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Quadrature Rules
� A quadrature rule provides x and w so as to approximate

I(f) ≈ Qn(f) = �w,y�, where yi = f(xi)



Gaussian Quadrature
� So far, we have only considered quadrature rules based on a fixed set of

nodes, but we can also choose a set of nodes to improve accuracy:

� The unique n-point Gaussian quadrature rule is defined by the solution of the
nonlinear form of the moment equations in terms of both x and w:



Using Gaussian Quadrature Rules

� Gaussian quadrature rules are hard to compute, but can be enumerated for a
fixed interval, e.g. a = 0, b = 1, so it su�ces to transform the integral to [0, 1]

� Gaussian quadrature rules are are accurate and stable but not progressive
(nodes cannot be reused to obtain higher-degree approximation).



Progressive Gaussian-like Quadrature Rules
� Kronod quadrature rules construct (2n+ 1)-point quadrature K2n+1 that is

progressive w.r.t. Gaussian quadrature rule Gn

� Gaussian quadrature rules are in general open, but Gauss-Radau and
Gauss-Lobatto rules permit including end-points:



Composite and Adaptive Quadrature
� Composite quadrature rules are obtained by integrating a piecewise

interpolant of f :

� Composite quadrature can be done with adaptive refinement:



More Complicated Integration Problems
� To handle improper integrals can either transform integral to get rid of

infinite limit or use appropriate open quadrature rules.

� Double integrals can simply be computed by successive 1-D integration.

� High-dimensional integration is most often done by Monte Carlo integration:



Integral Equations
� Rather than evaluating an integral, in solving an integral equation we seek to

compute the integrand. A typical linear integral equation has the form
� b

a
K(s, t)u(t)dt = f(s), where K and f are known.

� Integral equations are used to
� recover signal u given response function with kernel K and measurements of f ,
� solve equations arising from Green’s function methods for PDEs.



Challenges in Solving Integral Equations
� Integral equations based on response functions tend to be ill-conditioned,

which is resolved using
� truncated singular value decomposition of A, where aij = wjK(si, tj)

� replacing the linear system with a regularized linear least squares problem,

� expressing the solution using a basis



Numerical Di�erentiation

� Automatic (symbolic) di�erentation is a surprisingly viable option.
� Any computer program is di�erentiable, since it is an assembly of basic

arithmetic operations.
� Existing software packages can automatically di�erentiate whole programs.

� Numerical di�erentation can be done by interpolation or finite di�erencing
� Given polynomial interpolant, its derivative is easy to obtain.

� Finite-di�erencing formulas e�ectively use linear interpolant.



Accuracy of Finite Di�erences
� Forward and backward di�erences provide first-order accuracy:

� Centered di�erencing provides second-order accuracy:



Extrapolation Techniques
� Given a series of approximate solutions produced by an iterative procedure,

a more accurate approximation may be obtained by extrapolating this series.

� In particular, given two guesses, Richardson extrapolation eliminates the
leadering order error term:





High-Order Extrapolation
� Given a series of k approximations, Romberg integration applies

(k − 1)-levels of Richardson extrapolation.

� Extrapolation can be used within an iterative procedure at each step:


