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Conditioning of Linear Least Squares

» Consider fitting a line to a collection of points, then perturblng the points:
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» Linear least squares is ill-posed for any A, unless we consider solving for a
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Stability of Normal Equations w\“} e [le” /
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» We can often improve the solution to the normal equations by performmg
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Gram-Schmidt Orthogonalization

» Classical and Modified Gram-Schmidt process for QR:
The ith column of Q is g; = b;/||b;||2 where for CGS, N
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Error in MGS Orthogonalization

» MGS can be expressed in terms of projection matrices P; = I — q;q/
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» The error in g, due to a perturbation in a,, is amplified by H?;ll K(F;)
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Householder QR: Eliminating Error in MGS

» Householder QR eliminates error amplification by using orthogonal
Householder matrices (reflectors) rather than projection matrices
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» The cost of using Householder QR to solve a least squares problem is
2mn? — 2n3/3 to leading order
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Givens Rotations :Ij

» Givens rotations eliminate one element at a time G = {—CS j [3-} - Eiur]
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» Givens rotations can be advantageous w

orking with sparse matrices




Solving Rank-Deficient Least Squares Problems

» The pseudoinverse is defined b)[ﬁﬂ = VZTUTJllher t [nverts only
nonzero elements in X, it satisfies AATA = }f

A= (Y A = U[h JW e
\/M}ra.k Aau.A“L-, e

» Given a least squares problem Ax = b, where A is rank-deficient, we ca
solve it via the pseudoinverse
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QR with Column Pivoting

» An effective way to solve rank-deficient least squares problems without the
SVD, is using QR with column pivoting AP = QR
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» The rank-deficient least squares problem Axz = b can be solved by QR with
column pivoting



Aggregation of Transformations

» Householder transformations can be aggregated in the form I — YTY "
where Y is lower-trapezoidal and T is upper-triangular

» Given an arbitrary orthogonal matrix @, we can compute Y via LU
factorization of T — Q



