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Linear Systems

• We now consider solution of linear systems of the form Ax = b,
where A is an n⇥ n system matrix of the form

A =

2

664

a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...

an1 an2 · · · ann

3

775 ,

while x and b are n-vectors.

• We will study cases in which these systems are singular or ill-
conditioned (i.e., nearly singular) and cases where the systems
are well-conditioned.

• We start with a brief review of conditions for singularity and
of geometric interpretations of linear systems.
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Existence and Uniqueness

• An n⇥ n matrix A is said to be nonsingular if it satisfies any one of the
following equivalent conditions:

1. A has an inverse: A�1 such that A�1
A = AA

�1 = I, the identity matrix.

2. det(A) 6= 0 (i.e., A has a nonzero determinant)

3. rank (A) = n (the rank of a matrix = maximum number of linearly independent
rows or columns it has)

4. For any vector z 6= 0, Az 6= 0
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The Geometry of Linear Equations
1

• Example, 2⇥ 2 system:

2x � y = 1
x + y = 5

�
()


2 �1
1 1

� 
x
y

�
=


1
5

�

• Can look at this system by rows or columns.

• We will do both.
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Row Form

• In the 2⇥ 2 system, each equation represents a line:

2x � y = 1 line 1

x + y = 5 line 2

• The intersection of the two lines gives the unique point
(x, y) = (2, 3), which is the solution.

2x� y = 1

(0,�1)
x + y = 5

(0, 5)

(5, 0)

(x, y) = (2,3)

• We remark that the system is relatively ill-conditioned if the lines are close to being
parallel, that is, if the smallest subtended angle is close to 0.
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Column Form

• The second (and more important) geometry is column based.

• Here, we view the system of equations as one vector equation:

Column form x


2
1

�
+ y


�1
1

�
=


1
5

�
.

• The problem is to find coe�cients, x and y, such that the combination of vectors on the
left equals the vector on the right.

(2,1) = column 1

(4,2)

(�1, 1)

(�3, 3)

(1, 5) =
2 ⇥ (column 1)

+3 ⇥ (column 2)

• In this case, the system is ill-conditioned if the column vectors are nearly parallel.
If these vectors are separated by an angle ✓, it’s relatively easy to show that the condition
number scales as  ⇠ 2

✓ as ✓ �! 0.
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Row Form: A Case with n=3.

2u + v + w = 5

Three planes: 4u � 6v = �2

�2u + 7v + 2w = 9

• Each equation (row) defines a plane in lR3.

• The first plane is 2u + v + w = 5 and it contains points (52,0,0) and (0,5,0) and (0,0,5).

• It is determined by three points, provided they do not lie on a line.

• Changing 5 to 10 would shift the plane to be parallel this one, with points (5,0,0) and
(0,10,0) and (0,0,10).
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Row Form: A Case with n=3, cont’d.

• The second plane is 4u� 6v = �2.

• It is vertical because it can take on any w value.

• The intersection of this plane with the first is a line.

• The third plane, �2u + 7v + 2w = 9 intersects this line
at a point, (u, v, w) = (1, 1, 2), which is the solution.

• In n dimensions, the solution is the intersection point of n hyperplanes,
each of dimension n� 1. A bit confusing.
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Row Form: A Case with n=3.

2u + v + w = 5

Three planes 4u � 6v = �2

�2u + 7v + 2w = 9

• Each equation (row) defines a plane in lR3.

• The first plane is 2u + v + w = 5 and it contains points (52,0,0)
and (0,5,0) and (0,0,5).

• It is determined by three points, provided the do not lie on a line.

• Changing 5 to 10 would shift the plane to be parallel this one,
with points (5,0,0) and (0,10,0) and (0,0,10).

Row Form: A Case with n=3, cont’d.

• The green and blue planes (Eqs. 2 and 3) intersect in a line.

• The red plane (Eq. 1) intersects this line.
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Column Vectors and Linear Combinations

• The preceding system in lR3 can be viewed as the vector equation

u

2

4
2
4

�2

3

5 + v

2

4
1

�6
7

3

5 + w

2

4
1
0
2

3

5 =

2

4
5

�2
9

3

5 = b.

• Our task is to find the multipliers, u, v, and w.

• The vector b is identified with the point (5,-2,9).

• We can view b as a list of numbers, a point, or an arrow.

• For n > 3, it’s probably best to view it as a list of numbers.
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Vector Addition Example

2

4
0

�2
0

3

5

2

4
0
0
9

3

5

2

4
5
0
0

3

5

b =

2

4
5

�2
9

3

5
2

4
5
0
0

3

5 +

2

4
0

�2
0

3

5 +

2

4
0
0
9

3

5 =

2

4
5

�2
9

3

5 .

Here, we write the rhs as a 
linear combination of the 
orthogonal unit basis vectors

• Example of scaling the 2-norm:

k�xk22 = (�x1)
2 + (�x2)

2 + · · · + (�xn)
2

= �2
⇥
x21 + x22 + · · · + x2n

⇤
,

k�xk2 = |�| ·
⇥
x21 + x22 + · · · + x2n

⇤ 1
2

= |�| · kxk2.

kx + yk
kxk
kyk

kx + yk  kxk + kyk

•

5

2

4
1
0
0

3

5 � 2

2

4
0
1
0

3

5 + 9

2

4
0
0
1

3

5



Linear Combination

b =

2

4
5

�2
9

3

5 2

4
2
0
4

3

5=2

2

4
1
0
2

3

5

2

4
2
4

�2

3

5 +

2

4
1

�6
7

3

5 =

2

4
3

�2
5

3

5

1

2

4
2
4

�2

3

5 + 1

2

4
1

�6
7

3

5 + 2

2

4
1
0
2

3

5 =

2

4
5

�2
9

3

5 .

Here, we write the rhs as a 
linear combination of the 
columns of the system matrix.



Singular Case: Row Picture

2x� y = 1

(0,�1)

4x� 2y = �2

2x � y = 1

4x � 2y = �2

• No solution.
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Singular Case: Row Picture

2x� y = 14x� 2y = 2

(0,�1)

2x � y = 1

4x � 2y = 2

• Infinite number of solutions.
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Singular Case: Column Picture

b =


1

�2

�

x


2
4

�
+ y


�1
�2

�
=


1

�2

�

• No solution.
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Singular Case: Column Picture

b =


1
2

� x


2
4

�
+ y


�1
�2

�
=


1

�2

�

• Infinite number of solutions. (b coincident with a1 and a2.)
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Singular Case: Row Picture with n=3

(a) two parallel planes (b) no intersection

(c) line of intersection (d) all planes parallel

End-on view of 3 planes.
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Singular Case: Column Picture with n=3

O

b not in plane

O

b in plane

• In this case, the three columns of the
system matrix lie in the same plane.

Example: u

2

4
1
2
3

3

5 + v

2

4
4
5
6

3

5 + w

2

4
7
8
9

3

5 = b.

• Our system is solvable (we can get to any point in lR3) if
the three columns are linearly independent.

No solution

An infinite number
of solutions



Nearly Singular Matrices – Row Perspective

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Error Bounds – Illustration

In two dimensions, uncertainty in intersection point of two
lines depends on whether lines are nearly parallel

< interactive example >

Michael T. Heath Scientific Computing 22 / 88

Well-Conditioned                                Ill-Conditioned 
                                                          (nearly singular)

[ An interesting question:  For the 2x2 case, can you relate the angle 
                   to the condition number ?]



A Nearly Singular Example

a1

a2

✓

A =
⇥
a1 a2

⇤
=


1 c
0 s

�

c = cos ✓, s = sin ✓.

• Clearly, as ✓ �! 0 the matrix becomes singular.

• Can show that

cond =

s
1 + |c|
1� |c| ⇡ 2

✓

for small ✓ (by Taylor series!) matlab demo cr2.m

Nearly Singular Matrices – Column Perspective



Matrix Form and Matrix-Vector Products.

