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Solving Nonlinear Equations AT L = a—(bc')"@'\—fn:o
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» Root-finding can be reduced to finding a fixed-point g(z) = «:




Nonexistence and Nonuniqueness of Solutions

» Solutions do not generally exist and are not generally unique, even in the
univariate case:
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» Solutions in the multivariate case correspond to intersections of

hypersurfaces:
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Conditions under which Solutions Exist

» Intermediate theorem for univerate problems:
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Multiple Roots and Degeneracy

» If x is a root of f with multiplicity m,

f(x) = f(a) = f'(x) = - *f(m’l( )=0:
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» Increased multiplicity affects conditioning and convergence:
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Conditioning of Nonlinear Equations

» Generally, we take interest in the absolute rather than relative conditioning

of solving f(x) = 0:
A (-C\ - \
rv,«';(mt‘ Lc (‘\F‘\l Fo al ‘C (k‘r)’

Kol = LWK\)Q/
—Fover °

» The condition number of solving f with respect to solution z is 1/|f'(x)]| or
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Bisection Algorithm ‘ D C\
» Assume we know the desired root exists in a bracket [a, b] and M Y

sign(f(a)) # sign(f(b)):
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» Bisection subdivides the interval by a factor of two at each step b
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Rates of Convergence

» Let x; be the kth iterate and e, = x;, = x* be the error, bisection obtains
linear convergence, limy,_, |lex||/||ex—1]| < C:
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Convergence of Fixed Point Iteration

» Fixed point iteration: xx1 = g(xx) is IocaIIy linearly convergent if for

z* = g(z*), we have |¢/(z*)| < 1:
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Newton’s Method Xiear = X = & () /(1 (')(1:\

» Newton’s method is derived from a Taylor series expansion of f at zy:

L0 Lexy = () + & () (22
+ O (-3 \
e

(W convergent if started sufficiently close to «|
x* so long as f/(z 0: %(,{\ X - E(’Q)/‘f'(k\
RIS I Frond (xx 7 O

[P l--&’ ips
Co = £ ) - (X Oy

1 6 _‘F
*‘Xk’;({) /4(’@\ /\;r(:?\‘fzaa




1 A
Secant Method % ., X "‘C(M\/? (%) £05)

v,
» The Secant method approximates f’(z) ~ [y far1) 7
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» The convergence is superlinear but not quadratic:
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Nonlinear Tangential Interpolants

» Secant method uses a linear interpolant based on points f(zr), f(zx—g),

could use more points and higher-order interpolant:
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» Quadratic interpolation (Muller’s method) achieves convergence rate

r~ 1.84:
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Achieving Global Convergence

» Hybrid bisection/Newton methods:

R _A
Yy Neeav o n

ma'\& r\..fb
I'{ M Lr\a' L)MQL\“"”

» Bounded (damped) step-size:
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