CS 450: Numerical Anlaysis

Lecture 21

Chapter 7 Numerical Integration and Differentiation
Gaussian Quadrature, Integral Equations, and Numerical Differentiation

Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

April 6, 2018

Quadrature Rules

ightharpoonup A quadrature rule provides x and w so as to approximate

$$I(f) \approx Q_n(f) = \langle w, y \rangle, \text{ where } y_i = f(x_i)$$

$$I(A) = \int f(x) dx \text{ weight}$$

$$Q_n(f) = \int (\rho_{n-1}) = \int (\rho_{n-1}) d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text{ of } f$$

$$\int (\rho_{n-1}) - d\rho dx \text$$

Gaussian Quadrature

► So far, we have only considered quadrature rules based on a fixed set of nodes, but we can also choose a set of nodes to improve accuracy:

and weights Ganestan queta he rules

n Dof how by optimal choice of radio

n Dof how by optimal choice of radio

n Dof how by optimal choice of radio

n Dof how by the rules

use a possible to white degree 2n-1.

▶ The *unique* n-point *Gaussian quadrature rule* is defined by the solution of the nonlinear form of the moment equations in terms of *both* x and x:

$$V(x,e_{i}^{2n-1}) = \begin{bmatrix} e_{i}(x_{i}) & \dots & e_{2n-1}(x_{i}) \\ e_{i}(x_{n}) & e_{2n-1}(x_{n}) \end{bmatrix}$$

$$V(x,e_{i}^{2n-1})^{T} = u \quad \text{for } x \text{ form } x \text{ is over likemined}$$

Using Gaussian Quadrature Rules

lacktriangle Gaussian quadrature rules are hard to compute, but can be enumerated for a fixed interval, e.g. a=0,b=1, so it suffices to transform the integral to [0,1]

$$J(f) : \int_{a}^{b} f(x) dx = \int_{b-a}^{b-a} g(t) dt$$

$$f(x) = \int_{a}^{b} \frac{1}{b-a} \int_{a}^$$

(nodes cannot be reused to obtain higher-degree approximation). I herpolation degree so Gn and Cm

. W70 for any 6 no modes in

Progressive Gaussian-like Quadrature Rules

Fronod quadrature rules construct (2n+1)-point quadrature K_{2n+1} that is progressive w.r.t. Gaussian quadrature rule G_n

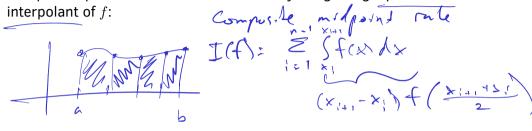
Kan+1 to have the n nodes of Gn
while maximizing degree, which is 3n41.
Gan+1 has begree 2(2n+1)-1=4n+1

Gaussian quadrature rules are in general open, but Gauss-Radau and Gauss-Lobatto rules permit including end-points:

Cours-hubs Ho include a and b

Composite and Adaptive Quadrature

► Composite quadrature rules are obtained by integrating a piecewise



Composite quadrature can be done with adaptive refinement:

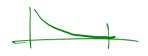
the compare midpoint and Trapezuidel.

Lever! Adaptive much reforment

inement

More Complicated Integration Problems

► To handle improper integrals can either transform integral to get rid of infinite limit or use appropriate open quadrature rules.



Double integrals can simply be computed by successive 1-D integration.

► High-dimensional integration is most often done by *Monte Carlo* integration:

$$\int_{\Sigma} f(\vec{x}) d\vec{x} \approx \frac{1}{N} |\Sigma| \underbrace{\xi Y_{i}}_{i=1}, Y_{i} = f(x_{i}) \text{ for } x_{i} \text{ random in } \Sigma$$

$$\leq E[$$

$$\int_{\gamma} error b O(\frac{1}{N})$$

Integral Equations

▶ Rather than evaluating an integral, in solving an integral equation we seek to compute the integrand. A typical linear integral equation has the form

