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Introduction to Krylov Subspace Methods

» Define k-dimensional Krylov subspace matrix
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» Show that K‘lAI@is a companion matrix C:
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Krylov Subspaces

> Given@R = K, we obtain an orthonormal basis for the Krylov subspace,
K(A,xg) = span(Q):
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» (Qonsider whether k — 1 steps of power iteration starting from x¢ lead to an
pproximation in the Krylov subspace, also consider QR (subspace) iteration;
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Krylov Subspace Methods

» Given QR = K, we obtain an orthonormal basis for the Krylov subspace
and H; = QT AQ which minimizes ||[AQ — QH ||»:
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» H,; is Hessenberg, because the companion matrix C' is Hessenberg:
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Rayleigh-Ritz Procedure

» The eigenvalues/elgenvectors of H;, are the Ritz values/vectors:
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» The Ritz vectors and values are the ideal approximations of the actual
eigenvalues and eigenvectors based on only H;, and Q:



Arnoldi Iteration

» Arnoldi iteration computes H directly using the recurrence g} Ag; = h;j:
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» After each matrix-vector product, orthogonalization is done with respect to
each previous vector: 1(0
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Lanczos Iteration

» Lanczos iteration provides a method to reduce a symmetric matrix to
tridiagonal matrix:
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» After each matrix-vector product, it suffices to orthogonalize with respect to
two previous vectors:




Cost Krylov Subspace Methods

» Consider a matrix with m nonzeros, what is the cost of a matrix-vector

product?
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» How much does it cost to orthogonalize the vector at the kth iteration?
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Restarting Krylov Subspace Methods

» In finite precision, Lanczos generally loses orthogonality, while
orthogonalization in Arnoldi can become prohibitively expensive:
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» Consequently, in practice low-dimensional Krylov subspace methods are
constructed repeatedly using carefully selected new starting vectors:
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Convergence of Lanczos Iteration

> Cauchy interlacing theorem: eigenvalues of Hy A > -+ > )\, with respect

to eigenvalues of A, \; > --- > ), satisfy
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» Convergence to extremal eigenvalues is generally fastest:
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Applications of Eigenvalue Problems: Matrix Functions

» Given A = XDX ! how can we compute A*?
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» What about e ? log(A)? generally f(A
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Applications of Eigenvalue Problems: Differential Equations
» Consider solutions to an ordinary differential equation of the form

%(t) = Ax(t) + f(t) with £(0) = zo:
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» Using A = 2B permits us to compute the solution explicitly (Jordan
form also suffices if A is defectlveii b 4 (1-T >Oj’1'[/ \
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Differential Equations using the Generalized Eigenvalue Problem

» Consider a more general linear differential equation of the form
B‘%(t) = Ax(t) + f(t) with (0) = x¢, which we can solve by premultiplying
with B-1,~

» If we can fi uchthat A= XDsX 'and B= XDgX ! we could
solve this e on while preserving symmetry of A and B:
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Generalized Eigenvalue Problem

» A generalized eigenvalue problem has the form Ax = \Bzx,
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» When A and B are symmetric, if one is SPD, we can perform Cholesky on B,
multiply A by the inverted factors, and diagonalize it:
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Canonical Forms Generalized Eigenvalue Problem
» For nonsingular U,V, A — AB = U(J — AI)'VT where J is in Jordan form:

» For some unitary P,Q, A = PT4Q" and B = PTgQ" where T4 and T
are triangular:



Nonlinear Eigenvalue Problem

» In a polynomial eigenvalue problem, we seek solutions \, x to
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» Assuming for simplicity that A; = I, solutions are given by solving the
matrix eigenvalue problem with the block-companion matrix
—Ay - —Ag
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