

Error here: Distance from that underlying function
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Interpolation: Setup (II)
Given: (xi )

N
i=1, (yi )

N
i=1

Wanted: Function f so that f (xi ) = yi

Does this problem have a unique answer?
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Interpolation: Setup (II)
Given: (xi )

N
i=1, (yi )

N
i=1

Wanted: Function f so that f (xi ) = yi

Does this problem have a unique answer?

No–there are infinitely many functions that satisfy the problem as
stated:
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Interpolation: Importance

Why is interpolation important?
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Interpolation: Importance

Why is interpolation important?

It brings all of calculus within range of numerical operations.
▶ Why?

Because calculus works on functions.
▶ How?

1. Interpolate (go from discrete to continuous)
2. Apply calculus
3. Re-discretize (evaluate at points)
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Making the Interpolation Problem Unique
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Existence/Sensitivity
Solution to the interpolation problem: Existence? Uniqueness?

Sensitivity?
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Modes and Nodes (aka Functions and Points)
Both function basis and point set are under our control. What do we pick?

Ideas for basis functions:
▶ Monomials 1, x , x2, x3, x4, . . .

▶ Functions that make V = I →
‘Lagrange basis’

▶ Functions that make V
triangular → ‘Newton basis’

▶ Splines (piecewise polynomials)
▶ Orthogonal polynomials
▶ Sines and cosines
▶ ‘Bumps’ (‘Radial Basis

Functions’)

Ideas for points:
▶ Equispaced
▶ ‘Edge-Clustered’ (so-called

Chebyshev/Gauss/. . . nodes)

Specific issues:
▶ Why not monomials on

equispaced points?
Demo: Monomial interpolation
[cleared]

▶ Why not equispaced?
Demo: Choice of Nodes for
Polynomial Interpolation
[cleared]
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Lagrange Interpolation
Find a basis so that V = I , i.e.

φj(xi ) =

(
1 i = j ,

0 otherwise.
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Lagrange Polynomials: General Form

φj(x) =

Qm
k=1,k ̸=j(x − xk)Qm
k=1,k ̸=j(xj − xk)

Write down the Lagrange interpolant for nodes (xi )
m
i=1 and values (yi )

m
i=1.
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Newton Interpolation
Find a basis so that V is triangular.

Why not Lagrange/Newton?
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