Teday;	Announce ments
- Caledus	- HWII (Joday !)
	- Examled 3
	-Exambly

What about existence and uniqueness?

Derive the (absolute) condition number for numerical integration.

$$|\int_{a}^{b} \beta(x) dx - \int_{a}^{b} J(x) dx|$$

$$= |\int_{a}^{b} e(x) dx| \leq |b-a| \cdot \max_{x \in (a,b)} |e(x)|$$

Interpolatory Quadrature

Design a quadrature method based on interpolation.

Design a quadrature method based on interpolation.

$$\int_{a}^{b} \int_{a}^{b} |x| dx \approx \int_{a}^{b} |u| \int_{a}^{b} |x| dx$$

$$= \int_{a}^{b} \int_{a}^{b} |x| dx \approx \int_{a}^{b} |u| \int_{a}^{b} |x| dx$$

$$= \int_{a}^{b} \int_{a}^{b} |x| dx \approx \int_{a}^{b} |x| dx = \int_{a}^{b} \int_{a}^{b} |x| dx$$

$$= \int_{a}^{b} \int_{a}^{b} |x| dx \approx \int_{a}^{b} |x| dx = \int_{a}^{b} \int_{a}^{b} |x| dx$$

$$= \int_{a}^{b} \int_{a}^{b} |x| dx \approx \int_{a}^{b} |x| dx = \int_{a}^{b} \int_{a}^{b} |x| dx$$

$$= \int_{a}^{b} \int_{a}^{b} |x| dx = \int_{a}^{b} \int_{a}^{b} |x| dx = \int_{a}^{b} \int_{a}^{b} |x| dx$$

$$= \int_{a}^{b} \int_{a}^{b} |x| dx = \int_{a}^{b} \int_{a}^{b} |x| dx = \int_{a}^{b} \int_{a}^{b} |x| dx$$

$$= \int_{a}^{b} \int_{a}^{b} |x| dx = \int_{a}^{b} \int_{a}^{b} |x| dx = \int_{a}^{b} \int_{a}^{b} |x| dx$$

$$= \int_{a}^{b} \int_{a}^{b} |x| dx = \int_{a}^{b} \int_{a}^{b} |x| dx = \int_{a}^{b} \int_{a}^{b} |x| dx$$

$$= \int_{a}^{b} \int_{a}^{b} |x| dx = \int_{a}^{b} \int_{a}^{b} |x| dx = \int_{a}^{b} \int_{a}^{b} |x| dx$$

$$= \int_{a}^{b} \int_{a}^{b} |x| dx = \int_{a}^{b} \int_{a}^{b} |x| dx = \int_{a}^{b} \int_{a}^{b} |x| dx$$

$$= \int_{a}^{b} \int_{a}^{b} |x| dx = \int_{a}^{b} \int_{a}^{b} |x| dx = \int_{a}^{b} \int_{a}^{b} |x| dx$$

$$\int_{\alpha}^{b} J(x) \Lambda_{x} \simeq \int_{a}^{b} \rho_{n-1}(x) \Lambda_{x} = \int_{a}^{b} \lambda_{1} \int_{a}^{b} \gamma_{1}(x_{1}) = \lambda_{1} \cdot \hat{\lambda}_{2}$$

$$= \hat{\lambda}_{1}^{2} \lambda_{2} = \hat{\lambda}_{2}^{2} \lambda_{1}^{2} \hat{\lambda}_{2}^{2} = \hat{\lambda}_{2}^{2} \hat{\lambda}_{1}^{2}$$

$$= \hat{\lambda}_{1}^{2} \lambda_{2}^{2} \hat{\lambda}_{2}^{2} \hat{\lambda}_{3}^{2} \hat{\lambda}_{4}^{2} \hat{\lambda}_{4}^{2} \hat{\lambda}_{5}^{2} \hat{\lambda}_{5}^{2$$

Interpolatory Quadrature: Examples

G w/ Cheby sher nodes & Chebysher polys Chebysher Clenshaw-Curh's quadrate () Ul equispaced nodes and manomials Nauton- Coles quadraturs

Interpolatory Quadrature: Computing Weights

How do the weights in interpolatory quadrature get computed?

