

QR Iteration: Computational Expense

A full QR factorization at each iteration costs $O(n^3)$ -can we make that some pisuals cheaper? A= Q T a+ a Schurform, hard - A- a T at a upper Hessenberg Gioral applied to apport Hessonberg: "O(n3) he asm Gioral applied to apport Hessonberg: O(n2)

Demo: Householder Similarity Transforms

QR/Hessenberg: Overall procedure

Overall procedure:

- 1. Reduce matrix to Hessenberg form (USING Honeholder)
- 2. Apply QR iteration using Givens QR to obtain Schur form

For symmetric matrices:

- Use Householders to attain tridiagonal form
- Use QR iteration with Givens to attain diagonal form

Krylov space methods: Intro

What subspaces can we use to look for eigenvectors?

Krylov for Matrix Factorization

What matrix factorization is obtained through Krylov space methods?

Conditioning in Krylov Space Methods/Arnoldi Iteration (I)

What is a problem with Krylov space methods? How can we fix it?

Conditioning in Krylov Space Methods/Arnoldi Iteration (II)

Demo: Arnoldi Iteration (Part 1)

ARPACK

Krylov: What about eigenvalues?

How	can	we	use	Arn	oldi/	/Lan	czos	to	com	oute	eige	nvalı	ues?		

Demo: Arnoldi Iteration (Part 2)

Computing the SVD (Kiddy Version)

How can I compute an SVD of a matrix A?							

Demo: Computing the SVD

In-Class Activity: Eigenvalue Computations

In-class activity: Eigenvalue Computations