• We start with the familiar (row) form

2u + v + w = 5

4u � 6v = �2

�2u + 7v + 2w = 9

• In matrix form, this is
2

4
2 1 1
4 �6 0

�2 7 2

3

5

2

4
u
v
w

3

5 =

2

4
5

�2
9

3

5 , or Au = b.

• Of course, this must equal our column form,

u

2

4
2
4

�2

3

5 + v

2

4
1

�6
7

3

5 + w

2

4
1
0
2

3

5 =

2

4
5

�2
9

3

5 = b.



Matrix Form and Matrix-Vector Products, 2.

• So, if A is the matrix with columns a1, a2, and a3,

A :=

2

4
2 1 1
4 �6 0

�2 7 2

3

5 =:

2

4 a1 a2 a3

3

5 , and u :=

2

4
u
v
w

3

5

• Then

Au = u a1 + v a2 + w a3



Matrix Form and Matrix-Vector Products, 3.

• In general, if x is the n-vector

x :=

2

6664

x1
x2
...

xn

3

7775
,

and A is an m ⇥ n matrix, then

Ax = x1 a1 + x2 a2 + · · · + xn an

= linear combination of the columns of A.

• Always.



Matrix-Vector Products, Example.

If x̂ := V
�
V TAV

��1
V T

b

= V y.

Then x̂ = linear combination of the columns of V .

• x̂ lies in the column space of V .

• x̂ lies in the range of V .

• x̂ 2 span(V )



Column Picture Example

• What linear combination of (1 2 3) and (1 1 1) will produce
the vector (0 2 4)?

x1

0

@
1
2
3

1

A + x2

0

@
1
1
1

1

A =

0

@
0
2
4

1

A .

• Is it unique?

• If A is symmetric-positive definite (SPD), cond(A) = �max
�min

• There are many matrices where we have good estimates for the
condition number.

• For example, the tridiagonal matrix below arises in many boundary-
value problems and has a condition number cond(A) ⇠ 4n2

⇡2
.

A =

0

BBB@

2 �1
�1 2 . . .

. . . . . . �1
�1 2

1

CCCA
.



Sigma Notation

• Let A be an m ⇥ n matrix,

A =

2

4 a1 · · · aj · · · an

3

5

=

2

666664

a11 · · · a1j · · · a1n
... ... ...
ai1 · · · aij · · · ain
... ... ...

am1 · · · amj · · · amn

3

777775
.

• Then

w = Ax =
nX

j=1

xj aj =
nX

j=1

aj xj

wi = (Ax)i =
nX

j=1

aij xj



Matrix Multiplication

If B =

2

4 b1 b2

3

5 ,

Then C = AB =

2

4 Ab1 Ab2

3

5 .

cij =
nX

k=1

aik bkj

Q: (Important.) Suppose A and B are n ⇥ n matrices.

• How many floating point operations (flops) are required to
compute C = AB?

• What is the number of memory accesses?



• Example of scaling the 2-norm:

k�xk22 = (�x1)
2 + (�x2)

2 + · · · + (�xn)
2

= �2
⇥
x21 + x22 + · · · + x2n

⇤
,

k�xk2 = |�| ·
⇥
x21 + x22 + · · · + x2n

⇤ 1
2

= |�| · kxk2.

kx + yk
kxk
kyk

kx + yk  kxk + kyk

•

5

2

4
1
0
0

3

5 � 2

2

4
0
1
0

3

5 + 9

2

4
0
0
1

3

5

cij =
nX

k=1

aikbkj

= ai1 ⇤ b1j + ai2 ⇤ b2j + ai3 ⇤ b3j + · · · + ain ⇤ bnj.

ANSWER:

• ~2n ops, “+” and “*”,  for each of  n2 results.

• à 2n3 operations total.

stu↵

• for i = 1, . . . , n,
j = 1, . . . , n,

2



Some Special Matrix-Vector Products, 1/2.

• Suppose V = v and W = w are n⇥ 1 matrices (i.e., vectors).

• Then

C = V TW = v
T
w =

nX

j=1

vjwj = c

is a 1⇥ 1 matrix (i.e., a scalar).

• We refer to v
T
w as the “dot” or inner product of v and w.



Some Special Matrix-Vector Products, 2/2.

• Suppose V = v and W = w are n⇥ 1 matrices (i.e., vectors).

• Then

C = VWT = vw
T = v [w1 w2 · · · wn ]

=

2

4 vw1 vw2 · · · vwn

3

5

is an n⇥ n matrix, with each column a multiple of v.

• We refer to vw
T as the outer product of v and w.

• It is a matrix of rank 1 and not invertible (unless n = 1).

– every column is a multiple of v

– every row is a multiple of w
T



Start here, Lecture 4



Solving a Linear System

Given

• m⇥ n matrix, A

• m vector b

What are we looking for and when are we allowed to ask the question?

Want: n-vector x so that Ax = b

• Linear combination of columns of A to yield b

• Consider square case (m = n) for now

• Even then, solution may not exist or may not be unique

• Unique solution exists i↵ A is nonsingular

Next: Look at conditioning of this operation. Need matrix norms.
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Matrix Norms

• Since we are considering Ax, we need a measure of how A can influence x.

• Note that y = Ax is just a vector.

• We have already introduced the p-norms for vectors.

• We can introduce an associated (or induced) matrix norm as the scalar kAk
that satisfies

kAxk  kAk kxk

for all x 2 lRn, which simply defines kAk in terms of two vector norms,
which we know how to compute.

• kAk is the maximum stretching realizable when multiplying x by A.

Of course, can have kAk < 1
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Matrix Norms, continued

• This idea leads to two equivalent definitions

kAk := max
x2lRn

kAxk
kxk

:= max
kxk=1

kAxk

• For each vector norm, kxk, we get a di↵erent matrix norm kAk

• For example, for the vector norm kxk2 we have an associated
matrix norm kAk2

• Note that these norms are well defined even if A is not square.
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Identifying Matrix Norms

• What is kAk1? kAk1?

• If A = [aij],

kAk1 = max
col j

mX

i=1

| aij | = maximum column sum of A

kAk1 = max
row i

nX

j=1

| aij | = maximum row sum of A

• Q: What is kIk for the n⇥ n identity matrix?

4

1Gilbert Strang: Linear Algebra and Its Applications

Hint: Consider x = [±1 ± 1 · · · ± 1]T

so that Ax yields a sum on row i.
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Matrix Norm Examples
Matrix Norm Examples

• What is the 1-norm of the matrix A?

• What is the 1-norm?

A =

2

6664

1 �7 1

1 0 4

0 1 5

3

7775

• Hint:

- For the 1-norm, set x = [±1 ±1 . . . ±1]T with signs chosen
to maximize output. ||x||1 = 1.

- For the 1-norm, set x = [0 0 . . . 1 . . . 0]T with row chosen to
maximize output. ||x||1 = 1.



Identifying Matrix Norms, continued

• What is kAk2?

• In general, kAk2 = �1, the largest singular value ofA (more on this later)

• If A is real, square and symmetric, A = A
T () aij = aji, then

kAk2 = max
j

|�j| =: ⇢(A),

the spectral radius of A, corresponding the eigenvalue of maximum abso-
lute value.

• The eigenvalues are the set of scalars �j 2 lC, j = 1, . . . , n, satisfying
Azj = �jzj for given eigenvectors, zj.

• If A symmetric then the �js are real

4



Identifying Matrix Norms

• How do matrix and vector norms relate for n⇥ 1 matrices?

• They are the same. WHY?

• If A 2 lRm⇥1, then x 2 lR1 is a scalar

• If kxk = 1, then x = 1 (or -1), so kA1k = kAk · 1

• Q: What is 1-norm of an m⇥ 1 matrix?
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Properties of Matrix Norms

Matrix norms inherit the vector norm properties:

• kAk > 0 () A 6= 0

• k�Ak = |�| kAk for all scalars �

• kA + Bk  kAk + kBk, triangle inequality

There are also two submultiplicativity properties that result
from the induced norm definition,

• kAxk  kAk kxk

• kABk  kAk kBk

In general we will write k · k for matrix norms without subscript
if the statement is true for any induced norm.
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Matrix Norm Examples

Consider

A =

2

664

.2 .7 0

.1 .6 0

0 0 .3

3

775

• What is kAk1?

