
CS 450: Numerical Anlaysis
Lecture 15

Chapter 6 Numerical Optimization
Secant Updating Methods and Basics of Numerical Optimization

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

March 7, 2018



Secant Updating Methods
In solving a nonlinear equation, seek approximate Jacobian Jf (xk) for each xk

� Find Bk+1 = Bk + δBk ≈ Jf (xk+1), so as to approximate secant equation

Bk+1(xk+1 − xk� �� �
δx

) = f(xk+1)− f(xk)� �� �
δf

� Broyden’s method is given by minimizing ||δBk||F :

δBk =
δf −Bkδx

||δx||2 δxT



Newton-Like Methods
� Can dampen step-size to improve reliability of Newton or Broyden iteration:

� Trust region methods provide general step-size control:



Numerical Optimization
� Our focus will be on continuous rather than combinatorial optimization:

min
x

f(x) subject to g(x) = 0 and h(x) ≤ 0

� We consider linear, quadratic, and general nonlinear optimization problems:



Local Minima and Convexity
� Without knowledge of the analytical form of the function, numerical

optimization methods at best achieve convergence to a local rather than
global minimum:

� A set is convex if it includes all points on any line, while a function is
(strictly) convex if its (unique) local minimum is always a global minimum:





Existence of Local Minima
� Level sets are all points for which f has a given value, sublevel sets are all

points for which the value of f is less than a given value:

� If there exists a closed and bounded sublevel set in the domain of feasible
points, then f has has a global minimum in that set:



Optimality Conditions
� If x is an interior point in the feasible domain and is a local minima,

∇f(x) = 0:

� Critical points x satisfy ∇f(x) = 0 and can be minima, maxima, saddle
points:



Hessian Matrix
� To ascertain whether an interior point x for which ∇f(x) = 0 is a local

minima, consider the Hessian matrix

Hf (x) = J∇f (x) =




d2f(x)
dx2

1
· · · d2f(x)

dx1dxn

... . . . ...
d2f(x)
dxndx1

· · · d2f(x)
dxndxn




� If x∗ is a minima of f , then Hf (x
∗) is positive semi-definite:



Optimality on Feasible Region Border
� In equality-constrained optimization g(x) = 0, minimizers x∗ are often found

on the border of the feasible region (set of points satisfying constraints), in
which case we must ensure any direction of decrease of f from x∗ leads to
an infeasible point, which gives us the condition:

∃λ ∈ Rn, −∇f(x∗) = JT
g (x

∗)λ

� Seek critical points in the Lagrangian function L(x,λ) = f(x) + λTg(x),
described by the nonlinear equation,

∇L(x,λ) =
�
∇f(x) + JT

g (x)λ

g(x)

�
= 0



Sensitivity and Conditioning
� The condition number of solving a nonlinear equations is 1/f �(x∗), however

for a minimizer x∗, we have f �(x∗) = 0, so conditioning of optimization is
inherently bad:

� To analyze worst case error, consider how far we have to move from a root x∗

to perturb the function value by �:



Golden Section Search
� Given bracket [a, b] with a unique minimum (f is unimodal on the interval), if

we consider points f(x1), f(x2), a < x1 < x2 < b, we can discard subinterval
[a, x1] or [x2, b]:

� Since one point remains in the interval, we seek to pick x1 and x2 so they can
be reused in the next iteration:

� We must ensure that the scaled distance of x2 from the start of the interval
[x1, 1] is the same as the distance of x1 from 0, so x2−x1

1−x1
= x1:



Newton’s Method for Optimization
� At each iteration, approximate function by quadratic and find minimum of

quadratic function:

� The new approximate guess will be given by xk+1 − xk = −f �(xk)/f ��(xk):


