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Unimodality

Would like a method like bisection, but for optimization.
In general: No invariant that can be preserved.
Need extra assumption.
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Golden Section Search
Suppose we have an interval with £ unimodal:
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Would like to maintain unimodality.
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Golden Section Search: Efficiency
Where to put x1, x»7

Convergence rate?
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Newton's Method

Reuse the Taylor approximation idea, but for optimization.
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Demo: Newton's Method in 1D [cleared]
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Steepest Descent/Gradient Descent

Given a scalar function f : R” — R at a point x, which way is down?
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Demo: Steepest Descent [cleared] (Part 1) 04




Steepest Descent: Convergence
Consider quadratic model problem:

1
f(x)= EXTAX +c'x

where A is SPD. (A good model of f near a minimum.)
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Steepest Descent: Convergence
Consider quadratic model problem:

1
f(x)= EXTAX +c'x

where A is SPD. (A good model of f near a minimum.)

Define error ex = xx — x*. Then can show:
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Convergence constant related to conditioning:

Umax(A) - Umin(A) _ H(A) -1
Umax(A) + Umin(A) H(A) +1
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Hacking Steepest Descent for Better Convergence
Extrapolation methods:
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Demo: Steepest Descent [cleared] (Part 2)
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Hacking Steepest Descent for Better Convergence
Extrapolation methods:

Look back a step, maintain "'momentum’.

X1 = X — VI (xp) + Br(Xk — Xk—1)

For specific constant ax = « and 8, = 3, can attain:

lewalla= F—%Hedh

Demo: Steepest Descent [cleared] (Part 2)

206



Optimization in Machine Learning

What is stochastic gradient descent (SGD)?
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Optimization in Machine Learning
What is stochastic gradient descent (SGD)?

Common in ML: Objective functions of the form

) = = i),
i=1

where each f; comes from an observation (“data point”) in a (training)
data set. Then “batch” (i.e. normal) gradient descent is

1 n
== - - f;' .
Xk+1 Xk aniglv (Xk)

Stochastic GD uses one (or few, “minibatch”) observation at a time:

Xiq1 = Xk — aV 0 (xk).

ADAM optimizer: GD with exp. moving avgs. of V and its square.
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Conjugate Gradient Methods AR Com. $ g
Can we optimize in the space spanned by the last tw6 step dlrectlons7

Demo: Conjugate Gradient Method [cleared]
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Conjugate Gradient Methods

Can we optimize in the space spanned by the last two step directions?

(ak, Bk) = argmin,, 5 [f(xk — ag Vi (xk) + Br(xk — xk_l))}

» Provably optimal first-order method for the quadratic model
problem

» Turns out to be closely related to Lanczos (A-orthogonal search
directions)
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: » Will see in more detail later (for solving linear systems)
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Demo: Conjugate Gradient Method [cleared]
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Nelder-Mead Metho

|dea:

Sl ple < 9ym nashis

Demo: Nelder-Mead Method [cleared]
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Newton's method (n D)

What does Newton's method look like in n dimensions?
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Newton's method (n D): Observations

Drawbacks?

Demo: Newton's Method in n dimensions [cleared]
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Newton's method (n D): Observations

Drawbacks?

» Need second (!) derivatives
(addressed by Conjugate Gradients, later in the class)

» local convergence

» Works poorly when Hy is nearly indefinite

Demo: Newton's Method in n dimensions [cleared]
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Quasi-Newton Methods

Secant/Broyden-type ideas carry over to optimization. How?

Come up with a way to update to update the approximate Hessian.

BFGS: Secant-type method, similar to Broyden:
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Bky1 = Bk +
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