• What is kAk1?

• What is limk�!1 kxkk⇤ for xk := A
k
x?

– For the ⇤ = 1 case?

– For the ⇤ = 1 case?

• A: kxkk⇤  kAk
xk⇤  kAkk⇤ kxk⇤
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1
1

3

5

7

Matrix Norm Examples

Consider

A =

2

664

.2 .7 0

.1 .6 0

0 0 .3

3

775

• What is kAk1?

• What is kAk1?

• What is limk�!1 kxkk⇤ for xk := A
k
x?

– For the ⇤ = 1 case?

– For the ⇤ = 1 case?

• A: kxkk⇤  kAk
xk⇤  kAkk⇤ kxk⇤

7

Matrix Norm Examples

Consider

A =

2

664

.2 .7 0

.1 .6 0

0 0 .3
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Conditioning

What is the condition number when solving Ax = b?

• Input: b with error �b

• Output: x with error �x

• Observe A(x +�x) = (b +�b), so A�x = �b

rel err in output

rel err in input
=

k�xk/kxk
k�bk/kbk =

k�xk
k�bk · kbkkxk

=
kA�1�bk
k�bk · kAxk

kxk

 kA�1k · kAk
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Condition Number

• We denote the condition number of A as

(A) = kA�1k · kAk

• Q: What is the condition number of A�1?

• (A) is also the condition number associated with matrix-vector
multiplication, y = Ax.

• Notice that (A) depends on the associated matrix norm, kAk.

• If A is singular we define  = 1

8



Condition Number, continued

• Example: Suppose (A) = 100. What is (10A)?

9

Condition Number, continued

• Example: Suppose (A) = 100. What is (10A)?

• Consider B := 10A with kAk = 5 and kA�1k = 20

• What is kBk?

• What is kB�1k?

9

Condition Number, continued

• Example: Suppose (A) = 100. What is (10A)?

• Consider B := 10A with kAk = 5 and kA�1k = 20

• What is kBk?

• What is kB�1k?

• B = 10A  ! B
�1 = A

�110�1 = 0.1A�1

• (B) = kBk · kB�1k = 10kAk ·
�
0.1 kA�1k

�
= (A)

7



Properties of Condition Number

• For any matrix A, (A) � 1

• For identity matrix, (I) = 1

• For any matrix A and scalar �, (�A) = (A)

• For any diagonal matrix D =diag(di), (D) = max |di|
min |di|

• If A is symmetric positive definite (SPD), 2(A) = �max
�min

10



• Condition number:

(A) := kAk · kA�1k =

max
kxk=1

kAxk

min
kxk=1

kAxk.

– To see this, note that y = A�1
x () x = Ay, and

kA�1k = max
x 6=0

kA�1
xk

kxk . = max
y 6=0

kyk
kAyk

= max
kyk=1

1

kAyk

=
1

minkyk=1 kAyk
.

• So, condition number is the ratio of max-to-min stretching of
A acting on a vector.



Condition Number Examples  
Apply A to unit-vector x at different angles

condc.m



condc.m



Residual Vector

• What is the residual vector when solving Ax = b?

• Answer: It is the “remainder” that results from an inaccurate solution.

• Suppose the answer produced by our code is x̂.

• Then the residual vector is

r = b � Ax̂

10
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Hint: Consider x = [±1 ± 1 · · · ± 1]T

so that Ax yields a sum on row i.

= �A�x

1



Relationship between Residual and Error

• How does the norm of the residual vector r relate to the norm of the error
�x?

• Consider

k�xk = kx� x̂k = kA�1(b�Ax̂)k = kA�1
rk

• Divide both sides by kxk:
k�xk
kxk =

kA�1
rk

kxk  kA�1k krk
kxk = (A)

krk
kAk kxk  (A)

krk
kbk

• (relative error)  (A) (relative residual)

• Given small relative residual krk/kbk, relative error is only (guaranteed to
be) small if the condition number is also small.

12



Perturbations in the Matrix

• Matrix entries are also FP numbers and thus subject to round-o↵.

• How do changes in A influence the output, x̂?

Ax = b �! Â x̂ = b

• Consider

�x = x̂� x = A
�1 (Ax̂� b) = A

�1
⇣
Ax̂� Â x̂

⌘
= �A

�1�Ax̂

• Thus

k�xk  kA�1k k�Ak kx̂k

and

k�xk
kx̂k  (A)

k�Ak
kAk

13



Changing Condition Numbers

It is often possible to mitigate large condition numbers by preconditioning.

• Left preconditioning: MAx = Mb

• Right preconditioning: AMy = b, x = My

For example, can use a diagonal matrix D as a preconditioner

• Row-wise scaling: DAx = Db

• Column-wise scaling: ADy = b, x = Dy

13



Orthogonal Matrices

What is an orthogonal ( = orthonormal ) matrix?

• An orthonormal matrix is a square matrix that satisfies Q
T
Q = I and

QQ
T = I

• Recall, if Q = [q1 q2 · · · qn], then Q
T
Q = [qT

i
qj] = �ij

(the Kronecker delta, �ij = 1 if i = j, 0 otherwise)

• That is, the columns of an orthonormal matrix Q are mutually
orthogonal.

• If Q is an orthogonal matrix, then Q
T is also orthogonal, so the rows of an

orthonormal matrix Q are also mutually orthogonal.

15



Orthogonal Matrices and the 2-Norm

How do orthogonal matrices interact with the 2-norm?

kQvk22 = (Qv)T (Qv) = v
T
Q

T
Qv = v

T
v = kvk22

16



Singular Value Decomposition (SVD)

The SVD of an m⇥ n matrix A is given by the factorization

A = U⌃V
T

where

• U is m⇥m and orthogonal
Columns uj are called the left singular vectors

• ⌃ =diag(�i) is m⇥ n and non-negative
Typically �1 � �2 � · · · � �s � 0, with s = min(m,n).
Diagonal entries �j are called the singular values

• V is n⇥n and orthogonal Columns vj are called the right singular vectors

We’ll discuss existance and computation later.

15



Computing the 2-Norm

Use the SVD of A to compute the 2-norm
A = U⌃V

T with U, V orthogonal

• 2-norm satisfies kQBk2 = kBk2 = ||BQk2 for any B and orthogonal Q

• So kAk2 = k⌃k2 = �max

We can express the matrix condition number, 2(A) in terms of the SVD of A

• A
�1 has singular values 1/�j

• 2(A) = kAk2 kA�1k2 = �max/�min

16



Frobenius Norm

• The 2-norm is costly to compute; is there something cheaper?

• The Frobenius norm

kAk
F

:=

vuut
mX

i=1

nX

j=1

|aij|2

• kAk
F
is not and induced norm.

• It does, however, satisfy the standar matrix-norm properties:

• definiteness

• scaling

• triangle inequality

• submultiplicativity (via Cauchy-Schwarz)

17



Frobenius Norm Properties

• Is the Frobenius norm induced by any vector norm?

Not possible. What is kIk
F
?

