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Quadrature Rules

» A quadrature rule provides = and w so as to approximate
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Gaussian Quadrature

» So far, we have only considered quadrature rules based on a fixed set of
nodes, but we can also choose a set of nodes to iz:arove accuracy:
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» The unique n-point Gaussian quadrature rule is defined by the solution of the
nonlinear form of the moment equations in terms of both = and w:
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Using Gaussian Quadrature Rules

» Gaussian quadrature rules are hard to compute, but can be enumerated for a
fixed mterval eg.a=0,b=1, so it suffices to transform the integral to [0, 1]
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Progressive Gaussian-like Quadrature Rules

» Kronod quadrature rules construct (2n + 1)-point quadrature Ks,, 1 that is
progressive w.r.t. Gaussian quadrature rule G,, -
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» Gaussian quadrature rules are in generalg@ﬂl but Gauss-Radau and
Gauss-Lobatto rules permit including end-points:
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Composite and Adaptive Quadrature

» Composite quadrature rules are obtained by integrating a piecewise

interpolant of f: ch/wsﬂ-( [~ /,,J,\; G
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» Composite quadrature can be done with adaptive refinement:
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More Complicated Integration Problems

» To handle improper integrals can either transform integral to get rid of
infinite limit or use appropriate open quadrature rules.
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» Double mtegrals can simply be computed by successive 1-D integration.
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» High- dlmen5|onal integration is most often dor:j: by Monte Carlo integration:
n1gh-dimensional
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Integral Equations

» Rather than evaluating an integral, in solving an integral equation we seek to
compute the integran A typical linear integral equation has the form

/Kst t)dt = f(s), where K and f areknown.
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» Integral equations are used to

» recover signal u given response functlon with kernel K and measurements of f,
» solve equations arising from Green'’s function methods for PDEs.



Challenges in Solving Integral Equations

» Integral equations based on response functions tend to be ill-conditioned,
which is resolved using

» truncated singular value decomposition of A, where a;; = w; K(s;,t;)
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» expressing the solution using a basis
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Numerical Differentiation

» Automatic (symbolic) differentation is a surprisingly viable option.

» Any computer program is differentiable, since it is an assembly of basic
arithmetic operations.
» Existing software packages can automatically differentiate whole programs.

» Numerical differentation can be done by interpolation or finite differencing
» Given polynomial interpolant, its derivative is easy to obtain.
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» Finite-differencing formulas effectively use linear interpolant.



Accuracy of Finite Differences

nd backward difference
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Extrapolation Techniques >§° Dy X b

» Given a series of approximate solutions produced by an iterative procedure,
a more accurate approximation may be obtained by extrapolating this series.
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» In particular, given two guesses, Richardson extrapolation eliminates the
leadering order error term:
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High-Order Extrapolation

» Given a series of k approximations, Romberg integration applies

(k — 1)-levels of Richardson extrapolation.
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» Extrapolation can be used within an iterative procedure at each step:
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