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Orthogonal Polynomials

» Recall that good conditioning for interpolation is achieved by constructing a
well-conditioned Vandermonde matrix, which is the case when the columns
(corresponding to each basis function) are orthonormal. To construct robust
basis sets, we introduce a notion of orthonormal functions:
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Legendre Polynomials

» The Gram-Schmidt orthogonalization procedure can be used to obtain an
orthonormal basis with the same span as any given arbitrary basis:
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» The Legendre polynomials are obtained by Gram-Schmidt on the monomial
1:-1<t<1

basis, with normalization done so ¢;(1) = 1 and w(t) = .
0 : otherwise



Basis Orthogonality and Conditioning

» To obtain perfectly conditioned Vandermonde system, want inner products
of different columns to be zero: CrOI‘«—mM ‘[ a ... @,
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» These inner products should be close to zero, if they are a suitable
quadrature rule for our weighted functional inner product:
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Chebyshev Basis

» Chebyshev po/ynom/a/s @;(t) = coq(j arccos(t)) and Chebyshev nodes
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» Note equi-alteration property, successive extrema of T}, have opposite sign:
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» Set of k¥ Chebyshev nodes of are given by zeros of T},

V\-Vw/('(/) M’WS

e herd iﬂwM 72 _4.‘7,\', h7 ,)\(}



Orthogonal Polynomials and Recurrences

» The Newton polynomials could be obtained by a two-term recurrence

» Legendre and Chebyshev polynomials also satisfy three-term recurrence, for
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» In fact all orthogonal polynomials satisfy some recurrence of the form,
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Error in Interpolation e Gncbion

Given degree n polynomial interpolant f o@nductlon on n shows that

E(x) = f(x) — f(z) has n zeros x1, ..., z, and there exist yi, ..., y, such that
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Interpolation Error Bounds
» The error bound implies that
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» Letting h = z,, — 21 (often also achieve same for h as the node-spacing
Tit1 — l’i), we obtain
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Piecewise Polynomial Interpolation

» The kth piece of the interpolant is a polynomial in [z;, z;41]
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» Hermite interpolation ensures consecutive interpolant pieces have same
derivative at each knot z;:
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Spline Interpolation

» Asplineis a (k — 1)-time differenti@e polynomial of degree &:
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» The resulting interpolant coe nts are agékr; detern*nned by an 2n- N
appropriate generalized Vandermonde system: " S
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B-Splines
B-splines provide an effective way of constructing splines from a basis:
» The basis functions can be defined recurswely with respect to degree
k-
eﬁ vEeN e (v et 5o 4445
D -4
v ( =
; T ,(,1:1 _

Foraa
» The ith degree k polynomial piece is positive on [t;,t;,x+1] and zero

everywhere else —_ Cumpe ¢
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» All possible splines of degree k with notes {¢;}!" ; can be represented in the
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