
Chapter 4: Eigenvalue Problems

1

Eigenvalues and Eigenvectors

• Standard eigenvalue problem: Given n⇥ n matrix
A, find scalar � and nonzero vector x such that

Ax = �x

• � is the eigenvalue and x is the eigenvector

• � (and x) may be complex even if A is real

• Spectrum of A = set of all eigenvalues �(A)

• Spectral radius ⇢(A) = max{|�| : � 2 �(A)}

2

Geometric Interpretation

• The matrix-vector product v̂ = Av stretches or shrinks any vector v lying
in direction of eigenvector x

• Scalar expansion or contraction factor is given by corresponding �

• Eigenvalues and eigenvectors lead to simple interpretation of general linear
transformations (e.g., as represented by matrix-vector products)

• They are particularly useful when considering iterative processes that can
be cast as a sequence of matrix-vector products, such as

x1 = Ax0, x2 = Ax1, . . . ,xk = Akx0,

• Such sequences are in fact at the core of most of the algorithms used to find
the eigenpairs (�,x) of A

3

Examples: Eigenvalues and Eigenvectors

• A =


1 0
0 2

�
: �1 = 1, x1 =


1
0

�
, �2 = 2, x2 =


0
1

�

• A =


1 1
0 2

�
: �1 = 1, x1 =


1
0

�
, �2 = 2, x2 =


1
1

�

• A =


3 �1

�1 3

�
: �1 = 2, x1 =


1
1

�
, �2 = 4, x2 =


1

�1

�

• A =


1.5 0.5
0.5 1.5

�
: �1 = 2, x1 =


1
1

�
, �2 = 1, x2 =


�1
1

�

• A =


0 1

�1 0

�
: �1 = i, x1 =


1
i

�
, �2 = �i, x2 =


i
1

�

4

Examples: Eigenvalues and Eigenvectors

• A =


1 0
0 2

�
: �1 = 1, x1 =


1
0

�
, �2 = 2, x2 =


0
1

�

• A =


1 1
0 2

�
: �1 = 1, x1 =


1
0

�
, �2 = 2, x2 =


1
1

�

• A =


3 �1

�1 3

�
: �1 = 2, x1 =


1
1

�
, �2 = 4, x2 =


1

�1

�

• A =


1.5 0.5
0.5 1.5

�
: �1 = 2, x1 =


1
1

�
, �2 = 1, x2 =


�1
1

�

• A =


0 1

�1 0

�
: �1 = i, x1 =


1
i

�
, �2 = �i, x2 =


i
1

�

4

Examples: Eigenvalues and Eigenvectors

• A =


1 0
0 2

�
: �1 = 1, x1 =


1
0

�
, �2 = 2, x2 =


0
1

�

• A =


1 1
0 2

�
: �1 = 1, x1 =


1
0

�
, �2 = 2, x2 =


1
1

�

• A =


3 �1

�1 3

�
: �1 = 2, x1 =


1
1

�
, �2 = 4, x2 =


1

�1

�

• A =


1.5 0.5
0.5 1.5

�
: �1 = 2, x1 =


1
1

�
, �2 = 1, x2 =


�1
1

�

• A =


0 1

�1 0

�
: �1 = i, x1 =


1
i

�
, �2 = �i, x2 =


i
1

�

4

Examples: Eigenvalues and Eigenvectors

• A =


1 0
0 2

�
: �1 = 1, x1 =


1
0

�
, �2 = 2, x2 =


0
1

�

• A =


1 1
0 2

�
: �1 = 1, x1 =


1
0

�
, �2 = 2, x2 =


1
1

�

• A =


3 �1

�1 3

�
: �1 = 2, x1 =


1
1

�
, �2 = 4, x2 =


1

�1

�

• A =


1.5 0.5
0.5 1.5

�
: �1 = 2, x1 =


1
1

�
, �2 = 1, x2 =


�1
1

�

• A =


0 1

�1 0

�
: �1 = i, x1 =


1
i

�
, �2 = �i, x2 =


i
1

�

4

Examples: Eigenvalues and Eigenvectors

• A =


1 0
0 2

�
: �1 = 1, x1 =


1
0

�
, �2 = 2, x2 =


0
1

�

• A =


1 1
0 2

�
: �1 = 1, x1 =


1
0

�
, �2 = 2, x2 =


1
1

�

• A =


3 �1

�1 3

�
: �1 = 2, x1 =


1
1

�
, �2 = 4, x2 =


1

�1

�

• A =


1.5 0.5
0.5 1.5

�
: �1 = 2, x1 =


1
1

�
, �2 = 1, x2 =


�1
1

�

• A =


0 1

�1 0

�
: �1 = i, x1 =


1
i

�
, �2 = �i, x2 =


i
1

�

4

Examples: Eigenvalues and Eigenvectors

• A =


1 0
0 2

�
: �1 = 1, x1 =


1
0

�
, �2 = 2, x2 =


0
1

�

• A =


1 1
0 2

�
: �1 = 1, x1 =


1
0

�
, �2 = 2, x2 =


1
1

�

• A =


3 �1

�1 3

�
: �1 = 2, x1 =


1
1

�
, �2 = 4, x2 =


1

�1

�

• A =


1.5 0.5
0.5 1.5

�
: �1 = 2, x1 =


1
1

�
, �2 = 1, x2 =


�1
1

�

• A =


0 1

�1 0

�
: �1 = i, x1 =


1
i

�
, �2 = �i, x2 =


i
1

�

4

Examples: Eigenvalues and Eigenvectors

