CS 450: Numerical Anlaysis

Lecture 16
Chapter 6 Numerical Optimization
Unconstrained Optimization Algorithms and Nonlinear Least Squares

Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

March 9, 2018

Successive Parabolic Interpolation

▶ Interpolate f with a quadratic function at each step and find its minima:

lacktriangle The convergence rate of the resulting method is roughly 1.324

superlinear her GSS (linear, C=.6) worse than Newton (quadratic)

Newton's Method for Optimization

► Instead of interpolating points, match derivatives at current approximate

expand Taylor series of fabout xx and beep 3 terms then minimize

▶ The new approximate guess will be given by $x_{k+1} - x_k = -f'(x_k)/f''(x_k)$:

Safeguarded 1D Optimization

► Safeguarding can be done by bracketing via golden section search:

Backtracking and step-size control:

Ly Newton step if ontside of bracket perform step of 688

Multidimensional Optimization

Direct search methods by simplex (Nelder-Mead):

Steepest descent: find the minimizer in the direction of the negative gradient: -Vf(xk) XL=1 = Xk - ds Vf(find Xk to minimize XL = argmin f(XL - XK \ X(XX))

Convergence of Steepest Descent

► Steepest descent converges linearly with a constant that can be arbitrarily close to 1:

can always make progress for sufficiently small dk

but could have to set dk very small

descent directions any direction in which the objective fune. I

Newton's Method for Multidimensional Optimization

▶ Newton's method in n dimensions is given by finding minima of

$$-\nabla f(x_k) = H_f(x_k)^s$$

$$X_{k+1} = X_k - H_f(x_k)^T \nabla f(x_k) Solve$$

Convergence of Newton's Method

Ouasi-Newton Methods Quasi-Newton methods compute approximations to the Hessian at each step: replace Uf (x) with By (init. Bo=1) Newsfor many not give on Step-size control (line seerch)

The BFGS method is a secant update method, similar to Broyden's method: good Quesi-Newtor methods are more robest than Newton in finding descent direction to BFCS is similar Broyden's method (secant approximation), rank-I update

Nonlinear Least Squares

Lets consider a *nonlinear least squares* problem of fitting a nonlinear function $f_x(t)$ so that $f_x(t_i) \approx y_i$:

$$f_{(x_1,x_2)}(4) = x_1 sin(x_2 + 1)$$

We can cast nonlinear least squares as an optimization problem and solve it by Newton's method:

$$\begin{array}{lll}
\Gamma_{1}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{1}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{2}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{3}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{4}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{4}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{4}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{4}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{4}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{4}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{4}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{4}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{4}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{4}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{4}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{4}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{4}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{4}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{5}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{5}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{5}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{5}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{5}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{5}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{5}(x) &= -f_{x}(f_{1}) + g_{1} = g_{1} - f_{x}(f_{1}) \\
M_{5}(x) &= -f_{x}(f_{1}) + g_{1} - g_{1}$$

Gauss-Newton Method

▶ The Gauss-Newton method is a simplification of Newton's method for the nonlinear least squares problem:

Levenberg-Marquardt Method

► The Levenberg-Marquardt modifies the Gauss-Newton method to use Tykhonov regularization:

 \triangleright The scalar μ controls the step size through the least squares problem: