CS 450: Numerical Anlaysis

Lecture 15
Chapter 6 Numerical Optimization
Secant Updating Methods and Basics of Numerical Optimization

Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

March 7, 2018

Secant Updating Methods

In solving a nonlinear equation, seek approximate Jacobian $J_f(x_k)$ for each x_k

In solving a nonlinear equation, seek approximate Jacobian
$$J_f(x_k)$$
 for each x_k \blacktriangleright Find $B_{k+1} = B_k + \delta B_k \approx J_f(x_{k+1})$, so as to approximate secant equation $B_{k+1}(\underbrace{x_{k+1} - x_k}) = \underbrace{f(x_{k+1}) - f(x_k)}_{\delta x}$. In the Alternative δ

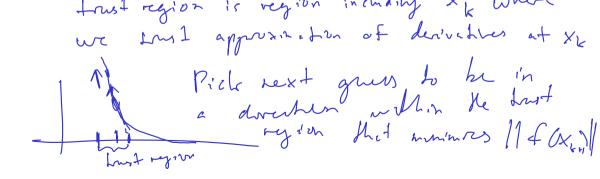
· (B+SB+1) 6x = 84 => SB+16x=8f-B+8x **Broyden's method** is given by minimizing $||\delta B_k||_F$: Cank -1 perhabition $\delta B_k = \frac{\delta f - B_k \delta x}{||\delta x||^2} \delta x^T = \frac{1}{||\delta x||^2}$ Sheman - Marrison form $||\delta x||^2$ $||\delta x||^2$ $||\delta x||^2$ $||\delta x||^2$

Broyden's method is given by minimizing
$$||\delta B_k||_F$$
:

 $|\delta X| = |\delta f| - |\delta f| + |\delta f$

Newton-Like Methods

Xx 51 => Newton's method ► *Trust region methods* provide general step-size control: trust region is region including Xk where we smil approximation of derivatives at Xk



Numerical Optimization

Our feet will be an acutious wethou they combine to viol antimization

Our focus will be on *continuous* rather than *combinatorial* optimization: $\min_{x} f(x) \quad \text{subject to} \quad g(x) = 0 \quad \text{and} \quad h(x) \leq 0$

assume f 13 brifferen diz ble

If g=h=0 for all x, then problem is unconstrainted otherwise constrained

We consider linear, quadratic, and general nonlinear optimization problems:

linear programming if f, g, h are linear (effine)

runlinear programming which include

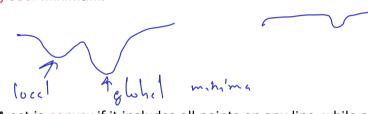
que do ahic programming, f is quadrate

que do ahic programming, f is quadrate

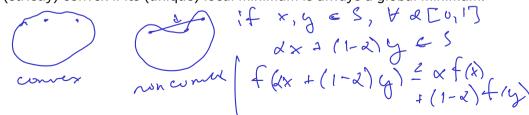
que do ahic programming, f is quadrate

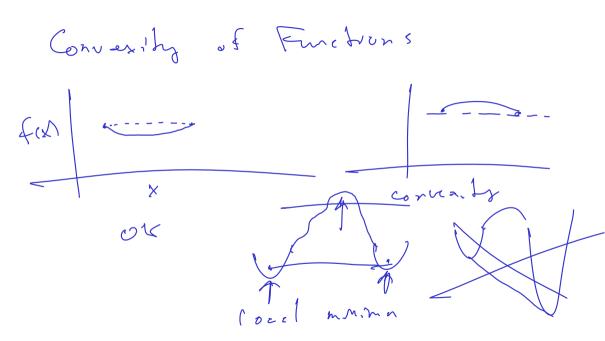
Local Minima and Convexity

Without knowledge of the analytical form of the function, numerical optimization methods at best achieve convergence to a *local* rather than *global* minimum:



A set is *convex* if it includes all points on any line, while a function is (strictly) convex if its (unique) local minimum is always a global minimum:





Existence of Local Minima

► *Level sets* are all points for which *f* has a given value, sublevel sets are all points for which the value of *f* is less than a given value:

$$L(z) = \{x : f(x) = z\}$$
 bevol set
 $S(z) = \{x : f(x) \leq z\}$ sublenel set

If there exists a closed and bounded sublevel set in the domain of feasible points, then f has has a global minimum in that set:

gi'en set S(z) for some z if S(z) is configuous and closed s(z) and bounded, then a global monin exists and bounded, then a global monin exists

Optimality Conditions

If x is an interior point in the feasible domain and is a local minima

 $lackbox{Critical points } oldsymbol{x} ext{ satisfy }
abla f(oldsymbol{x}) = 0 ext{ and can be minima, maxima, saddle}$

Hessian Matrix

▶ To ascertain whether an interior point x for which $\nabla f(x) = 0$ is a local

minima, consider the Hessian matrix
$$\boldsymbol{H}_f(\boldsymbol{x}) = \boldsymbol{J}_{\nabla f}(\boldsymbol{x}) = \begin{bmatrix} \frac{d^2 f(\boldsymbol{x})}{dx_1^2} & \cdots & \frac{d^2 f(\boldsymbol{x})}{dx_1 dx_n} \\ \vdots & \ddots & \vdots \\ \frac{d^2 f(\boldsymbol{x})}{dx_n dx_n} & \cdots & \frac{d^2 f(\boldsymbol{x})}{dx_n dx_n} \end{bmatrix}$$