• How does the Frobenius norm relate to the SVD?

kAk
F

=

vuut
nX

i=1

�2
i

20
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Solving Systems: Simple Cases

• Solve Dx = b if D is diagonal.

xi = bi/dii with cost O(n)

• Solve Qx = b if Q is orthogonal

x = Q
T
b with cost O(n2)

• Given SVD, U⌃V
T = A, solve Ax = b

z = U
T
b

y = ⌃
�1
z

x = Vy

Cost: O(n2) to solve, O(n3) to compute SVD

19



Note on Row Scaling / Permutation

Dv = scale rows of v

Pv = permute rows of v

DA = [Da1Da2 · · · Dan ] = scale rows of A

PA = [Pa1 Pa2 · · · Pan ] = permute rows of A

2

4
2

3

4

3

5

2

4
1 1 1

1 1 1

1 1 1

3

5 =

2

4
2 2 2

3 3 3

4 4 4

3

5

2

4
1

1

1

3

5

2

4
2 2 2

3 3 3

4 4 4

3

5 =

2

4
4 4 4

2 2 2

3 3 3

3

5



Note on Column Scaling / Permutation

AD = [ d1a1 d2a2 · · · dnan ] = scale columns of A

AP = [ ap1 ap2 · · · apn ] = permute columns of A

2

4
1 1 1

1 1 1

1 1 1

3

5

2

4
2

3

4

3

5 =

2

4
2 3 4

2 3 4

2 3 4

3

5

2

4
2 3 4

2 3 4

2 3 4

3

5

2

4
1

1

1

3

5 =

2

4
4 2 3

4 2 3

4 2 3

3

5



System Modification by Permutations

P Ax = P b Row Permutation

�! A
0 x = b0

AP P
Tx = b Column Permutation

�! A
0 x0

= b



Solution of Lower Triangular Systems

2

666666666664

l11

l21 l22

l31 l32 l33
... .

.

... .
.

ln1 ln2 ln3 · · · · · · lnn

3

777777777775

2

666666666664

x1

x2

x3
...
...

xn

3

777777777775

=

2

666666666664

b1

b2

b3
...
...

bn

3

777777777775

for i = 1, 2, . . . , n : xi =
1

lii

 
bi �

i�1X

j=1

lij xj

!
.

As written:

for i = 1 : n

xi = bi
for j = 1 : i� 1

xi = xi � lij xj
end

xi = xi/lii
end

Better memory access (faster):

for j = 1 : n

if ljj = 0, stop - matrix is singular.

xj = bj/ljj
for i = j + 1 : n

bi = bi � lij xj
end

end

x1 =
1

l11
· b1

x2 =
1

l22
· [b2 � l21 x1]

x3 =
1

l33
· [b3 � l31 x1 � l32 x2]

... ...

xn =
1

lnn
· [bn � ln1x1 � · · · � ln,n�1 xn�1] .

xn =
1

un,n
· bn

xn�1 =
1

un�1,n�1
· [bn�1 � un�1,n xn]

xn�2 =
1

un�2,n�2
· [bn�1 � un�2,n xn � un�2,n�1 xn�1]

... ...

x1 =
1

u1,1
· [b1 � u1,n xn � · · · � un,2 x2] .

Q: How could   
this go 
wrong?



Solution of Lower Triangular Systems

2

666666666664

l11

l21 l22
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... .

.

... .
.

ln1 ln2 ln3 · · · · · · lnn
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777777777775
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666666666664
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xn

3

777777777775

=

2

666666666664

b1

b2

b3
...
...

bn

3

777777777775

for i = 1, 2, . . . , n : xi =
1

lii

 
bi �

i�1X

j=1

lij xj

!
.

As written:

for i = 1 : n

xi = bi
for j = 1 : i� 1

xi = xi � lij xj
end

xi = xi/lii
end

Better memory access (faster):

for j = 1 : n

if ljj = 0, stop - matrix is singular.

xj = bj/ljj
for i = j + 1 : n

bi = bi � lij xj
end

end



Solution of Upper Triangular Systems

2

666666666664

u11 u12 u13 · · · · · · u1n

u22 u23 · · · · · · u2n

u33 u33

.
. ...

.
. ...

unn

3

777777777775

2

666666666664

x1

x2

x3
...
...

xn

3

777777777775

=

2

666666666664

b1

b2

b3
...
...

bn

3

777777777775

for i = n, n� 1, . . . , 1 : xi =
1

uii

 
bi �

nX

j=i+1

uij xj

!
.

As written:

for i = n : 1

xi = bi
for j = i+ 1 : n

xi = xi � uij xj
end

xi = xi/uii
end

Better memory access (faster):

for j = n : 1

if ujj = 0, stop - matrix is singular.

xj = bj/ujj
for i = 1 : j � 1

bi = bi � uij xj
end

end

x1 =
1

l11
· b1

x2 =
1

l22
· [b2 � l21 x1]

x3 =
1

l33
· [b3 � l31 x1 � l32 x2]

... ...

xn =
1

lnn
· [bn � ln1x1 � · · · � ln,n�1 xn�1] .

xn =
1

un,n
· bn

xn�1 =
1

un�1,n�1
· [bn�1 � un�1,n xn]

xn�2 =
1

un�2,n�2
· [bn�1 � un�2,n xn � un�2,n�1 xn�1]

... ...

x1 =
1

u1,1
· [b1 � u1,n xn � · · · � u1,2 x2] .



Solution of Upper Triangular Systems

2

666666666664

u11 u12 u13 · · · · · · u1n

u22 u23 · · · · · · u2n

u33 u33

.
. ...

.
. ...

unn

3

777777777775

2

666666666664

x1

x2

x3
...
...

xn

3

777777777775

=

2

666666666664

b1

b2

b3
...
...

bn

3

777777777775

for i = n, n� 1, . . . , 1 : xi =
1

uii

 
bi �

nX

j=i+1

uij xj

!
.

As written:

for i = n : 1

xi = bi
for j = i+ 1 : n

xi = xi � uij xj
end

xi = xi/uii
end

Better memory access (faster):

for j = n : 1

if ujj = 0, stop - matrix is singular.

xj = bj/ujj
for i = 1 : j � 1

bi = bi � uij xj
end

end

What is the cost ??



Solution of Upper Banded Systems

Suppose U is a banded matrix: uij = 0, j > i+ �.

For example, � = 2:
2

666666666664

u11 u12 u13

u22 u23 u14

u33 .
.

.
.

.
.

.
.

un�2,n

.
.

un�1,n

unn

3

777777777775

2

666666666664

x1

x2

x3
...
...

xn

3

777777777775

=

2

666666666664

b1

b2

b3
...
...

bn

3

777777777775

for i = n, n� 1, . . . , 1 : xi =
1

uii

0

@bi �
min(i+�,n)X

j=i+1

uij xj

1

A .

What is the cost ??



Solution of Upper Banded Systems

for i = n, n� 1, . . . , 1 : xi =
1

uii

0

@bi �
min(i+�,n)X

j=i+1

uij xj

1

A .

As written:

for i = n : 1

xi = bi, jmax := min(j + �, n)

for j = i+ 1 : jmax

xi = xi � uij xj
end

xi = xi/uii
end

Better memory access (faster):

for j = n : 1

if ujj = 0, stop - matrix is singular.

xj = bj/ujj, imin := max(1, j � �)

for i = imin : j � 1

bi = bi � uij xj
end

end

• In this case, there are ⇠ 2�n operations and ⇠ �n memory refer-
ences (one for each uij).

• Often � ⌧ n, which means that the upper-banded system is much
faster to solve than the full upper triangular system.

• The same savings applies to the lower-banded case.
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Generating Triangular Systems:  LU Factorization

A = LU



Elimination

• To transform general linear system into upper triangular form, need to re-
place selected nonzero entries of matrix by zeros

• This can be accomplished by subtracting a multiple of “pivot row” from
rows where zeros are desired

• Consider 2-vector a =


a1
a2

�

• If a1 6= 0, then

u1
u2

�
=


1 0

�a2/a1 1

� 
a1
a2

�
=


a1
0

�

1



Elimination

• Suppose we have a 3-vector a =

2

4
a1
a2
a3

3

5

• If a1 6= 0, then
2

4
u1
u2
u3

3

5 =

2

4
1 0 0

�a2/a1 1 0
�a3/a1 0 1

3

5

| {z }
M1

2

4
a1
a2
a3

3

5 =

2

4
a1
0
0

3

5

• We refer to M1 as an elementary elimination matrix

• It removes entries below row 1 in the prescribed vector

2



Elimination

• More generally, to eliminate all entries below kth row, ak+1 · · · an, we would
use a matrix of the form

Mk = I�mke
T
k =

2

6666664

1
. . .

