CS 450: Numerical Anlaysis¹ Introduction to Scientific Computing

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Scientific Computing Applications and Context

- Mathematical modelling for computational science Typical scientific computing problems are numerical solutions to PDEs
 - Newtonian dynamics: simulating particle systems in time
 - Fluid and air flow models for engineering
 - PDE-constrained numerical optimization: finding optimal configurations (used in engineering of control systems)
 - Quantum chemistry (electronic structure calculations): many-electron Schrödinger equation

Linear algebra and computation

- Linear algebra and numerical optimization are building blocks for machine learning methods and data analysis
- Computer architecture, compilers, and parallel computing use numerical algorithms (matrix multiplication, Gaussian elimination) as benchmarks

Example: Mechanics²

- Newton's laws provide incomplete particle-centric picture
- Physical systems can be described in terms of *degrees of freedom* (DoFs)

DoFs
DoFs

▶ *N*-particle system *configuration* described by 3*N* DoFs

²Variational Principles of Mechanics, Cornelius Lanczos, Dover Books on Physics, 1949.

Course Structure

Complex numerical problems are generally reduced to simpler problems

The course topics will follow this hierarchical structure

Numerical Analysis

• Numerical Problems involving Continuous Phenomena:

Demo: Floating Point vs Program Logic

Sources of Error

Representation of Numbers:

Propagated Data Error:

Computational Error = $\hat{f}(x) - f(x)$ = Truncation Error + Rounding Error

Error Analysis

Visualization of Forward and Backward Error

Conditioning

Absolute Condition Number:

(Relative) Condition Number:

Posedness and Conditioning

What is the condition number of an ill-posed problem?

Stability and Accuracy

Error and Conditioning

- ► Two major sources of error: *roundoff* and *truncation* error.
 - roundoff error concerns floating point error due to finite precision
 - truncation error concerns error incurred due to algorithmic approximation, e.g. the representation of a function by a finite Taylor series

To study the propagation of roundoff error in arithmetic we can use the notion of conditioning.

Floating Point Numbers

Scientific Notation

Demo: Picking apart a floating point number Demo: Density of Floating Point Numbers

Significand (Mantissa) and Exponent Given x with s leading bits x_0, \ldots, x_{s-1}

Rounding Error

Demo: Floating point and the Harmonic Series **Demo:** Floating Point and the Series for the Exponential Function

Maximum Relative Representation Error (Machine Epsilon)

Demo: Catastrophic Cancellation **Rounding Error in Operations (I)** Activity: Cancellation in Standard Deviation Computation

Addition and Subtraction

Rounding Error in Operations (II)

Multiplication and Division

Demo: Polynomial Evaluation Floating Point

Exceptional and Subnormal Numbers

Exceptional Numbers

Subnormal (Denormal) Number Range

Gradual Underflow: Avoiding underflow in addition

Floating Point Number Line

