September 26, 2024 Announcements Exam V: make res! HW4

Goals

Specifically, what about linear systems with 'tall and skinny' matrices? (A: $m \times n$ with m > n) (aka overdetermined linear systems)

Specifically, any hope that we will solve those exactly?

Example: Data Fitting

Have data: (x_i, y_i) and model:

$$\varphi(x) = \alpha + \beta x + \gamma x^2$$

Find data that (best) fit model!

Data Fitting Continued

$$(x_{1}, y_{1}) \cdots$$

$$\alpha + \beta x_{1} + \beta x_{1}^{2} \approx y_{1}$$

$$\vdots$$

$$[\alpha + \beta x_{1} + \beta x_{1}^{2} - y_{1}]^{2}$$

$$t [\alpha + \beta x_{1} + \beta x_{2}^{2} - y_{1}]^{2} \rightarrow m_{1}^{2}$$

Rewriting Data Fitting

Least Squares: The Problem In Matrix Form

$$\|A\mathbf{x} - \mathbf{b}\|_2^2 \rightarrow \min!$$

is cumbersome to write.

Invent new notation, defined to be equivalent:

NOTE:

- Data Fitting is one example where LSQ problems arise.
- Many other application lead to $A\mathbf{x} \cong \mathbf{b}$, with different matrices.

Data Fitting: Nonlinearity

Give an example of a nonlinear data fitting problem.

$$\frac{\left|\exp(\alpha) + \beta x_{1} + \gamma x_{1}^{2} - y_{1}\right|^{2}}{+ \cdots +}$$
$$\left|\exp(\alpha) + \beta x_{n} + \gamma x_{n}^{2} - y_{n}\right|^{2} \rightarrow \min!$$

But that would be easy to remedy: Do linear least squares with $exp(\alpha)$ as the unknown. More difficult:

.

Demo: Interactive Polynomial Fit [cleared]

Properties of Least-Squares

Ax=5

Consider LSQ problem $A\mathbf{x} \cong \mathbf{b}$ and its associated *objective function* $\varphi(\mathbf{x}) = \|\mathbf{b} - A\mathbf{x}\|_2^2$. Assume A has full rank. Does this always have a solution?

94

Least-Squares: Finding & Solution by Minimization $\beta \text{ spl} = \chi^{\nabla} \beta \chi = 0 \quad \text{if } \xi_{\neq 0}$

Examine the objective function, find its minimum.

$$\begin{aligned} \varphi(\vec{x}) &= (\vec{b} - A\vec{x})^{T} (\vec{b} - A\vec{x}) = 5^{T}b - b^{T}A\vec{x} - x^{T}A^{T}\vec{b} + x^{T}A^{T}A\vec{x}^{T} \\ \nabla P(\vec{x}) &= :ZA^{T}b - t Z A^{T}A\vec{x} = :Zb^{T}A\vec{x} - x^{T}A^{T}\vec{b} + x^{T}A^{T}A\vec{x}^{T} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{x} - A^{T}\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A\vec{b} \\ \hline To fAA crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A crit. points: \nabla P(\vec{x}) = 0 \leq t A^{T}A crit. points$$

SPA

Demo: Polynomial fitting with the normal equations [cleared]

What's the shape of $A^T A$?

í xxk

Demo: Issues with the normal equations [cleared]

Why is $\mathbf{r} \perp \text{span}(A)$ a good thing to require?

$$\| \| \|_{1}^{2} \| \| \|_{1}^{2} + \| \| \| \|_{1}^{2} > \| \| \|_{1}^{2}$$

Phrase the Pythagoras observation as an equation.

Write that with an orthogonal projection matrix P. (only span (A))

ß

About Orthogonal Projectors

What is a *projector*?

What is an orthogonal projector?

Psymmetric

How do I make one projecting onto span $\{\boldsymbol{q}_1, \boldsymbol{q}_2, \dots, \boldsymbol{q}_\ell\}$ for orthonormal \boldsymbol{q}_i ?

Least Squares and Orthogonal Projection

Check that $P = A(A^T A)^{-1} A^T$ is an orthogonal projector onto colspan(A).

What assumptions do we need to define the P from the last question?