1
�mk+1 1

... . . .
�mn 1

3

7777775

• Here, ek = kth column of the n⇥ n identity matrix and

mk =

2

666666664

0
...
0
0

mk+1
...

mn

3

777777775

,

with entries mi := ai/ak, i = k + 1, . . . , n.

3



Elimination

• Mk is unit lower triangular and nonsingular

• M�1
k = I +mkeTk , which means Lk := M�1

k is same as Mk except signs
of multipliers are reversed.

• If j > k, then

Mk Mj = (I�mke
T
k )(I�mje

T
j )

= I � mke
T
k � mje

T
j + mke

T
kmje

T
j

= I � mke
T
k � mje

T
j

because ek is orthogonal to mj (the order, j > k, matters).

• The product, Mk Mj is thus essentially the “union” of the entries, and
similarly for the inverses, LkLj.

4



Example: Elementary Elimination Matrices

• For a =

2

4
2
4

�6

3

5

M1 a =

2

4
1 0 0

�2 1 0
3 0 1

3

5

2

4
2
4

�6

3

5 =

2

4
2
0
0

3

5

and

M2 a =

2

4
1 0 0
0 1 0
0 6/4 1

3

5

2

4
2
4

�6

3

5 =

2

4
2
4
0

3

5

5



Example, continued

• Note that

L1 := M�1
1 =

2

4
1 0 0
2 1 0

�3 0 1

3

5 , L2 := M�1
2 =

2

4
1 0 0
0 1 0
0 �3/2 1

3

5

and

M1M2 =

2

4
1 0 0

�2 1 0
3 3/2 1

3

5 , L1L2 =

2

4
1 0 0
2 1 0

�3 �3/2 1

3

5

6



Gaussian Elimination as LU Factorization

• Consider the sequence of transformations

A1 := M1A eliminate column 1 of A

A2 := M2A1 eliminate column 2 of A1

...

An�1 := Mn�1An�2 eliminate column n� 1 of An�2

= Mn�1 · · · M1U

= A upper triangular

• Consequently,

A = M�1
1 · · · M�1

n�2 M
�1
n�1U

= L1 · · · Ln�2 Ln�1| {z }
L

U = LU

7
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• Our sequence of elementary elimination steps amounts to factoring A into
a (nonsingular) unit lower triangular matrix L and a (possibly singular)
upper triangular matrix U

• Once we have the factorization A = LU, solve Ax = b as LUx = b by
defining y = Ux and

• solving lower triangular system Ly = b for y using forward substitution

• solving upper triangular system Ux = y using backward substitution

• An important concern when computing the LU factorization is if any pivot
is 0 or small

• We will address this issue by swapping rows to find the largest (in absolute
value) pivot in column k during the kth step of Gaussian elimination.

• Let’s turn to an example.

8

• Our sequence of elementary elimination steps amounts to factoring A into
a (nonsingular) unit lower triangular matrix L and a (possibly singular)
upper triangular matrix U

• Once we have the factorization A = LU, solve Ax = b as LUx = b by
defining y = Ux and

• solving lower triangular system Ly = b for y using forward substitution

• solving upper triangular system Ux = y using backward substitution

• An important concern when computing the LU factorization is if any pivot
is 0 or small

• We will address this issue by swapping rows to find the largest (in absolute
value) pivot in column k during the kth step of Gaussian elimination.

• Let’s turn to some examples of how we implement LU factorization in
practice

8



• The transformation of a general matrix to upper triangular form is known as Gaus-
sian Elimination and it is equivalent to what is known as LU factorization.

• Equivalence-preserving operations used in Gaussian elimination include

• row interchanges

• column interchanges (relatively rare; used only for “full pivoting”)

• addition of a multiple of another row to a given row

Notice that we do not include “multiplication of a row by a constant” because, while
valid for any nonzero constant, it is generally not needed for Gaussian elimination.

• We have already seen how row/column interchanges can transform a system from
lower-triangular form to upper-triangular form and can understand that reversing
that procedure would take us back to our targeted upper-triangular form.

• Let’s now look at the row-addition process for a more general example.

Gaussian Elimination - Main Steps



Generating Upper Triangular Systems: LU Factorization

• Example:

2

6666664

1 2 3

4 4 6 1

8 8 9 2

6 1 3 3

4 2 8 4

3

7777775

2

6666664

x1

x2

x3

x4

x5

3

7777775
=

2

6666664

0

4

4

4

4

3

7777775

• First column is already in upper triangular form.

• Eliminate second column:

row3  � row3 �
8

4
⇥ row2

row4  � row4 �
6

4
⇥ row2

row5  � row5 �
4

4
⇥ row2

2

6666664

1 2 3

4 4 6 1

0 �3 0

�5 �6 3
2

�2 2 3

3

7777775

2

6666664

x1

x2

x3

x4

x5

3

7777775
=

2

6666664

0

4

�4
�2
0

3

7777775

• a22 = 4 is the pivot

• row2 is the pivot row

• l32 =
8
4 , l42 =

6
4 , l52 =

4
4 , is the multiplier column.

x1 =
1

l11
· b1

x2 =
1

l22
· [b2 � l21 x1]

x3 =
1

l33
· [b3 � l31 x1 � l32 x2]

... ...

xn =
1

lnn
· [bn � ln1x1 � · · · � ln,n�1 xn�1] .

xn =
1

un,n
· bn

xn�1 =
1

un�1,n�1
· [bn�1 � un�1,n xn]

xn�2 =
1

un�2,n�2
· [bn�1 � un�2,n xn � un�2,n�1 xn�1]

... ...

x1 =
1

u1,1
· [b1 � u1,n xn � · · · � u1,2 x2] .

lk := a0k/akk

=
aik
akk

, i = k + 1 . . . n



Generating Upper Triangular Systems: LU Factorization

• Augmented form. Store b in A(:, n+ 1):

2

6666664

1 2 3 0

4 4 6 1 4

8 8 9 2 4

6 1 3 3 4

4 2 8 4 4

3

7777775
�!

2

6666664

1 2 3 0

4 4 6 1 4

0 �3 0 �4

�5 �6 3
2 �2

�2 2 3 0

3

7777775

This Case. General Case.

pivot = 4 = akk when zeroing the kth column.

pivot row = [ 4 6 1 | 4 ] = rTk = akj, j = k + 1, . . . , n [ + bk ]

multiplier column =
1

4

2

64
8

6

4

3

75 = ck =
aik
akk

, i = k + 1, . . . , n

=

2

64
2
3
2

1

3

75
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Generating Upper Triangular Systems: LU Factorization

• Augmented form. Store b in A(:, n+ 1):

2

6666664

1 2 3 0

4 4 6 1 4

8 8 9 2 4
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4 2 8 4 4

3

7777775
�!

2

6666664

1 2 3 0

4 4 6 1 4

0 �3 0 �4

�5 �6 3
2 �2

�2 2 3 0

3

7777775

This Case. General Case.

pivot = 4 = akk when zeroing the kth column.

pivot row = [ 4 6 1 | 4 ] = rTk = akj, j = k + 1, . . . , n [ + bk ]

multiplier column =
1

4

2

64
8

6

4

3

75 = ck =
aik
akk

, i = k + 1, . . . , n

=

2

64
2
3
2

1

3

75

Using LU Factorization in Practice

• Give LU = A, we can solve Ax = b as follows:

Given: Ax = LU x = b

L (U x) = Lb = b

Solve: Ly = b

Ux = y

• We have seen already that the total solve cost (for L and U solves) is 2⇥ n2.

• What about the factor cost, A �! LU ?

ck �! lk, store as column k of L.
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kth Update Step

• Look more closely at the kth update step for Gaussian elimination.

• Assume A is m ⇥ n, which covers the case where A is augmented

with the right-hand side vector.

• Row k remains unchanged.

• For each row i, with i > k, we want to generate a zero in place of aik.

• We do this by subtracting a multiple of row k from row i, i = k + 1, . . . ,m.

• This operation can be expressed in several equivalent ways:

rowi = rowi � aik
akk

⇥ rowk

aij = aij � aik a
�1
kk akj j = k + 1, . . . , n

= aij � (ck)i
�
rTk

�
j

j = k + 1, . . . , n

A(k+1)
= A(k) � ck r

T
k ,

• Here, ck is the column vector with entries (ck)i = aik/akk, and rTk is the row

vector with entries
�
rTk

�
j
= akj.

• Formally, we think of (ck)i = 0, i  k and
�
rTk

�
j
= 0, j  k, though we would

implement as an update only to the active submatrix.

• The m ⇥ n matrix ck r
T
k is of rank 1. All columns are multiples of the only

linearly independent column, ck.

• We typically save the entries of the multiplier column as the kth column of a

lower triangular matrix: lik := (ck)i.

• In fact, since the entries below akk in A(k+1)
are zero, we can store the values of

the multiplier column lik there.
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Matlab: lu_demo_1.m

kth Update Step

• Look more closely at the kth update step for Gaussian elimination.

• Assume A is m ⇥ n, which covers the case where A is augmented

with the right-hand side vector.

• Row k remains unchanged.

• For each row i, with i > k, we want to generate a zero in place of aik.

• We do this by subtracting a multiple of row k from row i, i = k + 1, . . . ,m.

• This operation can be expressed in several equivalent ways:

rowi = rowi � aik
akk

⇥ rowk

aij = aij � aik a
�1
kk akj j = k + 1, . . . , n

= aij � (ck)i
�
rTk

�
j

j = k + 1, . . . , n

A(k+1)
= A(k) � ck r

T
k ,

• Here, ck is the column vector with entries (ck)i = aik/akk, and rTk is

the row vector with entries
�
rTk

�
j
= akj.

• Formally, we think of (ck)i = 0, i  k and
�
rTk

�
j
= 0, j  k, though

we would implement as an update only to the active submatrix.

• The m⇥ n matrix ck r
T
k is of rank 1. All columns are multiples

of the only linearly independent column, ck.

• We typically save the entries of the multiplier column as the kth column

of a lower triangular matrix: lik := (ck)i.

• In fact, since the entries below akk in A(k+1)
are zero, we can store the

values of the multiplier column lik there.



Note:  This demo does not 
use pivoting.

• For stability, we would 
invariably use partial 
pivoting because the 
computational overhead 
(cost, in terms of 
operations) is only O(n2), 
where as the total factor 
cost is ~ 2/3 n3 



Using LU Factorization in Practice

• Give LU = A, we can solve Ax = b as follows:

Given: Ax = LU x = b

L (U x) = Ly = b

Solve: Ly = b

Ux = y

• We have seen already that the total solve cost (for L and U solves) is 2⇥ n2.

• What about the factor cost, A �! LU ?

ck �! lk, store as column k of L.



LU Factorization Costs (Important)

• In general, the cost for A �! LU is O(n
3
).

• It is large (i.e., it is not optimal, which would be O(n)), and therefore important.

• The dominant cost comes from the essential update step:

A
(k+1)

= A
(k) � ck r

T
k ,

which is e↵ected for k = 1, . . . , n� 1 steps.

• If A is square (n⇥ n), then ck r
T
k is a square matrix with (n� k)

2
nonzeros.

• Each entry requires one “*” and its subtraction from A
(k)

requires one “-”.

• Total cost is 2⇥ [ (n� 1)
2
+ (n� 2)

2
+ . . . (1)

2
] ⇠ 2n

3
/3 operations.

• Example: n = 10
3 �! n

3
= 10

9
. Cost is about 0.6 billion operations.

With a 3 GHz clock and 2 floating point ops / clock, expect about 0.1 seconds (very

fast).

• Example: n = 10
4 �! n

3
= 10

12
. Cost is about 600 billion operations.

With a 3 GHz clock and 2 floating point ops / clock, expect about 10.0 seconds.



First Step:  Define sub-block 



Single Gaussian Elimination Step



Second Step: Annihilate ck

q Update step is:

     which is a rank one update to Ak:



Can also be Implemented in Block Form

q Advantage is that, if Akk is a b x b block, you revisit the Ak sub-
block only n/b times, and thus need fewer memory accesses. 
An order-of-magnitude faster. (LAPACK vs. LINPACK) 



Matlab demo, gauss2.m

• Blue curve is rank-1 update
• Red curve is rank-4 update
• Black curve is matlab lu() 

function
• It uses a 4 CPUs on the 

Mac and achieves an 
impressive 50 Gflops, 
which is very near peak

• Note that the black curve 
represents a ~100X speed 
up over a naïve rank-1 
update approach. (Why?)



Next Topics

q Pivoting / zeros & stability
q Approach
q Permutation Matrices
q Stability
q Cost

q Sherman Morrison

q Computing matrix 2-norm

q SPD / Cholesky Factorization

q Banded Factorization
q Approach
q Cost



Generating Upper Triangular Systems: LU Factorization

• Example:

2

6666664

1 2 3

4 4 6 1

8 8 9 2

6 1 3 3

4 2 8 4

3

7777775

2

6666664

x1

x2

x3

x4

x5

3

7777775
=

2

6666664

0

4

4

4

4

3

7777775

• First column is already in upper triangular form.

• Eliminate second column:

row3  � row3 �
8

4
⇥ row2

row4  � row4 �
6

4
⇥ row2

row5  � row5 �
4

4
⇥ row2

2

6666664

1 2 3

4 4 6 1

0 �3 0

�5 �6 3
2

�2 2 3

3

7777775

2

6666664

x1

x2

x3

x4

x5

3

7777775
=

2

6666664

0

4

�4
�2
0

3

7777775

• a22 = 4 is the pivot

• row2 is the pivot row

• l32 =
8
4 , l42 =

6
4 , l52 =

4
4 , is the multiplier column.

Recall our earlier example: 



Generating Upper Triangular Systems: LU Factorization

• Augmented form. Store b in A(:, n+ 1):

2

6666664

1 2 3 0

4 4 6 1 4

8 8 9 2 4

6 1 3 3 4

4 2 8 4 4

3

7777775
�!

2

6666664

1 2 3 0

4 4 6 1 4

0 �3 0 �4

�5 �6 3
2 �2

�2 2 3 0

3

7777775

This Case. General Case.

pivot = 4 = akk when zeroing the kth column.

pivot row = [ 4 6 1 | 4 ] = rTk = akj, j = k + 1, . . . , n [ + bk ]

multiplier column =
1

4

2

64
8

6

4

3

75 = ck =
aik
akk

, i = k + 1, . . . , n

=

2

64
2
3
2

1

3

75



Generating Upper Triangular Systems: LU Factorization

• Augmented form. Store b in A(:, n+ 1):
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Generating Upper Triangular Systems: LU Factorization

• Augmented form. Store b in A(:, n+ 1):
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This Case. General Case.

pivot = 4 = akk when zeroing the kth column.

pivot row = [ 4 6 1 | 4 ] = rTk = akj, j = k + 1, . . . , n [ + bk ]

multiplier column =
1

4

2

64
8

6

4

3

75 = ck =
aik
akk

, i = k + 1, . . . , n

=

2

64
2
3
2

1

3

75

Using LU Factorization in Practice

• Give LU = A, we can solve Ax = b as follows:

Given: Ax = LU x = b

L (U x) = Lb = b

Solve: Ly = b

Ux = y

• We have seen already that the total solve cost (for L and U solves) is 2⇥ n2.

• What about the factor cost, A �! LU ?

ck �! lk, store as column k of L.



Pivoting

• We return to our original 5⇥ 5 example. The next step would be:

2

6666664

1 2 3 0

4 4 6 1 4

0 �3 0 �4

�5 �6
3
2 �2

�2 2 3 0

3

7777775

• Here, we have di�ulty because the nominal pivot, a33 is zero.

• The remedy is to exchange rows with one of the remaining two, since

the order of the equations is immaterial.

• For numerical stability, we choose the row that maximizes |aik|.

• This choice ensures that all entries in the multiplier column are less than

one in modulus.



