CS 450: Numerical Anlaysis

Lecture 13

Chapter 5 – Nonlinear Equations
Existence, Conditioning, and 1D Methods for Nonlinear Equations

Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

March 2, 2018

Root-finding can be reduced to finding a fixed-point
$$g(x) = x$$
:

$$g(x^{*}) = x^{*}$$

e.g. $g(x) = f(x) + x$ $g(x) = \frac{f(x)}{2} + x$

Nonexistence and Nonuniqueness of Solutions

► Solutions do not generally exist and are not generally unique, even in the univariate case:

Solutions in the multivariate case correspond to intersections of hypersurfaces: every $f(x) = 0 = \begin{cases} f(x) \\ f(x) \end{cases} = \begin{cases} 0 \\ 0 \end{cases}$

Conditions under which Solutions Exist

► Intermediate value theorem for universite problems:

If a function has a unique fixed point in a given closed domain if it is is contractive and contained in that domain,

$$||g(x)-g(z)|| \leq \!\!\! \left \langle \gamma |x-z|
ight |$$

Multiple Roots and Degeneracy

▶ If x is a root of f with multiplicity m, $f(x) = f'(x) = f''(x) = \cdots = f^{(m-1)}(x) = 0$:

$$f(x) = (x-3)^2 g(x)$$

 $f'(x) = 2(x-3) g(x) + (x-3)^2 g'(x)$

Increased multiplicity affects conditioning and convergence:

Conditioning of Nonlinear Equations

• Generally, we take interest in the absolute rather than relative conditioning of solving f(x) = 0:

of solving
$$f(x) = 0$$
:

residual

$$f(x)$$

The condition number of solving f with respect to solution x is 1/|f'(x)| or $||J_f^{-1}(x)||$ for f at x:

The south reciprocal relationship to function

The south of the south

Bisection Algorithm

Assume we know the desired root exists in a bracket [a, b] and

Rates of Convergence

Let x_k be the kth iterate and $e_k = x_k = x^*$ be the error, bisection obtains linear convergence, $\lim_{k\to\infty} ||e_k||/||e_{k-1}|| \le C$:

rth order convergence implies that $||e_k||/||e_{k-1}|| \mathcal{O} \leq C$

Convergence of Fixed Point Iteration

▶ Fixed point iteration: $x_{k+1} = g(x_k)$ is locally linearly convergent if for

Fixed point iteration:
$$x_{k+1} = g(x_k)$$
 is locally linearly convergent if for $x^* = g(x^*)$, we have $|g'(x^*)| < 1$:

local conveyence
$$3 \times 6 \log 4 \times 9(g(x))$$

 $a(x) - x^* = a(x) - g(x^*)$

$$x^* = g(x^*), \text{ we have } |g'(x^*)| < 1:$$

$$|g(x)| = g(x^*), \text{ we have } |g'(x^*)| < 1:$$

$$|g(x)| = g(x^*), \text{ close } \neq x, \text{ } g(g(x^*)) \neq x$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -x^* = g(x^*), \text{ } -x^* = g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{ } -x^* = g(x^*), \text{ } -x^* = g(x^*)$$

$$= g(x^*), \text{ } -x^* = g(x^*), \text{$$

Jx E[x, x]

Newton's Method

Newton's method is derived from a Taylor series expansion of
$$f$$
 at x_k :

$$f(x_k) + f(x_k) + f(x_k) + f(x_k)(x-x_k) + f(x_k) + f(x_k)(x-x_k) + f(x_k) + f(x_k)(x-x_k) + f$$

Secant Method ▶ The Secant method approximates $f'(x_k) \approx f(x_k) - f(x_{k-1})$ ▶ The convergence is *superlinear* but not quadratic:

The convergence is superlinear but not quadratic:

$$\frac{e_{k,1}}{e_{k-1}} = \frac{c}{k} \frac{h_k}{h_k} \frac{c_k}{c_k} - \frac{h_k}{h_k} \frac{c_k}{h_k} \leq \frac{c_k}{h_k} \frac{h_k}{h_k} + \frac{h_k}{h_k} \frac{h_k}{h_k} \leq \frac{c_k}{h_k} \frac{h_k}{h_k} \frac{h_k}{h_k} + \frac{h_k}{h_k} \frac{h_k}{h_k} \leq \frac{c_k}{h_k} \frac{h_k}{h_k} \frac{h_k}{h_k} + \frac{h_k}{h_k} \frac{h$$

Nonlinear Tangential Interpolants

Secant method uses a linear interpolant based on points $f(x_k)$, $f(x_{k-1})$, could use more points and higher-order interpolant:

Quadratic interpolation (Muller's method) achieves convergence rate

Achieving Global Convergence

► Hybrid bisection/Newton methods:

► Bounded (damped) step-size:

| f ~ f ~ X + = X + - Af (X) / f'(X)