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Boundary Value Problems for ODEs
» Often we seek to solve a differential equation that satisfies conditions on its
values and derivatives on parts of the domain boundary. Consider a first
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» High-order boundary conditions can be reduced to flrst order like ODEs @ Z0
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Boundary Value Problems for ODEs M”L”’M/“’WM oDz

» Can derive the solutions to a linear ODE BVP y’(t ) A(t)y from
solutions to homogenous linear ODE y/3= A(t)y(t) IVPs:
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Boundary Value Problems for ODEs G (1)~ Ve uek)
» Can derive the solutions to a linear ODE BVP y?t A(t)y (t) b(t) from

solutions to homogenpus linear ODE ¢y’ = ) IVPs:
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Linear ODE BVP Green’s Function ~ S( =Y\ ™
» We now Fess our solupgn_(mi' h form = '(5)ds)) in
the formgl Gll/; the Gre;i un(c:/f)n)i{,
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Conditioning of Linear ODE BVPs

» For any given b(t) and ¢, the solution to the BVP can be written in the form:

y(t) :@c+ /a )b(s)ds
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» The absolute condition number of the BVP is/x = max{[|®||oo, || G||x }:
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Shooting Method for ODE BVPs

» For linear ODEs, we constructed solutions from IVP solutions in Y (¢ ich
suggests a method for solving BVPs by reduction to IVPs
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» Multiple shooting employs the shooting method over subdomains: — (C g ‘0”»/43
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Finite Difference Methods

» Rather than solve a sequence of IVPs that satisfy the ODEs until they
(approximately) satisfy boundary conditions, we can refine an approximation
that satisfies the boundary condltlons until it satisfies the ODE L /%
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» Convergence to solution is obtained with decreasmg step 5|ze h so Iong as
the method is consistent and stable:
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