Next Step: k = k + 1

• After switching rows, we have

2

6666664

1 2 3 0

4 4 6 1 4

�5 �6
3
2 �2

0 �3 0 �4

�2 2 3 0

3

7777775
�!

2

6666664

1 2 3 0

4 4 6 1 4

�5 �6
3
2 �2

0 �3 0 �4

0 4
2
5 2

2
5

4
5

3

7777775

pivot = �5

pivot row =


�6

3

2
| � 2

�

multiplier column =
1

�5

"
0

�2

#



Pivoting:

q Moving small pivots down moves us closer to upper triangular form, 
with no round-off.

q A general principle in numerical computing regarding round-off:
q  Small corrections are preferred to large ones.

q Failure to exchange a small pivot on the diagonal can result in all 
subsequent rows looking like multiples of the current pivot row à 
singular submatrix.  



Failure to pivot can result in all subsequent rows 
looking like multiples of the kth row:

q Consider

q Matlab example “pivot_off.m” , etc.



pivot_partial.m



Failure to Pivot, Noncatastrophic Case

q In cases where the nominal pivot is small but > eM, we  are 
effectively reducing the number of significant digits that represent 
the remainder of the matrix A.

q In essence, we are driving the rows (or columns) to be similar, 
which is equivalent to saying that we have nearly parallel 
columns.

q We saw already a 2 x 2 example where the condition number of 
the matrix with 2 unit-norm vectors scales like 2 / µ , where µ is 
the (small) angle between the column vectors.



LU Factorization with Patial Pivoting

• With partial pivoting, each Mk is preceded by a permutation, Pk

to interchange rows to bring entry with of largest magnitude into
diagonal pivot position.

• Still obtain MA = U with U upper triangular, but now,

M = Mn�1Pn�1 · · · M1P1

• L = M�1 is still triangular in a general sense, but not necessarily
lower triangular

• Alternatively, can write

PA = LU

where P = Pn�1 · · · P1 permutes rows of A into order determined
by partial pivoting and now L is lower triangular

• “tlu.m” demo

1



Partial Pivoting: Costs

Procedure:

• For each k, pick k
0 such that |ak0k| � |aik|, i � k.

• Swap rows k and k
0.

• Proceed with central update step: A(k+1) = A
(k) � ck r

T
k

Costs:

• For each step, search is O(n� k), total cost is ⇡ n
2
/2.

• For each step, row swap is O(n� k), total cost is ⇡ n
2
/2.

• Total cost for partial pivoting is O(n2) ⌧ 2n3
/3.

• If we use full pivoting, total search cost such that
|ak0k00 | � |aij|, i, j � k, is O(n3).

• Row and column exchange costs still total only O(n2).

Notes:

• Partial (row) pivoting ensures that multiplier column entries
have modulus  1. (Good.)

• For banded matrices full pivoting also destroys band structure,
whereas partial pivoting leaves some band structure intact.
(Matrix bandwith increases by at most 2⇥.)



Partial Pivoting: LU=PA

• Note: If we swap rows of A, we are swapping equations. �! Must swap rows of b.

• LU routines normally return the pivot index vector to e↵ect this exchange.

• Nominally, it looks like a permutation matrix P , which is simply the identity matrix
with rows interchanged.

• If we swap equations, we must also swap rows of L

• If we are consistent, we can swap rows at any time (i.e., A, or L) and get the same final
factorization: LU = PA.

• Most codes swap A(k+1), but not the factors in L that have already been stored.

• Swapping rows of A(k+1) helps with speed (vectorization) of A(k+1) = A(k) � ck r
T
k .

• In parallel computing, one would not swap the pivot row between processors.
Just pass the pointer to the processor holding the new pivot row, where the swap would
take place locally.





Remaining Topics

q Condition Number Example 

q Special Matrices

q SPD / Cholesky Factorization

q Sherman Morrison



Condition Number and Relative Error: Ax = b

• Want to solve Ax = b, but computed rhs is:

b0 = b + �b,

where we anticipate

||�b||
||b|| . ✏M .

• Net result is we end up solving Ax0 = b0 and want to know how large is
the relative error in x0 = x+�x,

||�x||
||x|| ?

• Since Ax0 = b0 and (by definition) Ax = b, we have A�x = �b and thus, :

||�x||  ||A�1|| ||�b||

||b||  ||A|| ||x||

1

||x||  ||A|| 1

||b||

�x

||x||  ||A|| �x

||b||

 ||A|| ||A�1|| �b

||b|| = cond(A)
�b

||b|| .

• Key point: If cond(A)=10k, then expected relative error is ⇡ 10k✏M ,
meaning that you will lose k digits (of 16, if ✏M ⇡ 10�16.

• A similar analysis and result holds when the entries of A are perturbed.



Condition Number and Relative Error: Ax = b

• Want to solve Ax = b, but computed rhs is:

b0 = b + �b,

where we anticpate

||�b||
||b|| ⇡  ✏M .

• Net result is we end up solving Ax0 = b0 and want to know how large is the
relative error in x0 = x+�x,

||�x||
||x|| ?

• Since Ax0 = b0 and (by definition) Ax = b, we have A�x = �b and thus, :

||�x||  ||A�1|| ||�b||

||b||  ||A|| ||x||

1

||x||  ||A|| 1

||b||

�x

||x||  ||A|| �x

||b||

 ||A|| ||A�1|| �b

||b|| = cond(A)
�b

||b|| .

• Key point: If cond(A)=10k, then expected relative error is ⇡ 10k✏M ,
meaning that you will lose k digits (of 16, if ✏M ⇡ 10�16.

• A similar analysis and result holds when the entries of A are perturbed.



Illustration of Impact of cond(A)

eM * cond(A)

|| u-A-1f ||1Here, we see that eM * cond(A)
bounds the error in the solution to Au=f, 
as expected.

h
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nd
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or
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ou

nd



• If A is symmetric-positive definite (SPD), cond(A) = �max
�min

• There are many matrices where we have good estimates for the
condition number.

• For example, the tridiagonal matrix below arises in many boundary-
value problems and has a condition number cond(A) ⇠ 4n2

⇡2
.

A =

0

BBB@

2 �1
�1 2 . . .

. . . . . . �1
�1 2

1

CCCA
.

• The condition number can also be estimated at low cost when
solving a linear system Ax = b using Gaussian elimination.



Some Special Matrices

• Diagonally dominant

• Symmetric Positive Definite (SPD)

• Banded (aij = 0 for |i� j| > b)

• Sparse (number of nonzeros per row bounded, independent of n)

2



Matrices that do not Require Pivoting

• Diagonally dominant :
X

i 6=j

|aij|  |ajj|, j = 1, . . . , n

• Symmetric positive definite (SPD):

A = A
T and x

T
Ax > 0 for all x 6= 0

• Some consequences of A being SPD:

• Diagonal entries, aii > 0, i = 1, . . . , n

• Eigenvalues, �i > 0, i = 1, . . . , n

• Linear systems can be solved with Cholesky factorization (“direct” method) or,
in the case of a sparse SPD system, conjugate gradients (“iterative” method)

• Being SPD does not, however, imply that A is well-conditioned.
(hilbert.m demo)

3



Condition Number of Hilbert Matrix

• The Hilbert matrix, H = hij =
1

i+j�1 is SPD

• It is notoriously ill-conditioned, however, with (H) growing exponentially
with n

11



Example of SPD Matrix

• If B is invertible, then A = B
T
B is SPD.

x
T
Ax = x

T
B

T
Bx = (Bx)TBx = y

T
y = kyk22 > 0

• The expression y = By can only be singular for nonzero x if B is singular.