minima, consider the Hessian matrix
$$m{H}_f(m{x}) = m{J}_{
abla f}(m{x}) = egin{bmatrix} rac{d^2 f(m{x})}{dx_1^2} & \cdots & rac{d^2 f(m{x})}{dx_1 dx_n} \\ dots & \ddots & dots \\ rac{d^2 f(m{x})}{dx_n dx_1} & \cdots & rac{d^2 f(m{x})}{dx_n dx_n} \end{bmatrix}$$

minima, consider the Hessian matrix
$$H_f(x) = J_{\nabla f}(x) = \begin{bmatrix} \frac{d^2 f(x)}{dx_1^2} & \cdots & \frac{d^2 f(x)}{dx_1 dx_n} \\ \vdots & \ddots & \vdots \\ \frac{d^2 f(x)}{dx_n dx_1} & \cdots & \frac{d^2 f(x)}{dx_n dx_n} \end{bmatrix}$$

$$H_f(x) = J_{\nabla f}(x) = \begin{bmatrix} \frac{1}{3}\frac{1}{dx_1^2} & \cdots & \frac{1}{dx_1}\frac{1}{dx_n} \\ \vdots & \ddots & \vdots \\ \frac{d^2f(x)}{dx_ndx_1} & \cdots & \frac{d^2f(x)}{dx_ndx_n} \end{bmatrix}$$
 Symins

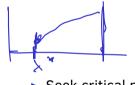
 $\int_{\mathbb{R}} (\chi^* + \delta \chi) = \int_{\mathbb{R}} (\chi^*) + \int_{\mathbb{R}} (\chi^*) \delta \chi$ $\downarrow I(x^*) \text{ is a minima of } f, \text{ then } H_f(x^*) \text{ is positive semi-definite: } \frac{1}{2} \delta \chi H_f(\chi^*) \delta \chi$ mind of zet $H_{f}(x^{*})$ is positive definite if for some 8x, $\frac{1}{2}8x^{*}H_{f}(x^{*})$ $5 \ge 8$, then $f(x+\delta x) cf(x)$

$$\left[\frac{d^2f(x)}{dx_ndx_1} \cdots \frac{d^2f(x)}{dx_ndx_n}\right]$$

$$\left[\begin{pmatrix} \chi^* & \downarrow & \downarrow \\ \chi^* & \downarrow & \downarrow \end{pmatrix} + \left[\begin{pmatrix} \chi^* & \downarrow \\ \chi^* & \downarrow \end{pmatrix} + \left[\begin{pmatrix} \chi^* & \downarrow \\ \chi^* & \downarrow \end{pmatrix} \right]$$
If (x^*) is a minima of f , then $H_f(x^*)$ is positive semi-definite: $\frac{1}{2}$

Optimality on Feasible Region Border h (x) 50 1 growed

ightharpoonup In equality-constrained optimization g(x)=0, minimizers x^* are often found on the border of the feasible region (set of points satisfying constraints), in which case we must ensure any direction of decrease of f from x^* leads to an infeasible point, which gives us the condition:



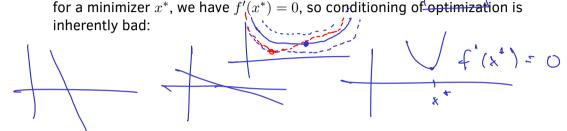
 $\exists \lambda \in \mathbb{R}^n$, $-\nabla f(x^*) = J_{\mathcal{D}}^T(x^*)\lambda$ Lagrange he Lagrangian functions • Seek critical points in the Lagrangian function $\mathcal{L}(x, \lambda) = f(x) + \lambda^T g(x)$

described by the nonlinear equation,

$$\nabla \mathcal{L}(x, \lambda) = \begin{bmatrix} \nabla f(x) + J_g^T(x)\lambda \\ g(x) \end{bmatrix} = 0$$

Sensitivity and Conditioning

lacktriangle The condition number of solving a nonlinear equations is $1/f'(x^*)$, however for a minimizer x^* , we have $f'(x^*) = 0$, so conditioning of optimization is

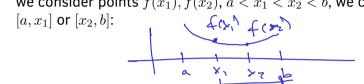


 \triangleright To analyze worst case error, consider how far we have to move from a root x^* to perturb the function value by ϵ :

to perturb the function value by
$$\epsilon$$
:
$$\epsilon = f(x^* + h) - f(x^*) = f(x^*) + f(x)h + f'(x^*) + f(x)h + f'(x)h + f'(x^*) + f(x)h + f'(x)h + f$$

Golden Section Search

Colder 1che = 1455 ▶ Given bracket [a,b] with a unique minimum (f is $\underbrace{unimodal}$ on the interval), if 7we consider points $f(x_1)$, $f(x_2)$, $a < x_1 < x_2 < b$, we can discard subinterval



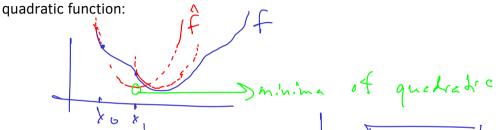
ightharpoonup Since one point remains in the interval, we seek to pick x_1 and x_2 so they can be reused in the next iteration:

want
$$x_2 = (b-a) - x_1$$

 \blacktriangleright We must ensure that the scaled distance of x_2 from the start of the interval $[x_1,1]$ is the same as the distance of x_1 from 0, so $\underbrace{x_2-x_1}_{1-x_1}=x_1$:

Newton's Method for Optimization

► At each iteration, approximate function by quadratic and find minimum of



The new approximate guess will be given by $x_{k+1} - \bar{x}_k = -f'(x_k)/f''(x_k)$: $f(x_k + h) = f(x_k) + f'(x_k) + \frac{1}{2} f''(x_k)$