• A =


1 0
0 2

�
: �1 = 1, x1 =


1
0

�
, �2 = 2, x2 =


0
1

�

• A =


1 1
0 2

�
: �1 = 1, x1 =


1
0

�
, �2 = 2, x2 =


1
1

�

• A =


3 �1

�1 3

�
: �1 = 2, x1 =


1
1

�
, �2 = 4, x2 =


1

�1

�

• A =


1.5 0.5
0.5 1.5

�
: �1 = 2, x1 =


1
1

�
, �2 = 1, x2 =


�1
1

�

• A =


0 1

�1 0

�
: �1 = i, x1 =


1
i

�
, �2 = �i, x2 =


i
1

�

4

Classic Eigenvalue Problem

• Consider the coupled pair of di↵erential equations:

dv

dt
= 4v � 5w, v = 8 at t = 0,

dw

dt
= 2v � 3w, w = 5 at t = 0.

• This is an initial-value problem.

• With the coe�cient matrix,

A =


4 �5

2 �3

�
,

we can write this as,

d

dt

✓
v(t)
w(t)

◆
=


4 �5

2 �3

�✓
v(t)
w(t)

◆
.

• Introducing the vector unknown, u(t) := [v(t) w(t)]T with u(0) = [8 5]
T
,

we can write the system in vector form,

du

dt
= Au, with u = u(0) at t = 0.

• How do we find u(t) ?

• If we had a 1 ⇥ 1 matrix A = a, we would have a scalar equation:

du

dt
= a u with u = u(0) at t = 0.

The solution to this equation is a pure exponential:

u(t) = eat u(0),

which satisfies the initial condition because e0 = 1.

• The derivative with respect to t is aeatu(0) = au, so it satisfies
the scalar initial value problem.

• The constant a is critical to how this system behaves.

– If a > 0 then the solution grows in time.

– If a < 0 then the solution decays.

– If a 2 Im then the solution is oscillatory.
(More on this later...)

2

• Coming back to our system, suppose we again look for solutions that are

pure exponentials in time, e.g.,

v(t) = e�ty

w(t) = e�tz.

• If this is to be a solution to our initial value problem, we require

dv

dt
= �e�ty = 4e�ty � 5e�tz

dw

dt
= �e�tz = 2e�ty � 3e�tz.

• The e�t cancels out from each side, leaving:

�y = 4y � 5z

�z = 2y � 3z,

which is the eigenvalue problem.

Classic Eigenvalue Problem


4 �5
2 �3

�✓
y
z

◆
=


� 0
0 �

�✓
y
z

◆
.

• In vector form, u(t) = e�tx, yields

du

dt
= Au () �e�tx = A(e�tx)

which gives the eigenvalue problem in matrix form:

�x = Ax or

Ax = �x.

• As in the scalar case, the solution behavior depends on whether � has

– positive real part �! a growing solution,

– negative real part �! a decaying solution,

– an imaginary part �! an oscillating solution.

• Note that here we have two unknowns: � and x.

• We refer to (�,x) as an eigenpair, with eigenvalue � and eigenvector x.

Solving the Eigenvalue Problem

• The eigenpair satisfies

(A � �I)x = 0,

which is to say,

– x is in the null-space of A� �I

– � is chosen so that A� �I has a null-space.

• We thus seek � such that A� �I is singular.

• Singularity implies det(A� �I)=0.

• For our example:

0 =

����
4� � �5
2 �3� �

���� = (4� �)(�3� �) � (�5)(2),

or

�2 � �� 2 = 0,

which has roots � = �1 or � = 2.

Finding the Eigenvectors

• For the case � = �1 = �1, (A� �1I)x1 satisfies,


5 �5

2 �2

�✓
y
z

◆
=

✓
0

0

◆
,

which gives us the eigenvector x1

x1 =

✓
y
z

◆
=

✓
1

1

◆
.

• Note that any nonzero multiple of x1 is also an eigenvector.

• Thus, x1 defines a subspace that is invariant under multiplication by A.

• For the case � = �2 = 2, (A� �2I)x2 satisfies,


2 �5

2 �5

�✓
y
z

◆
=

✓
0

0

◆
,

which gives us the second eigenvector as any multiple of

x2 =

✓
y
z

◆
=

✓
5

2

◆
.

Because Ax1 = l x1 , i.e., it is simply a stretching of x1

Return to Model Problem

• Note that our model problem
du
dt = Au, is linear in the unknown u.