4



Cholesky Factorization

• If A is SPD then LU factorization can be arranged so that U = LT (for L not unit lower
triangular)

• This gives the Cholesky factorization

A = LL
T

where L is lower triangular with posivite diagonal entries

• Algorithm for computing it can be derived by equating corresponding entries ofA and LLT

• In 2 ⇥ 2 case, for example,

a11 a21
a21 a22

�
=


l11 0
l21 l22

� 
l11 l21
0 l22

�

implies

l11 =
p
a11 l21 = a21/l11 l22 =

q
a22 � l221

5



Cholesky Factorization

• One way to write the algorithm, with Cholesky factor L overwriting
lower triangle of A, is

for k = 1 to n (loop over columns)
akk =

p
akk

for i = k + 1 to n
aik = aik/akk (scale current column)

end

for j = k + 1 to n
for i = j to n

aij = aij � aik · ajk (rank-1 update)
end
end

end

6



Cholesky Factorization, continued

• Features of Cholesky factorization

• Requires that A be SPD

• All n square roots are positive �! algorithm is well defined

• No pivoting required to maintain numerical stability

• Only lower triangular part of A is accessed, so only 1/2 the storage is required

• Only n3/6 multiplications and additions required, so 1/2 the work

• Cholesky requires about half the work and half the storage of LU and avoids the

need for pivoting.

1



Band Matrices

• aij = 0 for |j � i| > b

• Gaussian elimination for band matrices di↵ers little from general case–only loop ranges

change

• Typically matrix is stored in array by diagonals to avoid storing zero entries

• If pivoting is required for numerical stability, bandwidth can grow (but no more than dou-

ble)

• General purpose solver for arbitrary bandwidth is similar to code for Gaussian elimination

for general matrices

• For fixed small bandwidth, band solver can be extremely simple, especially if pivoting is

not required for stability

2



q Significant savings in storage and work if A is banded à aij = 0 if  | i-j | > b

q The LU factors preserve the nonzero structure of A (unless there is pivoting, in 
which case, the bandwidth of L can grow by at most 2x).

q Storage / solve costs for LU is ~ 2nb

q Factor cost is ~ n b 2  <<  n 3

Band Matrices

• aij = 0 for |j � i| > b

• Gaussian elimination for band matrices di↵ers little from general case–only loop ranges

change

• Typically matrix is stored in array by diagonals to avoid storing zero entries

• If pivoting is required for numerical stability, bandwidth can grow (but no more than dou-

ble)

• General purpose solver for arbitrary bandwidth is similar to code for Gaussian elimination

for general matrices

• For fixed small bandwidth, band solver can be extremely simple, especially if pivoting is

not required for stability

2



Definitely do not 
invert A or L or 
U for banded 
systems!

A L

U U-1

Band Matrices

• aij = 0 for |j � i| > b

• Gaussian elimination for band matrices di↵ers little from general case–only loop ranges

change

• Typically matrix is stored in array by diagonals to avoid storing zero entries

• If pivoting is required for numerical stability, bandwidth can grow (but no more than dou-

ble)

• General purpose solver for arbitrary bandwidth is similar to code for Gaussian elimination

for general matrices

• For fixed small bandwidth, band solver can be extremely simple, especially if pivoting is

not required for stability

2



Cost of Banded Factorization

q Active submatrix for matrix 
with bandwidth b is ( b x b ).

q Work for outer product is 
crT,  which is outer product 
of two vectors of length b.

q So, total work is ~  n x (b2)  
x 2 operations to convert A 
into LU.

q If we have pivoting, then 
bandwidth of U can grow by 
2x.

q Note that if b=1, matrix is 
tridiagonal and factor cost 
is O(n) -  optimal!



Cost of Banded Factorization

q Pivoting can pull a row that 
has 2b nonzeros to right of 
diagonal.

q U can end up with 
bandwidth 2b.
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Cost of Banded Factorization

q Pivoting can pull a row that 
has 2b nonzeros to right of 
diagonal.

q U can end up with 
bandwidth 2b.



Solver Times, Banded, Cholesky (SPD), Full

System Size, n
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Solver Times, Banded, Cholesky (SPD), Full



Tridiagonal Matrices

• Consider tridiagonal matrix

• Gaussian elimination without pivoting reduces to

3

93

Tridiagonal Matrices

I Consider tridiagonal matrix

A =

2

666666664

b1 c1 0 · · · 0

a2 b2 c2
. . .

.

.

.

0
. . .

. . .
. . . 0

.

.

.
. . . an�1 bn�1 cn�1

0 · · · 0 an bn

3

777777775

I Gaussian elimination without pivoting reduces to

d1 = b1
for i = 2 to n

mi = ai/di�1

di = bi �mici�1

end
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I Gaussian elimination without pivoting reduces to

d1 = b1
for i = 2 to n

mi = ai/di�1

di = bi �mici�1

end



Tridiagonal Matrices, continued

• LU factorization of A is then
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Tridiagonal Matrices, continued

I LU factorization of A is then given by
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, U =
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Tridiagonal Matrices, continued

• LU factorization of A is then

• Cost of solving Ax = b without pivoting is ⇠ 8n ops
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Block Factorization

• Consider 2⇥ 2 block partition,

A =

2

4
A11 A12

A21 A22

3

5

• Perform block Gaussian elimination,

U =

2

4
A11 A12

0 S22

3

5

• Here, S22 := A22 � A21A
�1
11 A12, is the Schur complement,

• Note that

L =

2

4
I11

A21A
�1
11 I22

3

5 ,

as can be verified by showing that LU = A.
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Block Factorization

• Block factorizations can be used in many ways.

• We’ve seen one already, in which we replace ine�cient rank-1 updates with

memory-e�cienty rank-b updates, which lead to matrix-matrix products bearing

the brunt of the computational e↵ort

• The Sherman-Morrison formula is another instance of using block-factorization
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Sherman Morrison

[1] Solve Ax̃ = b̃:
A �! LU ( O(n3) work )
Solve Lỹ = b̃,
Solve U x̃ = ỹ ( O(n2) work ).

[2] New problem:�
A� uvT

�
x = b. (di↵erent x and b)

Key Idea:

•
�
A� uvT

�
x di↵ers from Ax by

only a small amount of information.

• Rewrite as: Ax+ u� = b

� := �vTx  ! vTx+ � = 0



Sherman Morrison

Extended system:

Ax+ �u = b

vTx+ � = 0



Sherman Morrison

Extended system:

Ax+ �u = b

vTx+ � = 0

In matrix form:


A u
vT 1

�✓
x
�

◆
=

✓
b
0

◆
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Extended system:
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Extended system:
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�
A� uvT

��1
= A

�1 + A
�1u

�
1� vT

A
�1u

��1
vT

A
�1
.



Sherman Morrison:  Potential Singularity

• Consider the modified system:
�
A� uvT

�
x = b.

• The solution is

x =
�
A� uvT

��1
b

=
h
I + A�1u

�
1� vTA�1u

��1
vTA�1

i
A�1b.

• If 1 � vTA�1u = 0, failure.

• Why?

• Let Ã :=
�
A� uvT

�
and consider,

Ã A�1 =
�
A� uvT

�
A�1

=
�
I � uvTA�1

�
.

• Look at the product ÃA�1u,

Ã A�1u =
�
I � uvTA�1

�
u

= u� uvTA�1u.

• If vTA�1u = 0, then

Ã A�1u = u� u = 0,

which means that Ã is singular since we assume that A�1 exists.

• Thus, an unfortunate choice of u and v can lead to a singular
modified matrix and this singularity is indicated by vTA�1u = 1.
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Sherman-Morrison Example

• Q:What is the cost of solvingAx = b ifA is n⇥n and of the form below?

A =

2

6666666666666664

1.0 �.1 �.1 �.1 �.1 �.1 �.1 �.1

�.1 1.0 �.1 �.1 �.1 �.1 �.1 �.1

�.1 �.1 1.0 �.1 �.1 �.1 �.1 �.1

�.1 �.1 �.1 1.0 �.1 �.1 �.1 �.1

�.1 �.1 �.1 �.1 1.0 �.1 �.1 �.1

�.1 �.1 �.1 �.1 �.1 1.0 �.1 �.1

�.1 �.1 �.1 �.1 �.1 �.1 1.0 �.1

�.1 �.1 �.1 �.1 �.1 �.1 �.1 1.0

3

7777777777777775
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• A: O(n)!
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