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Richardson Extrapolation
Deriving high-order methods is hard work. Can I just do multiple low-order
approximations (with different h and get a high-order one out?

Suppose we have F = F̃ (h) + O(hp) and F̃ (h1) and F̃ (h2).
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Richardson Extrapolation: Observations,

What are α and β for a first-order (e.g. finite-difference) method if we
choose h2 = h1/2?

Demo: Richardson with Finite Differences [cleared]
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Romberg Integration

Can this be used to get even higher order accuracy?
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Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics
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What can we solve already?

▶ Linear Systems: yes
▶ Nonlinear systems: yes
▶ Systems with derivatives: no
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Some Applications

IVPs BVPs

▶ Population dynamics
y ′1 = y1(α1 − β1y2) (prey)
y ′2 = y2(−α2 + β2y1)
(predator)

▶ chemical reactions
▶ equations of motion

▶ bridge load
▶ pollutant concentration

(steady state)
▶ temperature

(steady state)
▶ waves

(time-harmonic)

Demo: Predator-Prey System [cleared]
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Initial Value Problems: Problem Statement
Want: Function y : [0,T ] → Rn so that
▶ y (k)(t) = f (t, y , y ′, y ′′, . . . , y (k−1)) (explicit), or
▶ f (t, y , y ′, y ′′, . . . , y (k)) = 0 (implicit)

are called explicit/implicit kth-order ordinary differential equations (ODEs).
Give a simple example.

Not uniquely solvable on its own. What else is needed?
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Reducing ODEs to First-Order Form

A kth order ODE can always be reduced to first order. Do this in this
example:

y ′′(t) = f (y)
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Conditioning
Unfortunate terminology accident: “Stability” in ODE-speak
To adapt to conventional terminology, we will use ‘Stability’ for
▶ the conditioning of the IVP, and
▶ the stability of the methods we cook up.

Some terminology:

An IVP is stable if and only if. . .

An IVP is asymptotically stable if and only if
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Example I: Scalar, Constant-Coefficient
�

y ′(t) = λy
y(0) = y0

where λ = a+ ib

Solution?

When is this stable?
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Example II: Constant-Coefficient System
�

y ′(t) = Ay(t)
y(t0) = y0

Assume V−1 AV = D = diag(λ1, . . . ,λn) diagonal. Find a solution.

When is this stable?
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Euler’s Method

Discretize the IVP �
y ′(t) = f (y)
y(t0) = y0

▶ Discrete times: t1, t2, . . ., with ti+1 = ti + h

▶ Discrete function values: y k ≈ y(tk).
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Euler’s method: Forward and Backward

y(t) = y0 +

Z t

t0

f (y(τ))dτ,

Use ‘left rectangle rule’ on integral:

Use ‘right rectangle rule’ on integral:

Demo: Forward Euler stability [cleared]
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Global and Local Error

local error global error

Let uk(t) be the function that solves the ODE with the initial condition
uk(tk) = yk . Define the local error at step k as. . .

Define the global error at step k as. . .
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About Local and Global Error

Is global error =
P

local errors?

A time integrator is said to be accurate of order p if. . .
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ODE IVP Solvers: Order of Accuracy

A time integrator is said to be accurate of order p if ℓk = O(hp+1)

This requirement is one order higher than one might expect–why?
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Stability of a Method
Find out when forward Euler is stable when applied to y ′(t) = λy(t).
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Stability: Systems

What about stability for systems, i.e.

y ′(t) = Ay(t)?
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Stability: Nonlinear ODEs

What about stability for nonlinear systems, i.e.

y ′(t) = f (y(t))?
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Stability for Backward Euler
Find out when backward Euler is stable when applied to y ′(t) = λy(t).

Demo: Backward Euler stability [cleared] 296


