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Linear Least Squares

» Find «* = argmin g~ ||Ax — b||2 where A € R™*"™:
xreR

Since m > n, the minimizer generally does not attain a zero residual Ax — b.
We can rewrite the optimization problem constraint via

x* = argmin || Az — b||3 = argmin |(Az — b)T (Ax — b)}

xeR™ xeR™

» Giventhe SVD A = UXVT we have z* = VXTUTb, where = contains the
reciprocal of all nonzeros in X:

» The minimizer satisfies USV Tx* = b and consequently also satisfies
Yy*=~d wherey* =VTz*andd=U"b.

» The minimizer of the reduced problem is y* = ¥'d, so y; = d;/o; for
1€{l,...,ntandy; =0fori e {n+1,...,m}.



Demo: Polynomial fitting via the normal equations

Conditioning of Linear Least Squares
» Consider fitting a line to a collection of points, then perturbing the points:

» If our line closely fits all of the points, a small perturbation to the points will not
change the ideal fit line (least squares solution) much. Note that, if a least
squares solution has a very small residual, any other solution with a residual
close to as small, should be close to parallel to this solution.

» When the points are distributed erratically and do not admit a reasonable linear
fit, then the least squares solution has a large residual, and totally different
lines may exist with a residual nearly as small. For example, if the points are in a
ball around the origin, any linear fit has the same residual. A tiny perturbation
could then perturb the least squares solution to be perpendicular to the original.

» LLS is ill-posed for any A, unless we consider solving for a particular b

» Ifbis entirely outside the span of A then any perturbation to A or b can
completely defines the new solution. Similarly, if most of b is outside the span of
A, a perturbation can cause the solution to fluctuate wildly.

» On other hand, if for a particular b we can find a solution with (near-)zero
residual, a small relative perturbation to b or A will have an effect similar to that
of a linear system perturbation (growth bounded by k(A) = omax/min)-


https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Polynomial fitting via the normal equations.html

. Demo: Normal equations vs Pseudoinverse
Normal E quations Demo: Issues with the normal equations

» Normal equations are given by solving AT Az = ATb:
If AT Ax = ATb then

UzvhHlusvliz = (U=vh b
»TyvTie =2TUu"s
Vieg =T 127Uty = =1U”s
z=VIUTb =z

» However, solving the normal equations is a more ill-conditioned problem
then the original least squares algorithm

Generally we have k(AT A) = k(A)? (the singular values of AT A are the
squares of those in A). Consequently, solving the least squares problem via
the normal equations may be unstable because it involves solving a problem
that has worse conditioning than the initial least squares problem.


https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Normal equations vs Pseudoinverse.html
https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Issues with the normal equations.html

Solving the Normal Equations

» If Ais full-rank, then A” A is symmetric positive definite (SPD):

» Symmetry is easy to check (AT A)T = AT A.
» A being full-rank implies o, > 0 and further if A = UX VT we have

ATA=VT2Vv

which implies that rows of V are the eigenvectors of AT A with eigenvalues X2
since ATAVT = vTx2

» Since AT A is SPD we can use Cholesky factorization, to factorize it and
solve linear systems:

ATA=LL"T



QR Factorization
» If A is full-rank there exists an orthogonal matrix Q and a unique
upper-triangular matrix R with a positive diagonal such that A = QR
» Given ATA =LL", we can take R = L™ and obtain Q = AL, since
L~ 'AT AL~T = I implies that Q has orthonormal columns.
P
» A reduced QR factorization (unique part of general QR) is defined so that
Q € R™ "™ has orthonormal columns and R is square and upper-triangular
A full QR factorization gives Q € R™*"™ and R € R™*", but since R is upper
triangular, the latter m — n columns of QQ are only constrained so as to keep
Q orthogonal. The reduced QR factorization is given by taking the first n
columns Q and Q the upper-triangular block of R, R giving A = QR.
» We can solve the normal equations (and consequently the linear least
squares problem) via reduced QR as follows

ATAz=ATb = RTOTQORzx=RTO™™ = Rz=0%b
I



Demo: Gram-Schmidt-The Movie

Gram-Schmidt Orth ogona lization Demo: Gram-Schmidt and Modified Gram-Schmidt
» Classical Gram-Schmidt process for QR:
The Gram-Schmidt process orthogonalizes a rectangular matrix, i.e. it finds a
set of orthonormal vectors with the same span as the columns of the given
matrix. If a; is the ith column of the input matrix, the ith orthonormal vector
(ith column of Q) is
i—1
q; = bi/ ||bil[2, where b;=a;— Z (g;,ai) q;.

—
Tii J i

» Modified Gram-Schmidt process for QR:
Better numerical stability is achieved by orthogonalizing each vector with
respect to each previous vector in sequence (modifying the vector prior to
orthogonalizing to the next vector), so b, = MGS(a;,i — 1), where
MGS(d,0) = d and

MGS(d, j) = MGS(d — (g;,d)q;,j — 1)


https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Gram-Schmidt--The Movie.html
https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Gram-Schmidt and Modified Gram-Schmidt.html

Demo: 3x3 Householder demo

Householder QR Factorization

» A Householder transformation Q = I — 2uu” is an orthogonal matrix
defined to annihilate entries of a given vector z, so ||z|[2Qe; = z:

>

Householder QR achieves unconditional stability, by applying only orthogonal
transformations to reduce the matrix to upper-triangular form.

Householder transformations (reflectors) are orthogonal matrices, that reduce
a vector to a multiple of the first elementary vector, ce; = Qz.

Because multiplying a vector by an orthogonal matrix preserves its norm, we
must have that |a| = ||z]|2.

