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Eigenvalue Problems

Eigenvalue problems occur in many areas of science and
engineering, such as structural analysis

Eigenvalues are also important in analyzing numerical
methods

Theory and algorithms apply to complex matrices as well
as real matrices

With complex matrices, we use conjugate transpose, AH ,
instead of usual transpose, AT
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Eigenvalues and Eigenvectors

Standard eigenvalue problem : Given n× n matrix A, find
scalar λ and nonzero vector x such that

Ax = λx

λ is eigenvalue, and x is corresponding eigenvector

λ may be complex even if A is real

Spectrum = λ(A) = set of eigenvalues of A

Spectral radius = ρ(A) = max{|λ| : λ ∈ λ(A)}
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Geometric Interpretation

Matrix expands or shrinks any vector lying in direction of
eigenvector by scalar factor

Expansion or contraction factor is given by corresponding
eigenvalue λ

Eigenvalues and eigenvectors decompose complicated
behavior of general linear transformation into simpler
actions
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Examples: Eigenvalues and Eigenvectors

A =

�
1 0
0 2

�
: λ1 = 1, x1 =

�
1
0

�
, λ2 = 2, x2 =

�
0
1

�

A =

�
1 1
0 2

�
: λ1 = 1, x1 =

�
1
0

�
, λ2 = 2, x2 =

�
1
1

�

A =

�
3 −1

−1 3

�
: λ1 = 2, x1 =

�
1
1

�
, λ2 = 4, x2 =

�
1

−1

�

A =

�
1.5 0.5
0.5 1.5

�
: λ1 = 2, x1 =

�
1
1

�
, λ2 = 1, x2 =

�
−1
1

�

A =

�
0 1

−1 0

�
: λ1 = i, x1 =

�
1
i

�
, λ2 = −i, x2 =

�
i
1

�

where i =
√
−1
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Characteristic Polynomial

Equation Ax = λx is equivalent to

(A− λI)x = 0

which has nonzero solution x if, and only if, its matrix is
singular
Eigenvalues of A are roots λi of characteristic polynomial

det(A− λI) = 0

in λ of degree n
Fundamental Theorem of Algebra implies that n× n matrix
A always has n eigenvalues, but they may not be real nor
distinct
Complex eigenvalues of real matrix occur in complex
conjugate pairs: if α+ iβ is eigenvalue of real matrix, then
so is α− iβ, where i =

√
−1
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Example: Characteristic Polynomial

Characteristic polynomial of previous example matrix is

det

��
3 −1

−1 3

�
− λ

�
1 0
0 1

��
=

det

��
3− λ −1
−1 3− λ

��
=

(3− λ)(3− λ)− (−1)(−1) = λ2 − 6λ+ 8 = 0

so eigenvalues are given by

λ =
6±

√
36− 32

2
, or λ1 = 2, λ2 = 4
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Companion Matrix

Monic polynomial

p(λ) = c0 + c1λ+ · · ·+ cn−1λ
n−1 + λn

is characteristic polynomial of companion matrix

Cn =




0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
. . .

...
...

0 0 · · · 1 −cn−1




Roots of polynomial of degree > 4 cannot always
computed in finite number of steps
So in general, computation of eigenvalues of matrices of
order > 4 requires (theoretically infinite) iterative process
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Characteristic Polynomial, continued

Computing eigenvalues using characteristic polynomial is
not recommended because of

work in computing coefficients of characteristic polynomial
sensitivity of coefficients of characteristic polynomial
work in solving for roots of characteristic polynomial

Characteristic polynomial is powerful theoretical tool but
usually not useful computationally
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Example: Characteristic Polynomial

Consider

A =

�
1 �
� 1

�

where � is positive number slightly smaller than
√
�mach

Exact eigenvalues of A are 1 + � and 1− �

Computing characteristic polynomial in floating-point
arithmetic, we obtain

det(A− λI) = λ2 − 2λ+ (1− �2) = λ2 − 2λ+ 1

which has 1 as double root

Thus, eigenvalues cannot be resolved by this method even
though they are distinct in working precision
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Multiplicity and Diagonalizability

Multiplicity is number of times root appears when
polynomial is written as product of linear factors

Eigenvalue of multiplicity 1 is simple

Defective matrix has eigenvalue of multiplicity k > 1 with
fewer than k linearly independent corresponding
eigenvectors

Nondefective matrix A has n linearly independent
eigenvectors, so it is diagonalizable

