Today	Annalcommis
	
- SVP	- Final: content
- Solving Dange (some)	- Finals week Office Hours
- Solving large (sparse) Linear sydems	- Grade vow
- PDE	
·	

Shooting Method

Idea: Want to make use of the fact that we can already solve IVPs.

Problem: Don't know all left BCs.

Demo: Shooting method

What about systems?

u = f(x)

4/5/12

Yes, just like comunes

What are some downsides of this method?

Efficiency Stability

Faihres

What's an alternative approach?

By system of equality

Finite Difference Method

Idea: Replace u' and u'' with finite differences.

For example: second-order centered

$$u'(x) = \frac{u(x+h) - u(x-h)}{2h} + O(h^2)$$

$$u''(x) = \frac{u(x+h) - 2u(x) + u(x-h)}{h^2} + O(h^2)$$

Demo: Finite differences

What happens for a nonlinear ODE?

Demo: Sparse matrices

Collocation Method

$$(*) \begin{cases} y'(x) = f(y(x), \\ g(y(a), y(b)) = 0. \end{cases}$$

1. Pick a basis (for example: Chebyshev polynomials)

$$\hat{\mathbf{y}}(\mathbf{x}) = \sum_{i=1}^{n} \widehat{\alpha_i} T_i(\mathbf{x})$$

Want \hat{y} to be close to solution y. So: plug into (*).

Problem: \hat{y} won't satisfy the ODE at all points at least. We do not have enough unknowns for that.

- 2. Idea: Pick n points where we would like (*) to be satisfied.
 - \rightarrow Get a big (non-)linear system
- 3. Solve that $(LU/Newton) \rightarrow done$.

Galerkin/Finite Element Method

$$u''(x) = f(x),$$
 $u(a) = u(b) = 0.$

Problem with collocation: Big dense matrix.

Idea: Use piecewise basis. Maybe it'll be sparse.

What's the problem with that?

Weak solutions/Weighted Residual Method

Idea: Enforce a 'weaker' version of the ODE.

"First
$$Su''(x) = f(x)$$

Finding $Su''(x) = f(x)$

For some in finchion $Su''(x) = Su''(x) = Su$

Galerkin: Choices in Weak Solutions

Make some choices:

- ▶ Solve for $u \in \text{span} \{ \text{hat functions } \varphi_i \}$
- ► Choose $\psi \in W = \text{span } \{ \text{hat functions } \varphi_i \} \text{ with } \psi(a) = \psi(b) = 0.$ → Kills boundary term $[u'(x)\psi(x)]_a^b$.

These choices are called the Galerkin method. Also works with other bases.

Discrete Galerkin

Wf Ex; 4; (x)

Outline

Partial Differential Equations and Sparse Linear Algebra Sparse Linear Algebra PDEs

Fast Fourier Transform

Additional Topics

Advertisement

Remark: Both PDEs and Large Scale Linear Algebra are big topics. Will only scratch the surface here. Want to know more?

(spring)
(fall of 20)

- $ightharpoonup ext{CS555}
 ightarrow ext{Numerical Methods for PDEs}$
- ► CS556 → Iterative and Multigrid Methods
- ► CS554 → Parallel Numerical Algorithms

We would love to see you there! :)

- (5598 -) Fast Algorithms om d Int. eg.

Solving Sparse Linear Systems

Solving $A\mathbf{x} = \mathbf{b}$ has been our bread and butter.

Typical approach: Use factorization (like LU or Cholesky) Why is this problematic?

Idea: Don't factorize, iterate.

Demo: Sparse Matrix Factorizations and "Fill-In"

'Stationary' Iterative Methods

Idea: Invert only part of the matrix in each iteration. Split

$$A = M - N$$

where M is the part that we are actually inverting. Convergence?

$$M\mathbf{x} = \mathbf{b}$$
 $M\mathbf{x} = N\mathbf{x} + \mathbf{b}$
 $M\mathbf{x}_{k+1} = N\mathbf{x}_k + \mathbf{b}$
 $\mathbf{x}_{k+1} = M^{-1}(N\mathbf{x}_k + \mathbf{b})$

- ► These methods are called *stationary* because they do the same thing in every iteration.
- ► They carry out fixed point iteration.
 - \rightarrow Converge if contractive, i.e. $\rho(M^{-1}N) < 1$.
- Choose M so that it's easy to invert.

Choices in Stationary Iterative Methods

What could we choose for M (so that it's easy to invert)?

Name	M	N	
ivame	IVI	TV	
Jacobi	D	-(L+U)	
Gauss-Seidel	D+L	-U	
SOR	$\frac{1}{\omega}D + L$	$(\frac{1}{U} - 1) D - U$	
SOR $\left rac{1}{\omega}D+L - \left(rac{1}{\omega}-1 ight)D-U ight.$ where L is the below-diagonal part of A , and U the above-diagonal.			

Demo: Stationary Methods

Conjugate Gradient Method

Assume A is symmetric positive definite.

Idea: View solving Ax = b as an optimization problem.

Minimize
$$\varphi(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T A \mathbf{x} - \mathbf{x}^T \mathbf{b} \Leftrightarrow \text{Solve } A \mathbf{x} = \mathbf{b}.$$

Observe
$$-\nabla \varphi(\mathbf{x}) = \mathbf{b} - A\mathbf{x} = \mathbf{r}$$
 (residual).

Use an iterative procedure (s_k is the search direction):

$$\mathbf{x}_0 = \langle \text{starting vector} \rangle$$
 $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{s}_k,$

CG: Choosing the Step Size

What should we choose for α_k (assuming we know s_k)?

$$= \nabla y \times_{kk1}^{s} S_{k} = V_{k1} \cdot S_{k}$$

$$= \nabla y \times_{kk1}^{s} S_{k} = V_{k1} \cdot S_{k}$$

$$V_{k1} = V_{k1} + \alpha \cdot A \cdot S_{k}$$

$$O = S_{k}^{s} V_{k1} = S_{k}^{s} V_{k} + \alpha \cdot A \cdot S_{k}$$

$$\Delta_{k} = \frac{S_{k}^{s} V_{k}}{S_{k}^{s} A_{s_{k}}} = \frac{S_{k}^{s} A_{s_{k}}}{S_{k}^{s} A_{s_{k}}}$$

CG: Choosing the Search Direction

What should we choose for s_k ?

Sherpest desc: bad idea

Bellwiden
$$(\vec{x}, \vec{y})_A = x^A y$$
 is an IR= A spa

 $s_i^A s_i = 0$ if $s_i^A s_i$
 $e_0 = x_0 - x^a = c_0 s_i$

CG: Further Development

Introduction

Notation:

$$\frac{\partial}{\partial x}u = \partial_x u = u_x.$$

A *PDE* (partial differential equation) is an equation with multiple partial derivatives:

$$u_{xx} + u_{yy} = 0$$

Here: solution is a function u(x, y) of two variables.

Examples: Wave propagation, fluid flow, heat diffusion

Typical: Solve on domain with complicated geometry.

Initial and Boundary Conditions

- ► Sometimes one variable is time-like.
 - What makes a variable time-like?
 - Causality
 - ► No geometry

Have:

- ► PDE
- ► Boundary conditions
- ► Initial conditions (in t)