Integral equations are used to

$$\int_{a}^{b} K(s,t)u(t)dt = f(s), \text{ where } K \text{ and } f \text{ are known.}$$

$$\int_{a}^{b} K(s,t)u(t)dt = f(s), \text{ where } K \text{ and } f \text{ are known.}$$

$$\int_{a}^{b} K(s,t)u(t)dt = f(s), \text{ where } K \text{ and } f \text{ are known.}$$

$$\int_{a}^{b} K(s,t)u(t)dt = f(s), \text{ where } K \text{ and } f \text{ are known.}$$

$$\int_{a}^{b} K(s,t)u(t)dt = f(s), \text{ where } K \text{ and } f \text{ are known.}$$

$$\int_{a}^{b} K(s,t)u(t)dt = f(s), \text{ where } K \text{ and } f \text{ are known.}$$

$$\int_{a}^{b} K(s,t)u(t)dt = f(s), \text{ where } K \text{ and } f \text{ are known.}$$

$$\int_{a}^{b} K(s,t)u(t)dt = f(s), \text{ where } K \text{ and } f \text{ are known.}$$

$$\int_{a}^{b} K(s,t)u(t)dt = f(s), \text{ where } K \text{ and } f \text{ are known.}$$

$$\int_{a}^{b} K(s,t)u(t)dt = f(s), \text{ where } K \text{ and } f \text{ are known.}$$

$$\int_{a}^{b} K(s,t)u(t)dt = f(s), \text{ where } K \text{ and } f \text{ are known.}$$

- - recover signal u given response function with kernel K and measurements of f,
 - solve equations arising from Green's function methods for PDEs.

Challenges in Solving Integral Equations

- Integral equations based on response functions tend to be ill-conditioned, which is resolved using
 - truncated singular value decomposition of A, where $a_{ij} = w_i K(s_i, t_j)$

replacing the linear system with a regularized linear least squares problem,

expressing the solution using a basis

$$u(t) = \sum_{i=1}^{\infty} c_i e_i(t)$$

Numerical Differentiation

- ► Automatic (symbolic) differentation is a surprisingly viable option.
 - ► Any computer program is differentiable, since it is an assembly of basic arithmetic operations.
 - ▶ Existing software packages can automatically differentiate whole programs.
- ▶ Numerical differentation can be done by interpolation or finite differencing
 - Given polynomial interpolant, its derivative is easy to obtain.

Finite-differencing formulas effectively use linear interpolant.

Accuracy of Finite Differences

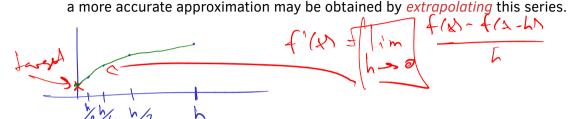
Forward and backward differences provide first-order accuracy:

Forward and backward differences provide first-order accuracy:

$$f(x+h) = f(x) + hf'(x) + h^{2} f'(x) + f'(x)$$

Extrapolation Techniques

Xo, ..., XL = k Herbran of methol ▶ Given a series of approximate solutions produced by an iterative procedure,



▶ In particular, given two guesses, *Richardson extrapolation* eliminates the

leadering order error term:

Given
$$F(h)$$
 and $F(h/2)$ would like $F(0)$
 $F(h) = a_0 + q_1h^2 + O(h1)$ where $q > p$
 $f''(x)/2$ for forward life.

 $f'''(x)/2$ for forward life.

$$F(h) = a_0 + a_1 h'' + 0 (h9)$$

$$F(h/2) = a_0 + a_1 (\frac{h}{2})'' + 0 (h1)$$

$$a_0 = F(h) - F(h/2) + 0 (h1)$$

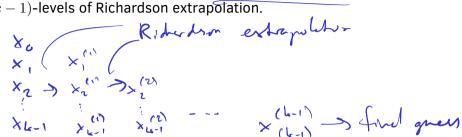
$$= a_0 + a_1 h'' + 0 (h9) - \frac{a_0 + a_1 h'' - a_0 - a_1 h''}{1 - \frac{1}{2}}$$

$$= a_0 + a_1 h'' + 0 (h9) - \frac{a_0 + a_1 h'' - a_0 - a_1 h''}{1 - \frac{1}{2}}$$

$$= a_0 + \frac{1}{2} h'' + \frac{1$$

High-Order Extrapolation

▶ Given a series of k approximations, *Romberg integration* applies (k-1)-levels of Richardson extrapolation.



▶ Extrapolation can be used within an iterative procedure at each step:

For solvey nontreer systems

Ather S2-process -> Stefferen's method

- quadratic conveyence without derivelys

- alternitie to Secart nettod