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Finite Di�erence Methods
� Lets derive the finite di�erence method for the ODE BVP defined by

u�� + 1000(1 + t2)u = 0

with boundary conditions u(−1) = 3 and u(1) = −3.



Collocation Methods
� Collocation methods approximate y by representing it in a basis

y(t) = v(t,x) =

n�

i=1

xiφi(t).

� Spectral methods use polynomials or trigonometric functions for φi, which
are nonzero over most of [a, b], while finite element methods leverage basis
functions with local support (e.g. B-splines).



Solving BVPs by Optimization
� We reformulate the collocation approximation as an optimization problem:

� The first-order optimality conditions of the optimization problem are a
system of linear equations Ax = b:



Weighted Residual
� Weighted residual methods work by ensuring the residual is orthogonal with

respect to a given set of weight functions:

� The Galerkin method is a weighted residual method where wi = φi.



Linear BVPs by Optimization
� Lets apply the Galerkin method to the more general linear ODE

f(t, y) = A(t)y(t) + b(t) with residual equation,



Nonlinear BVPs: Poisson Equation
In practice, BVPs are at least second order and its advantageous to work in the
natural set of variables.

� Consider the Poission equation u�� = f(t) with boundary conditions
u(a) = u(b) = 0 and define a localized basis of hat functions:

φi(t) =





(t− ti−1)/h : t ∈ [ti−1, ti]

(ti+1 − t)/h : t ∈ [ti, ti+1]

0 : otherwise

where t0 = t1 = a and tn+1 = tn = b.



Weak Form and the Finite Element Method

� The finite-element method permits a lesser degree of di�erentiability of
basis functions by casting the ODE in weak form:





Finite Element Methods in Practice
� Hat functions are linear instances of B-splines:

� Finite-element methods readily generalize to PDEs:



Eigenvalue Problems with ODEs
� A typical second-order scalar BVP eigenvalue problem has the form

u�� = λf(t, u, u�), with boundary conditions u(a) = 0, u(b) = 0



Eigenvalue Problems with ODEs
� Generalized eigenvalue problems arise from more sophisticated ODEs,

u�� = λ(g(t)u+ h(t)u�), with boundary conditions u(a) = 0, u(b) = 0