X−1AX = D

where X is nonsingular matrix of eigenvectors

Michael T. Heath Scientific Computing 12 / 87





Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Characteristic Polynomial
Relevant Properties of Matrices
Conditioning

Eigenspaces and Invariant Subspaces

Eigenvectors can be scaled arbitrarily: if Ax = λx, then
A(γx) = λ(γx) for any scalar γ, so γx is also eigenvector
corresponding to λ

Eigenvectors are usually normalized by requiring some
norm of eigenvector to be 1

Eigenspace = Sλ = {x : Ax = λx}

Subspace S of Rn (or Cn) is invariant if AS ⊆ S

For eigenvectors x1 · · · xp, span([x1 · · · xp]) is invariant
subspace
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Relevant Properties of Matrices

Properties of matrix A relevant to eigenvalue problems

Property Definition
diagonal aij = 0 for i �= j
tridiagonal aij = 0 for |i− j| > 1
triangular aij = 0 for i > j (upper)

aij = 0 for i < j (lower)
Hessenberg aij = 0 for i > j + 1 (upper)

aij = 0 for i < j − 1 (lower)

orthogonal ATA = AAT = I
unitary AHA = AAH = I
symmetric A = AT

Hermitian A = AH

normal AHA = AAH
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Examples: Matrix Properties

Transpose:
�
1 2
3 4

�T
=

�
1 3
2 4

�

Conjugate transpose:
�
1 + i 1 + 2i
2− i 2− 2i

�H
=

�
1− i 2 + i
1− 2i 2 + 2i

�

Symmetric:
�
1 2
2 3

�

Nonsymmetric:
�
1 3
2 4

�

Hermitian:
�

1 1 + i
1− i 2

�

NonHermitian:
�

1 1 + i
1 + i 2

�
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Examples, continued

Orthogonal:
�
0 1
1 0

�
,

�
−1 0
0 −1

�
,

� √
2/2

√
2/2

−
√
2/2

√
2/2

�

Unitary:
�
i
√
2/2

√
2/2

−
√
2/2 −i

√
2/2

�

Nonorthogonal:
�
1 1
1 2

�

Normal:



1 2 0
0 1 2
2 0 1




Nonnormal:
�
1 1
0 1

�
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Properties of Eigenvalue Problems

Properties of eigenvalue problem affecting choice of algorithm
and software

Are all eigenvalues needed, or only a few?

Are only eigenvalues needed, or are corresponding
eigenvectors also needed?

Is matrix real or complex?

Is matrix relatively small and dense, or large and sparse?

Does matrix have any special properties, such as
symmetry, or is it general matrix?
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Conditioning of Eigenvalue Problems

Condition of eigenvalue problem is sensitivity of
eigenvalues and eigenvectors to changes in matrix

Conditioning of eigenvalue problem is not same as
conditioning of solution to linear system for same matrix

Different eigenvalues and eigenvectors are not necessarily
equally sensitive to perturbations in matrix
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Conditioning of Eigenvalues

If µ is eigenvalue of perturbation A+E of nondefective
matrix A, then

|µ− λk| ≤ cond2(X) �E�2

where λk is closest eigenvalue of A to µ and X is
nonsingular matrix of eigenvectors of A
Absolute condition number of eigenvalues is condition
number of matrix of eigenvectors with respect to solving
linear equations
Eigenvalues may be sensitive if eigenvectors are nearly
linearly dependent (i.e., matrix is nearly defective)
For normal matrix (AHA = AAH ), eigenvectors are
orthogonal, so eigenvalues are well-conditioned
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Conditioning of Eigenvalues

If (A+E)(x+Δx) = (λ+Δλ)(x+Δx), where λ is
simple eigenvalue of A, then

|Δλ| � �y�2 · �x�2
|yHx| �E�2 =

1

cos(θ)
�E�2

where x and y are corresponding right and left
eigenvectors and θ is angle between them
For symmetric or Hermitian matrix, right and left
eigenvectors are same, so cos(θ) = 1 and eigenvalues are
inherently well-conditioned
Eigenvalues of nonnormal matrices may be sensitive
For multiple or closely clustered eigenvalues,
corresponding eigenvectors may be sensitive
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Problem Transformations

Shift : If Ax = λx and σ is any scalar, then
(A− σI)x = (λ− σ)x, so eigenvalues of shifted matrix are
shifted eigenvalues of original matrix

Inversion : If A is nonsingular and Ax = λx with x �= 0,
then λ �= 0 and A−1x = (1/λ)x, so eigenvalues of inverse
are reciprocals of eigenvalues of original matrix

