CS 450: Numerical Anlaysis

Lecture 15
Chapter 6 Numerical Optimization
Secant Updating Methods and Basics of Numerical Optimization

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

March 7, 2018



Secant Updating Methods
In solving a nonlinear equation, seek apprOX|mate Jacoblar{Jf(a:k)For each x;,

» Find By By~ Jg(xp11), S0 as to approximate secant equation
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» Broyden’s method is given by minimizing HQ/ : J
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Newton-Like Methods

» Can dampen step-size to improve reliability of Newton or Broyden iteration:
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» Trust region methods provide general step-size control:
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Numerical Optimization

» Our focus will be on continuous rather than combinatorial optimization:
n%cinf(a:) subjectto g(x) =0 and h(z) <0
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» We consider linear, quadratic, and general nonlinear optimization problems:
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Local Minima and Convexity

» Without knowledge of the analytical form of the function, numerical
optimization methods at best achieve convergence to a /ocal rather than 4

lobal minimum: Commnw
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» A setis convex if it includes all points on any line, while a function is
(strictly) convex if its (unique) local minimum is always a global minimum:
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Existence of Local Minima

» Level sets are all points for which f has a given value, sublevel sets are all
points for which the value of f is less than a given value:
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» If there exists a closed and bounded sublevel set in the domain of feasible
points, then f has has a global minimum in that set:
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Optimality Conditions
» If x is an interior point in the fea5|ble domain and is a local minima,

V() : LL\'\I\A/)
an s
N&T;-r\ Coﬂl"l: $C\ ‘é\a ~

\a,ow/(w?
L i(x\
V&Q(?\io ) ﬁm ,gic;,(/gx\ 44&{\

» Critical points x satisfy V f(x) = 0 and can be minima, maxima, saddle
points: =
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Hessian Matrix

» To ascertain whether an interior point = for which V f(x) = 0 is a local

minima, consider the Hessian matrix

a2 f(z) d? f(z)
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> I@IS a minima of f, then H;(x*) is positive semi- deflnlte
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Optimality on Feasible Region Border A €0 ) W

= 0, minimizers =* are often found

» In equality-constrained optimization g
i i ints satisfying constraints), in

on the bord

an infeasible point, which gives us the condition:
IAER", —Vf(z*)=Jk
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» Seek critical points in the Lagrangian function £(z, \) = f(z) + AT g(x

described by the nonlinear equation, /




Sensitivity and Conditioning
» The condition number of solving a nonlinear equations igfll/f (x *),! however
for a minimizer z*, we have f’ ( *) =0, so condltlonmg 0 ization is
inherently bad: .
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» To analyze worst case error, consider how far we have to move from a root =*
to perturb the function value by e: " e \‘L
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Golden Section Search Clfin veln - LHS

» Given bracket [a, b] with a unique minimum (f is unimodal on the interval), if
we consider points f(z1), f(z2), a < x; < x2 < b, we can discard subinterval

[a,:nl] or [:Ez,b]I @‘\
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» Since one point remains in the interval, we seek to pick 21 and x5 so they can
be reused in the next iteration: 1
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\:S [x1,1] is the same as the distance of z; from 0, so
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» We must ensure that the scaled distance of x5 from the start of the interval
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Newton’s Method for Optimization

» At each iteration, approximate function by quadratic and find minimum of
quadratic function: Qo /F—
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» The new approximate guess will be given by 2,1 — x5, =\—f'(x1)/f" (z1):
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