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Introduction to Krylov Subspace Methods
� Define k-dimensional Krylov subspace matrix

Kk =
�
x0 Ax0 · · · Ak−1x0

�

� Show that K−1
n AKn is a companion matrix C:



Krylov Subspaces
� Given QR = Kk, we obtain an orthonormal basis for the Krylov subspace,

K(A,x0) = span(Q):

� Consider whether k − 1 steps of power iteration starting from x0 lead to an
approximation in the Krylov subspace, also consider QR (subspace) iteration:



Krylov Subspace Methods
� Given QR = Kk, we obtain an orthonormal basis for the Krylov subspace

and Hk = QTAQ which minimizes ||AQ−QH||2:

� Hk is Hessenberg, because the companion matrix C is Hessenberg:



Rayleigh-Ritz Procedure

� The eigenvalues/eigenvectors of Hk are the Ritz values/vectors:

� The Ritz vectors and values are the ideal approximations of the actual
eigenvalues and eigenvectors based on only Hk and Q:



Arnoldi Iteration
� Arnoldi iteration computes H directly using the recurrence qT

i Aqj = hij :

� After each matrix-vector product, orthogonalization is done with respect to
each previous vector:



Lanczos Iteration
� Lanczos iteration provides a method to reduce a symmetric matrix to

tridiagonal matrix:

� After each matrix-vector product, it su�ces to orthogonalize with respect to
two previous vectors:



Cost Krylov Subspace Methods
� Consider a matrix with m nonzeros, what is the cost of a matrix-vector

product?

� How much does it cost to orthogonalize the vector at the kth iteration?



Restarting Krylov Subspace Methods
� In finite precision, Lanczos generally loses orthogonality, while

orthogonalization in Arnoldi can become prohibitively expensive:

� Consequently, in practice low-dimensional Krylov subspace methods are
constructed repeatedly using carefully selected new starting vectors:



Convergence of Lanczos Iteration
� Cauchy interlacing theorem: eigenvalues of Hk, λ̃1 ≥ · · · ≥ λ̃n with respect

to eigenvalues of A, λ1 ≥ · · · ≥ λn satisfy

λi ≤ λ̃i ≤ λn−k+i

� Convergence to extremal eigenvalues is generally fastest:



Applications of Eigenvalue Problems: Matrix Functions
� Given A = XDX−1 how can we compute Ak?

� What about eA ? log(A)? generally f(A)?



Applications of Eigenvalue Problems: Di�erential Equations
� Consider solutions to an ordinary di�erential equation of the form

dx
dt
(t) = Ax(t) + f(t) with x(0) = x0:

x(t) = etAx0 +

� t

0
e(t−τ)Af(τ)dτ

� Using A = XDX−1 permits us to compute the solution explicitly (Jordan
form also su�ces if A is defective):



Di�erential Equations using the Generalized Eigenvalue Problem
� Consider a more general linear di�erential equation of the form

B dx
dt
(t) = Ax(t) + f(t) with x(0) = x0, which we can solve by premultiplying

with B−1,

� If we can find X such that A = XDAX−1 and B = XDBX−1 we could
solve this equation while preserving symmetry of A and B:



Generalized Eigenvalue Problem
� A generalized eigenvalue problem has the form Ax = λBx,

� When A and B are symmetric, if one is SPD, we can perform Cholesky on B,
multiply A by the inverted factors, and diagonalize it:



Canonical Forms Generalized Eigenvalue Problem
� For nonsingular U ,V , A− λB = U(J − λI)V T where J is in Jordan form:

� For some unitary P ,Q, A = PTAQH and B = PTBQH where TA and TB

are triangular:



Nonlinear Eigenvalue Problem
� In a polynomial eigenvalue problem, we seek solutions λ,x to

d�

i=0

λiAix = 0

� Assuming for simplicity that Ad = I, solutions are given by solving the
matrix eigenvalue problem with the block-companion matrix



−Ad−1 · · · −A0

I 0 · · ·
. . . . . .