Powers : If Ax = λx, then Akx = λkx, so eigenvalues of
power of matrix are same power of eigenvalues of original
matrix

Polynomial : If Ax = λx and p(t) is polynomial, then
p(A)x = p(λ)x, so eigenvalues of polynomial in matrix are
values of polynomial evaluated at eigenvalues of original
matrix
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Similarity Transformation

B is similar to A if there is nonsingular matrix T such that

B = T−1A T

Then

By = λy ⇒ T−1ATy = λy ⇒ A(Ty) = λ(Ty)

so A and B have same eigenvalues, and if y is
eigenvector of B, then x = Ty is eigenvector of A

Similarity transformations preserve eigenvalues and
eigenvectors are easily recovered
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Example: Similarity Transformation

From eigenvalues and eigenvectors for previous example,
�

3 −1
−1 3

� �
1 1
1 −1

�
=

�
1 1
1 −1

� �
2 0
0 4

�

and hence
�
0.5 0.5
0.5 −0.5

� �
3 −1

−1 3

� �
1 1
1 −1

�
=

�
2 0
0 4

�

So original matrix is similar to diagonal matrix, and
eigenvectors form columns of similarity transformation
matrix
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Diagonal Form

Eigenvalues of diagonal matrix are diagonal entries, and
eigenvectors are columns of identity matrix

Diagonal form is desirable in simplifying eigenvalue
problems for general matrices by similarity transformations

But not all matrices are diagonalizable by similarity
transformation

Closest one can get, in general, is Jordan form, which is
nearly diagonal but may have some nonzero entries on first
superdiagonal, corresponding to one or more multiple
eigenvalues
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Triangular Form

Any matrix can be transformed into triangular (Schur ) form
by similarity, and eigenvalues of triangular matrix are
diagonal entries
Eigenvectors of triangular matrix less obvious, but still
straightforward to compute
If

A− λI =



U11 u U13

0 0 vT

O 0 U33




is triangular, then U11y = u can be solved for y, so that

x =




y
−1
0




is corresponding eigenvector
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Block Triangular Form

If

A =




A11 A12 · · · A1p

A22 · · · A2p

. . .
...

App




with square diagonal blocks, then

λ(A) =

p�

j=1

λ(Ajj)

so eigenvalue problem breaks into p smaller eigenvalue
problems
Real Schur form has 1× 1 diagonal blocks corresponding
to real eigenvalues and 2× 2 diagonal blocks
corresponding to pairs of complex conjugate eigenvalues
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Forms Attainable by Similarity
A T B

distinct eigenvalues nonsingular diagonal
real symmetric orthogonal real diagonal
complex Hermitian unitary real diagonal
normal unitary diagonal
arbitrary real orthogonal real block triangular

(real Schur)
arbitrary unitary upper triangular

(Schur)
arbitrary nonsingular almost diagonal

(Jordan)

Given matrix A with indicated property, matrices B and T
exist with indicated properties such that B = T−1AT
If B is diagonal or triangular, eigenvalues are its diagonal
entries
If B is diagonal, eigenvectors are columns of T
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Power Iteration

Simplest method for computing one eigenvalue-
eigenvector pair is power iteration, which repeatedly
multiplies matrix times initial starting vector

Assume A has unique eigenvalue of maximum modulus,
say λ1, with corresponding eigenvector v1

Then, starting from nonzero vector x0, iteration scheme

xk = Axk−1

converges to multiple of eigenvector v1 corresponding to
dominant eigenvalue λ1
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Convergence of Power Iteration

To see why power iteration converges to dominant
eigenvector, express starting vector x0 as linear
combination

x0 =
n�

i=1

αivi

where vi are eigenvectors of A
Then

xk = Axk−1 = A2xk−2 = · · · = Akx0 =

n�

i=1

λk
i αivi = λk

1

�
α1v1 +

n�

i=2

(λi/λ1)
kαivi

�

Since |λi/λ1| < 1 for i > 1, successively higher powers go
to zero, leaving only component corresponding to v1
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Example: Power Iteration
Ratio of values of given component of xk from one iteration
to next converges to dominant eigenvalue λ1

For example, if A =

�
1.5 0.5
0.5 1.5

�
and x0 =

�
0
1

�
, we obtain

k xT
k ratio

0 0.0 1.0
1 0.5 1.5 1.500
2 1.5 2.5 1.667
3 3.5 4.5 1.800
4 7.5 8.5 1.889
5 15.5 16.5 1.941
6 31.5 32.5 1.970
7 63.5 64.5 1.985
8 127.5 128.5 1.992