As we will see, this transformation can be achieved by a rank-1 perturbation of
identify of the form Q = I — 2uu”™ where u is a normalized vector.
Householder matrices are both symmetric and orthogonal implying that

Q=Q"=Q"

» Imposing this form on Q leaves exactly two choices for u given z,

__zx|lzl|e
||z £ [|2]]2€1]]2


https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/3x3 Householder demo.html

. . Activity: Householder QR
Applying Householder Transformations

» The product & = Qw can be computed using O(n) operations if Q is a
Householder transformation

xz=(I—-2uu’)w=w—2u,wu

» Householder transformations are also called reflectors because their
application reflects a vector along a hyperplane (changes sign of component
of w that is parallel to u)

» I —uu” would be an elementary projector, since (u, w)u gives component of w
pointing in the direction of w and

x=1I—-uuw=w— (u,w)u

subtracts it out.
» On the other hand, Householder reflectors give
y=I - 2uul)w=w - 2(u,w)u = = — (u,w)u

which reverses the sign of that component, so that ||y||2 = ||w]|2.


https://relate.cs.illinois.edu/course/cs450-f18/flow/inclass-householder/start/

Givens Rotations
» Householder reflectors reflect vectors, Givens rotations rotate them

» Householder matrices reflect vectors across a hyperplane, by negating the sign
of the vector component that is perpendicular to the hyperplane (parallel to u)

» Any vector can be reflected to a multiple of an elementary vector by a single
Householder rotation (in fact, there are two rotations, resulting in a different
sign of the resulting vector)

» Givens rotations instead rotate vectors by an axis of rotation that is
perpendicular to a hyperplane spanned by two elementary vectors

» Consequently, each Givens rotation can be used to zero-out (annihilate) one
entry of a vector, by rotating it so that the component of the vector pointing in
the direction of the axis corresponding to that entry, points into a different axis

» Givens rotations are defined by orthogonal matrices of the form [_CS ‘Z]

a

2 2
» Given a vector we define cand s so that | ¢ °| |%| = | V¢ +b
b —s ¢l |b 0

> Solving for c and s, we get ¢ = ==, J().;)W

S =



Demo: Relative cost of matrix factorizations

QR via Givens Rotations

» We can apply a Givens rotation to a pair of matrix rows, to eliminate the first
nonzero entry of the second row

T : :
c s a va? + b?

§ =1

—s e b 0

» Thus, n(n — 1)/2 Givens rotations are needed for QR of a square matrix

» Each rotation modifies two rows, which has cost O(n)
» Overall, Givens rotations cost 2n®, while Householder QR has cost (4/3)n?

» Givens rotations provide a convenient way of thinking about QR for sparse
matrices, since nonzeros can be successively annihilated, although they
introduce the same amount of fill (new nonzeros) as Householder reflectors


https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Relative cost of matrix factorizations.html

L. Activity: Rank Deficient Least Squares Problems

Rank-Deficient Least Squares

» Suppose we want to solve a linear system or least squares problem with a
(nearly) rank deficient matrix A

» A rank-deficient (singular) matrix satisfies Ax = 0 for some x # 0
» Rank-deficient matrices must have at least one zero singular value

» Matrices are said to be deficient in numerical rank if they have extremely small
singular values

» The solution to both linear systems (if it exists) and least squares is not unique,
since we can add to it any multiple of x

» Rank-deficient least squares problems seek a minimizer x of || Az — b||2 of
minimal norm ||z||2

» If A s a diagonal matrix (with some zero diagonal entries), the best we can do
is x; = b;/a;; for all i such that a;; # 0 and x; = 0 otherwise

» We can solve general rank-deficient systems and least squares problems via
x = A'b where the pseudoinverse is

AT:VETUT U}L: 1/0'7; 20, >0
0 20, =0


https://relate.cs.illinois.edu/course/cs450-f18/flow/inclass-pinv/start/

Trun cated SVD Demo: Image compression
» After floating-point rounding, rank-deficient matrices typically regain
full-rank but have nonzero singular values on the order of enachomax
» Very small singular values can cause large fluctuations in the solution
» To ignore them, we can use a pseudoinverse based on the truncated SVD which
retains singular values above an appropriate threshold

» Alternatively, we can use Tykhonov regularization, solving least squares
problems of the form min,, ||Az — b||3 + «||x||?, which are equivalent to the
augmented least squares problem

==

» By the Eckart-Young-Mirsky theorem, truncated SVD also provides the best
low-rank approximation of a matrix (in 2-norm and Frobenius norm)

» The SVD provides a way to think of a matrix as a sum of outer-products o;u;v}
that are disjoint by orthogonality and the norm of which is o;

» Keeping the r outer products with largest norm provides the best rank-r
approximation


https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Image compression.html

QR with Column Pivoting

» QR with column pivoting provides a way to approximately solve
rank-deficient least squares problems and compute the truncated SVD

» We seek a factorization of the form QR = AP where P is a permutation matrix
that permutes the columns of A
» Forn x n matrix A of rank r, the bottom r x r block of R will be 0
» To solve least squares, we can solve the rank-deficient triangular system
Ry = Q"b then compute x = Py
» A pivoted QR factorization can be used to compute a rank-r approximation

» To compute QR with column pivoting,

1. pivot the column of largest norm to be the leading column,
2. form and apply a Householder reflector H so that HA = (O; g ,

3. proceed recursively (go back to step 1) to pivot the next column and factorize B
» Computing the SVD of the first r columns of APT generally (but not always)
gives the truncated SVD
» Halting after r steps leads to a cost of O(n?r)
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