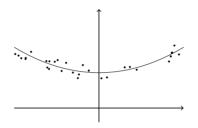
Today:	Annonneements;
- Linour Jeast sq.	- HWZ due
1	- Exambl next week
	- Gooding weights
	- (67

What about non-square systems?

Specifically, what about linear systems with 'tall and skinny' matrices? (A: $m \times n$ with m > n) (aka overdetermined linear systems)

Specifically, any hope that we will solve those exactly?

Example: Data Fitting



Have data: (x_i, y_i) and model:

$$y(x) = \alpha + \beta x + \gamma x^2$$

Find data that (best) fit model!

Data Fitting Continued

Rewriting Least Squares

Rewrite in matrix form.

 $\|A\mathbf{x} - \mathbf{b}\|_2^2 \to \text{min!'}$ is cumbersome to write \to new notation, defined to be equivalent:

 $Ax \cong \mathbf{b}$

Least Squares: Nonlinearity

Q: Give an example of a nonlinear least squares problem.

$$\begin{aligned} \left| \exp(\alpha) + \beta x_1 + \gamma x_1^2 - y_1 \right|^2 \\ + \cdots + \\ \left| \exp(\alpha) + \beta x_n + \gamma x_n^2 - y_n \right|^2 \rightarrow & \text{min!} \end{aligned}$$

But that would be easy to remedy: Do linear least squares with $\exp(\alpha)$ as the unknown. More difficult:

$$\begin{aligned} \left| \alpha + \exp(\beta x_1 + \gamma x_1^2) - y_1 \right|^2 \\ + \cdots + \\ \left| \alpha + \exp(\beta x_n + \gamma x_n^2) - y_n \right|^2 & \to & \min! \end{aligned}$$

Demo: Interactive Polynomial Fit

Properties of Least-Squares

perties of Least Squares		
Consider LSQ problem $A\mathbf{x} \cong \mathbf{b}$ and its associated <i>objective function</i> $\varphi(\mathbf{x}) = \ \mathbf{b} - A\mathbf{x}\ _2^2$. Does this always have a solution?		
ls it always unique?		
Examine the objective function, find its minimum.		

Least squares: Demos

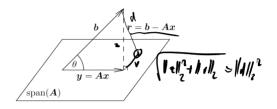
Demo: Polynomial fitting with the normal equations

What's the shape of A^TA ?

Square

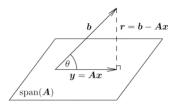
Demo: Issues with the normal equations

Least Squares, Viewed Geometrically



Why is $\mathbf{r} \perp \operatorname{span}(A)$ a good thing to require?

Least Squares, Viewed Geometrically (II)



Phrase the Pythagoras observation as an equation.

Write that with an orthogonal projection matrix P.

About Orthogonal Projectors

What is a *projector*?

What is an orthogonal projector?

How do I make one projecting onto span $\{\mathbf{q}_1,\mathbf{q}_2,\ldots,\mathbf{q}_\ell\}$ for orthogonal \mathbf{q}_i ?

Least Squares and Orthogonal Projection

A+A > - A+4 >= (A+A)+A+5

Check that $P = A(A^TA)^{-1}A^T$ is an orthogonal projector onto colspan(A).

p2p Psymmetric /

What assumptions do we need to define the P from the last question?

ATA needs to be insofible

@ A has full comh

Pseudoinverse

Aixob

~) A+ slowla

What is the *pseudoinverse* of A?

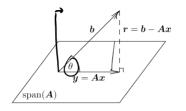
What can we say about the condition number in the case of a tall-and-skinny, full-rank matrix?

What does all this have to do with solving least squares problems?

In-Class Activity: Least Squares

In-class activity: Least Squares

Sensitivity and Conditioning of Least Squares



What values of θ are bad?

Sensitivity and Conditioning of Least Squares (II)

Any comments regarding dependencies?

What about changes in the matrix?

Least-squares by Transformation

Want a matrix Q so that

has the same solution as

I.e. want

$$\|Q(Ax - b)\|_2 = \|Ax - b\|_2$$
.

What type of matrix does that? Any invertible one?

a orthogon al

Orthogonal Matrices

What's an orthogonal (=orthonormal) matrix?

One that satisfies $Q^TQ = I$ and $QQ^T = I$.

Are orthogonal projectors orthogonal?

Nope, not in general.

Now what about that norm property?

$$\|Q\mathbf{v}\|_2^2 = (Q\mathbf{v})^T(Q\mathbf{v}) = \mathbf{v}^TQ^TQ\mathbf{v} = \mathbf{v}^T\mathbf{v} = \|\mathbf{v}\|_2^2$$
.

Simpler Problems: Triangular

Would we win anything from transforming a least-squares system to upper triangular form?

If so, how would we minimize the residual norm?

Computing QR

- ► Gram-Schmidt
- ► Householder Reflectors
- Givens Rotations

Latter two similar to LU:

- Successively zero out below-diagonal part
- But: using orthogonal matrices

Demo: Gram-Schmidt-The Movie

Demo: Gram-Schmidt and Modified Gram-Schmidt **Demo:** Keeping track of coefficients in Gram-Schmidt