

Relevance of Backward Error

What do we gain from a bound on backward error like

$$
\frac{\|\mathbf{x}-\mathbf{\hat{x}}\|}{\|\mathbf{x}\|} \leq \epsilon?
$$

Demo: Backward Stability by Example [cleared]

Getting into Trouble with Accuracy and Stability

How can I produce inaccurate results?

▶ Apply an inaccurate method

- ▶ Apply an unstable method to a well-conditioned problem
- ▶ Apply any type of method to an ill-conditioned problem

Wanted: Real Numbers... in a computer

Computers can represent *integers*, using bits: ρ

$$
23 = 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = (10111)_2
$$

How would we represent fractions?

$$
23.625 = (10111.300)
$$

\n
$$
\int_{271}^{1} \int_{27}^{1} \frac{1}{27}
$$

\n695 - 55.125

Fixed-Point Numbers

Suppose we use units of 64 bits, with 32 bits for exponents ≥ 0 and 32 bits for exponents < 0 . What numbers can we represent?

How many 'digits' of relative accuracy (think relative rounding error) are available for the smallest vs. the largest number?

Floating Point Numbers

Floating Point: Implementation, Normalization

Previously: Consider *mathematical* view of FP. (via example: $(1101)_{2}$) Next: Consider implementation of FP in hardware.

Do you notice a source of inefficiency in our number representation?

· leading of sly always I : threa away . to slove exponent; $3 = \underbrace{-1013}_{\text{time block}} + 1026$ \geqslant

Implementing Arithmetic

How is floating point addition implemented? Consider adding $a = (1.101)_2 \cdot 2^1$ and $b = (1.001)_2 \cdot 2^{-1}$ in a system with three stored bits (four total) in the significand.

Implementing Arithmetic

How is floating point addition implemented? Consider adding $a = (1.101)2 \cdot 2^1$ and $b = (1.001)2 \cdot 2^{-1}$ in a system with three stored bits (four total) in the significand.

Rough algorithm:

- 1. Bring both numbers onto a common exponent
- 2. Do grade-school addition from the front, until you run out of digits in your system.
- 3. Round result.

 $a = 1. 101 \cdot 2^1$ $b = 0.01001 \cdot 2^1$ $a + b \approx 1.111$ 2^1

Unrepresentable numbers?

Can you think of a somewhat central number that we cannot represent as

$$
x = (1. \frac{1}{1} - \frac{1}{2} \cdot 2^{-p})
$$

Demo: Picking apart a floating point number [cleared]

Subnormal Numbers

What is the smallest representable number in an FP system with 4 stored bits (5 total) in the significand and a stored exponent range of [−7, 8]?

(donc v/a demo)

Subnormal Numbers

What is the smallest representable number in an FP system with 4 stored bits (5 total) in the significand and a stored exponent range of [−7, 8]?

Subnormal Numbers, Attempt 2

What is the smallest representable number in an FP system with 4 stored bits in the significand and a (stored) exponent range of [−7, 8]?

(donc v/a demo) Why learn about subnormals?

Subnormal Numbers, Attempt 2

What is the smallest representable number in an FP system with 4 stored bits in the significand and a (stored) exponent range of [−7, 8]?

- \triangleright Can go way smaller using the *special exponent* (turns off the leading one)
- \triangleright Assume that the special exponent is -7 ; interpreted as -6 .
- ▶ So: $(0.0001)_2 \cdot 2^{-6}$ (with four digits after the point stored).

Numbers with the special exponent are called subnormal (or denormal) FP numbers. Technically, zero is also a subnormal.

Why learn about subnormals?

▶ Subnormal FP is often slow: not implemented in hardware.

▶ Many compilers support options to 'flush subnormals to zero'.