

-CS5t5Numerical Methods 1 For PDE - (5 55 6)O(1) mm linear algebra Parallel hunerics - C S S S 4;(S598 EVS tensor integral equations APK

Richardson Extrapolation

Deriving high-order methods is hard work. Can I just do multiple low-order approximations (with different h and get a high-order one out?

Suppose we have $F = \tilde{F}(h) + O(h^{\rho})$ and $\tilde{F}(h_1)$ and $\tilde{F}(h_2)$.

Assure:
$$(\overline{T}) = \overline{T}(h) + a h^{p} + O(h^{q})$$

 $C h^{p} + O(h^{q})$
 $T = \alpha \overline{T}(h_{1}) + (7\overline{T}(h_{1}) + O(h^{q}))$
 $\alpha q(h_{1}^{p} + \beta q(h_{2}^{p} = O) + \alpha + \beta = 1$
 $\alpha h_{1}^{p} + (1 - \alpha) h_{2}^{p} = O + \alpha + \beta = 1 - \alpha$
 $\alpha (h_{1}^{p} - h_{1}^{p}) + h_{1}^{p} = O = \alpha + \frac{h^{p}}{h_{1}^{p} - h_{1}^{p}}$

Richardson Extrapolation: Observations,

What are α and β for a first-order (e.g. finite-difference) method if we choose $h_2 = h_1/2$?

Demo: Richardson with Finite Differences [cleared]

Romberg Integration

Can this be used to get even higher order accuracy?

Outline

Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Existence, Uniqueness, Conditioning Numerical Methods (I) Accuracy and Stability Stiffness Numerical Methods (II)

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

What can we solve already?

- ► Linear Systems: yes
- Nonlinear systems: yes
- Systems with derivatives: no

Some Applications

Demo: Predator-Prey System [cleared]

Initial Value Problems: Problem Statement

$$\begin{array}{l} \text{Want: Function } \boldsymbol{y} : [0, T] \to \mathbb{R}^n \text{ so that} \\ \bullet (\boldsymbol{y}^{(k)}(t) = \boldsymbol{f}(t, \boldsymbol{y}, \boldsymbol{y}', \boldsymbol{y}'', \dots, \boldsymbol{y}^{(k-1)}) \quad (explicit), \text{ or} \\ \bullet \boldsymbol{f}(t, \boldsymbol{y}, \boldsymbol{y}', \boldsymbol{y}'', \dots, \boldsymbol{y}^{(k)}) = 0 \quad (implicit) \end{array}$$

are called explicit/implicit *kth-order ordinary differential equations* (*ODEs*). Give a simple example.

Not uniquely solvable on its own. What else is needed?

head initial conditions

$$y(0) = g_{0} \dots \qquad y^{(h')}(0) = g_{h-1}$$

Reducing ODEs to First-Order Form

A kth order ODE can always be reduced to first order. Do this in this example:

Conditioning

Unfortunate terminology accident: ('Stability' in ODE-speak

To adapt to conventional terminology, we will use 'Stability' for

- ▶ the conditioning of the IVP, and
- the stability of the methods we cook up.

Some terminology:

An IVP is stable if and only if...

An IVP is asymptotically stable if and only if

Example I: Scalar, Constant-Coefficient

$$\begin{cases} y'(t) = \lambda y \\ y(0) = y_0 \end{cases} \quad \text{where} \quad \lambda = a + ib \end{cases}$$

Solution?

When is this stable?

Example II: Constant-Coefficient System

 $\begin{cases} \mathbf{y}'(t) = A\mathbf{y}(t) \\ \mathbf{y}(t_0) = \mathbf{y}_0 \end{cases}$

Assume $V^{-1} AV = D = diag(\lambda_1, \dots, \lambda_n)$ diagonal. Find a solution.

When is this stable?

Euler's Method

Discretize the IVP

$$\begin{cases} \mathbf{y}'(t) = \mathbf{f}(\mathbf{y}) \\ \mathbf{y}(t_0) = \mathbf{y}_0 \end{cases}$$

• Discrete times: t_1, t_2, \dots with $t_{i+1} = t_i + h$

▶ Discrete function values: $\mathbf{y}_k \approx \mathbf{y}(t_k)$.

buchward ~ y(h) = yo + p(y|h) - h Yuch .l Yn.h

Euler's method: Forward and Backward

$$oldsymbol{y}(t) = oldsymbol{y}_0 + \int_{t_0}^t oldsymbol{f}(oldsymbol{y}(au)) \mathrm{d} au,$$

Use 'left rectangle rule' on integral:

Use 'right rectangle rule' on integral:

Demo: Forward Euler stability [cleared]

Global and Local Error

Let $u_k(t)$ be the function that solves the ODE with the initial condition $u_k(t_k) = y_k$. Define the local error at step k as...

Define the global error at step k as...

About Local and Global Error

Is global error = $\sum local$ errors?

A time integrator is said to be *accurate of order p* if...

ODE IVP Solvers: Order of Accuracy

A time integrator is said to be accurate of order p if $\ell_k = O(h^{p+1})$

This requirement is one order higher than one might expect-why?

Stability: Systems

What about stability for systems, i.e.

$$\mathbf{y}'(t) = A\mathbf{y}(t)?$$

d'a gonalité

Stability: Nonlinear ODEs

What about stability for nonlinear systems, i.e.

 $\mathbf{y}'(t) = \mathbf{f}(\mathbf{y}(t))?$

Stability for Backward Euler

Find out when backward Euler is stable when applied to $y'(t) = \lambda y(t)$.