$$\int_{a}^{b} \varphi_{i}(x) dx = \vec{\omega} \cdot \varphi_{i}(\vec{x}) \quad i = 0... \text{ n-1}$$
For monomials
$$b - \alpha = \int_{a}^{b} dx = \omega_{i} \cdot 1 + \omega_{i} \cdot 1 + \omega_{i} \cdot \dots + \omega_{n} \cdot 1$$

$$= \int_{a}^{b} x dx = \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i}$$

$$= \int_{a}^{b} x dx = \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i}$$
Demo: Newton-Cotes weight finder
$$\int_{a}^{b} \varphi_{i}(x) dx = \vec{\omega} \cdot \varphi_{i}(\vec{x}) \quad i = 0... \text{ n-1}$$

$$= \int_{a}^{b} x dx = \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i}$$

$$= \int_{a}^{b} x dx = \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i}$$

$$= \int_{a}^{b} x dx = \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i}$$

$$= \int_{a}^{b} x dx = \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i}$$

$$= \int_{a}^{b} x dx = \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i}$$

$$= \int_{a}^{b} x dx = \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i}$$

$$= \int_{a}^{b} x dx = \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i}$$

$$= \int_{a}^{b} x dx = \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i}$$

$$= \int_{a}^{b} x dx = \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i}$$

$$= \int_{a}^{b} x dx = \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i}$$

$$= \int_{a}^{b} x dx = \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i}$$

$$= \int_{a}^{b} x dx = \omega_{i} \cdot x_{i} + \omega_{i} \cdot x_{i$$

Examples and Exactness

To what polynomial degree are the following rules exact?

Midpoint rule
$$(b-a)f\left(\frac{a+b}{2}\right)$$

Trapezoidal rule $\frac{b-a}{2}(f(a)+f(b))$

Simpson's rule $\frac{b-a}{6}(f(a)+4f\left(\frac{a+b}{2}\right)+f(b))$

Interpolatory Quadrature: Accuracy

Let p_{n-1} be an interpolant of f at nodes x_1, \ldots, x_n (of degree n-1) Recall

$$\sum_{i} \omega_{i} f(x_{i}) = \int_{a}^{b} p_{n-1}(x) dx.$$

What can you say about the accuracy of the method?

Quadrature: Overview of Rules

-	adidear	٠. ،	2 0 01 010	W OI ITAICS			
		n	Deg.	Ex.Int.Deg.	Intp.Ord.	Quad.Ord.	Quad.Ord.
				(w/odd)		(regular)	(w/odd)
		_	n-1	$(n-1)+1_{\text{odd}}$	n	n+1	$(n+1)+1_{\text{odd}}$
	Midp.	/1	0	1	1	2	3 < C.63
	Trapz	2	1	1	2	3	3
	Simps.	3	2	3	3	4	5 ≤ (.7 ₂
		4]	3	3	4	5	5
		\sim					

- n: number of points
- ightharpoonup "Deg.": Degree of polynomial used in interpolation (= n-1)
- ► "Ex.Int.Deg.": Polynomials of up to (and including) this degree actually get integrated exactly. (including the odd-order bump)
- "Intp.Ord.": Order of Accuracy of Interpolation: $O(h^n)$
- "Quad.Ord. (regular)": Order of accuracy for quadrature predicted by the error result above: $O(h^{n+1})$
- "Quad.Ord. (w/odd):" Actual order of accuracy for quadrature given 'bonus' degrees for rules with odd point count

Observation: Quadrature gets (at least) 'one order higher' than interpolation-even more for odd-order rules. (i.e. more accurate)

Interpolatory Quadrature: Stability

$$\int_{\mathbb{R}} |f(x) - \widehat{f}(x)| = e(x)$$

Let p_n be an interpolant of f at nodes x_1, \ldots, x_n (of degree n-1)

Recall

$$\sum_{i} \omega_{i} f(x_{i}) \neq \int_{a}^{b} p_{n}(x) dx$$

What can you say about the stability of this method?

$$\leq \left\{ \left| u_{i} \right| \left| \left| e(x_{i}) \right| \right| \leq \max_{i} \left| e(x_{i}) \right| \right\}$$

E (E|wil) max/f-ji/
but quadratur rule: occillating weights
good quadrule; pos. weights

About Newton-Cotes

What's not to	o like about Newton-Cotes quadrature?	

Composite Quadrature (not yet Alsensod)

High-order polynomial interpolation requires a high degree of smoothness of the function.

Idea: Stitch together multiple lower-order quadrature rules to alleviate smoothness requirement.

Error in Composite Quadrature (not yet discussed)

What	can	we	say	about	the	error	in	the	case	of	comp	osite	quad	dratu	re?

Composite Quadrature: Notes (not yet Alsenson)

Observation: Composite quadrature loses an order compared to non-composite.

Idea: If we can estimate errors on each subinterval, we can shrink (e.g. by splitting in half) only those contributing the most to the error. (adaptivity, \rightarrow hw)

Gaussian Quadrature (dis ussed)

So far: nodes chosen from outside.

Can we gain something if we let the quadrature rule choose the nodes,

too? Hope: More design freedom → Exact to higher degree.

Demo: Gaussian quadrature weight finder

In-Class Activity: Quadrature

In-class activity: Quadrature

Taking Derivatives Numerically

Why	<i>shouldn't</i> you	take derivatives numerically?

Demo: Taking Derivatives with Vandermonde Matrices