CS 450: Numerical Anlaysis

Lecture 7
Chapter 3 – Linear Least Squares
Stability and Efficiency of Linear Least Squares Algorithms

Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

February 7, 2018

Conditioning of Linear Least Squares

► Consider fitting a line to a collection of points, then perturbing the points:

Linear least squares is ill-posed for any A, unless we consider solving for a particular b

Stability of Normal Equations

▶ Normal equations solve $A^TAx = Ab$: K(A'A) = E(A)2

▶ We can often improve the solution to the normal equations by performing them again on the reduced Q:

chol (ATA)=LLT => ATA = LLT Cholory GR?

A=GR => ATA-RTR] = AT Cholory GR?

So A=âR=aRR

Ĝ=QR

R

Gram-Schmidt Orthogonalization

Classical and Modified Gram-Schmidt process for QR:

The
$$i$$
th column of $m{Q}$ is $m{q}_i=m{b}_i/||m{b}_i||_2$ where for CGS, $m{b}_i=m{a}_i-\sum_{j=1}^{i-1} \frac{\langle m{a}_j,m{a}_j \rangle}{\langle m{a}_j,m{a}_j \rangle} m{a}_j,$

while for MGS

$$egin{aligned} oldsymbol{b}_i &= oldsymbol{a}_i - \sum_{j=1}^{i-1} \langle oldsymbol{q}_j \rangle oldsymbol{a}_i
angle oldsymbol{a}_j. \end{aligned}$$
 Spen (Eq. - 9) and the sum of the

The cost of Gram-Schmidt is $2mn^2$ to leading order if $A \in \mathbb{R}^{m \times n}$: (n-i)4m in we product (9j, 9i) 2m

Error in MGS Orthogonalization

▶ MGS can be expressed in terms of projection matrices $P_i = I - q_i q_i^T$

The error in q_n due to a perturbation in a_n is amplified by $\prod_{i=1}^{n-1} \kappa(P_i)$ loss of allow your like to perform in which k (applying each P_i)

Householder QR: Eliminating Error in MGS

 Householder QR eliminates error amplification by using orthogonal Householder matrices (reflectors) rather than projection matrices

Householder matrices (reflectors) rather than projection matrices
$$Q_i = I - 2u_iu_i^T$$

A $\downarrow | U| e$

A $\downarrow 0.7 > 0$

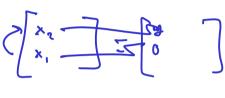
The cost of using Householder OR to solve a least squares problem is

The cost of using Householder QR to solve a least squares problem is $2mn^2-2n^3/3$ to leading order

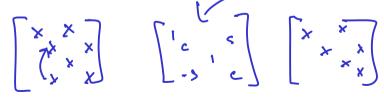
$$\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_$$

Givens Rotations

• Givens rotations eliminate one element at a time $G = \begin{bmatrix} c & s \\ -5 & c \end{bmatrix}$



▶ Givens rotations can be advantageous when working with *sparse* matrices



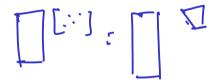
Solving Rank-Deficient Least Squares Problems

The *pseudoinverse* is defined by $A^{\dagger} = V \Sigma^{\dagger} U^T$ where Σ^{\dagger} inverts only nonzero elements in Σ , it satisfies $AA^{\dagger}A = A$

▶ Given a least squares problem $Ax \cong b$, where A is rank-deficient, we can solve it via the pseudoinverse

QR with Column Pivoting

lacktriangle An effective way to solve rank-deficient least squares problems without the SVD, is using QR with column pivoting AP=QR



▶ The rank-deficient least squares problem $Ax\cong b$ can be solved by QR with column pivoting

Aggregation of Transformations

▶ Householder transformations can be *aggregated* in the form $I - YTY^T$ where Y is lower-trapezoidal and T is upper-triangular

lacktriangle Given an arbitrary orthogonal matrix $oldsymbol{Q}$, we can compute $oldsymbol{Y}$ via LU factorization of $oldsymbol{I}-oldsymbol{Q}$