Ratio is converging to dominant eigenvalue, which is 2
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Limitations of Power Iteration

Power iteration can fail for various reasons

Starting vector may have no component in dominant
eigenvector v1 (i.e., α1 = 0) — not problem in practice
because rounding error usually introduces such
component in any case

There may be more than one eigenvalue having same
(maximum) modulus, in which case iteration may converge
to linear combination of corresponding eigenvectors

For real matrix and starting vector, iteration can never
converge to complex vector
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Normalized Power Iteration

Geometric growth of components at each iteration risks
eventual overflow (or underflow if λ1 < 1)

Approximate eigenvector should be normalized at each
iteration, say, by requiring its largest component to be 1 in
modulus, giving iteration scheme

yk = Axk−1

xk = yk/�yk�∞

With normalization, �yk�∞ → |λ1|, and xk → v1/�v1�∞

Michael T. Heath Scientific Computing 32 / 87



Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Problem Transformations
Power Iteration and Variants
Other Methods

Example: Normalized Power Iteration

Repeating previous example with normalized scheme,

k xT
k �yk�∞

0 0.000 1.0
1 0.333 1.0 1.500
2 0.600 1.0 1.667
3 0.778 1.0 1.800
4 0.882 1.0 1.889
5 0.939 1.0 1.941
6 0.969 1.0 1.970
7 0.984 1.0 1.985
8 0.992 1.0 1.992

< interactive example >
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Geometric Interpretation

Behavior of power iteration depicted geometrically

Initial vector x0 = v1 + v2 contains equal components in
eigenvectors v1 and v2 (dashed arrows)

Repeated multiplication by A causes component in v1
(corresponding to larger eigenvalue, 2) to dominate, so
sequence of vectors xk converges to v1
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Power Iteration with Shift

Convergence rate of power iteration depends on ratio
|λ2/λ1|, where λ2 is eigenvalue having second largest
modulus

May be possible to choose shift, A− σI, such that
����
λ2 − σ

λ1 − σ

���� <
����
λ2

λ1

����

so convergence is accelerated

Shift must then be added to result to obtain eigenvalue of
original matrix
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Example: Power Iteration with Shift

In earlier example, for instance, if we pick shift of σ = 1,
(which is equal to other eigenvalue) then ratio becomes
zero and method converges in one iteration

In general, we would not be able to make such fortuitous
choice, but shifts can still be extremely useful in some
contexts, as we will see later
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Inverse Iteration

If smallest eigenvalue of matrix required rather than
largest, can make use of fact that eigenvalues of A−1 are
reciprocals of those of A, so smallest eigenvalue of A is
reciprocal of largest eigenvalue of A−1

This leads to inverse iteration scheme

Ayk = xk−1

xk = yk/�yk�∞

which is equivalent to power iteration applied to A−1

Inverse of A not computed explicitly, but factorization of A
used to solve system of linear equations at each iteration
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Inverse Iteration, continued

Inverse iteration converges to eigenvector corresponding
to smallest eigenvalue of A

Eigenvalue obtained is dominant eigenvalue of A−1, and
hence its reciprocal is smallest eigenvalue of A in modulus
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Example: Inverse Iteration

Applying inverse iteration to previous example to compute
smallest eigenvalue yields sequence

k xT
k �yk�∞

0 0.000 1.0
1 −0.333 1.0 0.750
2 −0.600 1.0 0.833
3 −0.778 1.0 0.900
4 −0.882 1.0 0.944
5 −0.939 1.0 0.971
6 −0.969 1.0 0.985

which is indeed converging to 1 (which is its own reciprocal
in this case)

< interactive example >
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Inverse Iteration with Shift

As before, shifting strategy, working with A− σI for some
scalar σ, can greatly improve convergence

Inverse iteration is particularly useful for computing
eigenvector corresponding to approximate eigenvalue,
since it converges rapidly when applied to shifted matrix
A− λI, where λ is approximate eigenvalue

Inverse iteration is also useful for computing eigenvalue
closest to given value β, since if β is used as shift, then
desired eigenvalue corresponds to smallest eigenvalue of
shifted matrix
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Rayleigh Quotient

Given approximate eigenvector x for real matrix A,
determining best estimate for corresponding eigenvalue λ
can be considered as n× 1 linear least squares
approximation problem

xλ ∼= Ax

From normal equation xTxλ = xTAx, least squares
solution is given by

λ =
xTAx

xTx

This quantity, known as Rayleigh quotient, has many useful
properties
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