• Thus, if we have two solutions u1(t) and u2(t) satisfying the di↵erential

equation, their sum u := u1 + u2 also satisfies the equation:

du1

dt
= Au1

+
du2

dt
= Au2

d

dt
(u1 + u2) = A(u1 + u2)

du

dt
= Au

• Take u1 = c1e�1tx1:
du1

dt
= c1�1e

�1tx1

Au1 = A
�
c1e

�1tx1

�

= c1e
�1tAx1

= c1e
�1t�1x1

=
du1

dt
.

• Similarly, for u2 = c2e�2tx2:
du2

dt
= Au2.

• Thus,
du

dt
=

d

dt
(u1 + u2) = A (u1 + u2)

u = c1e
�1tx1 + c2e

�2tx2.

• The only remaining part is to find the coe�cients c1 and c2 such that

u = u(0) at time t = 0.

• This initial condition yields a 2 ⇥ 2 system,

2

4 x1 x2

3

5
✓

c1
c2

◆
=

✓
8

5

◆
.

• Solving for c1 and c2 via Gaussian elimination:


1 5

1 2

� ✓
c1
c2

◆
=

✓
8

5

◆


1 5

0 �3

� ✓
c1
c2

◆
=

✓
8

�3

◆

c2 = 1

c1 = 8 � 5c1 = 3.

• So, our solution is u(t) = x1c1e
�1t + x2c2e

�2t

=

✓
1

1

◆
3e�t

+

✓
5

2

◆
e2t.

• Clearly, after a long time, the solution is going to look like a multiple

of x2 = [5 2]
T
because the component of the solution parallel to x1 will

decay.

• (More precisely, the component parallel to x1 will not grow as fast as the

component parallel to x2.)

Summary

• Model problem, u 2 Rn,

du

dt
= Au, u = u(0) at time t = 0.

• Assuming A has n linearly independent eigenvectors, can express

u(t) =
nX

j=1

xjcje
�jt.

• Coe�cients cj determined by initial condition:

Xc =
nX

j=1

xjcj = u(0) () c = X�1u(0).

• Eigenpairs (�j,xj) satisfy

Axj = �jxj.

Example Summary

11

Growing / Decaying Modes

• Our model problem,

du

dt
= Au �! u(t) = x1c1e

�1t + x2c2e
�2t

leads to growth/decay of components.

• Also get growth/decay through matrix-vector products.

• Consider u = c1x1 + c2x2.

Au = c1Ax1 + c2Ax2

= c1�1x1 + c2�2x2

Aku = c1�
k
1x1 + c2�

k
2x2

= �k
2

"
c1

✓
�1

�2

◆k

x1 + c2x2

#
.

lim
k�!1

Aku = �k
2 [c1 · 0 · x1 + c2x2] = c2�

k
2x2.

• So, repeated matrix-vector products lead to emergence of eigenvector
associated with the eigenvalue � that has largest modulus.

• This is the main idea behind the power method, which is a common
way to find the eigenvector associated with max |�|.

Characteristic Polynomial

• Equation Ax = �x is equivalent to

(A � �I)x = 0

which has nonzero solution x i↵ matrix (A � �I) is singular

• Eigenvalues of A are roots �i of characteristic polynomial

det(A � �I) = 0

of degree n in �

• Fundamental Theorem of Algebra implies that n⇥ n matrix A
always has n eigenvalues, but they need not be real nor distinct

• Complex eigenvalues of real matrix occur in complex conjugate pairs:
If � = ↵ + i� is an eigenvalue of a real matrix then so is ↵� i�,
where i =

p
�1

5

Example: Characteristic Polynomial

• Evaluate det(A� �I) of earlier example

|A � �I| = det

✓
3 �1

�1 3

�
� �


1 0
0 1

�◆

= det

✓
3� � �1
�1 3� �

�◆

= (3� �)(3� �)� (�1)(�1) = �2 � 6� + 8 = 0

• Eigenvalues are

� =
6±

p
36� 32

2
, or �1 = 2, �2 = 4

3

Companion Matrix

• Monic polynomial

p(�) = c0 + c1� + · · · + cn�1�
n�1 + �n

is characteristic polynomial of companion matrix

Cn =

2

66664

0 0 · · · 0 -c0
1 0 · · · 0 -c1
0 1 · · · 0 -c2
...
0 0 · · · 1 -cn�1

3

77775

• Roots of polynomial degree > 4 cannot always be computed in
finite number of steps

• So in general, computation of eigenvalues of matrices of order
> 4 requires a (theoretically infinite) iterative process

1

Example: Companion Matrix, n = 3

• Consider companion matrix

C =

2

4
0 0 �c0
1 0 �c1
0 1 �c2

3

5

• Evaluate determinant of C� �I

|C � �I| =

������

�� 0 �c0
1 �� �c1
0 1 �(c2 + �)

������

= �c0

����
1 ��
0 1

���� + c1

����
�� 0
0 1

���� � (c2 + �)

����
�� 0
1 ��

����

= �c0 � c1� � c2�
2 � �3 = 0

• Roots of resultant monic polynomial, p(�) = c0 + c1� + c2�2 + �3 = 0,
are the 3 eigenvalues, �1, �2, and �3

2

Example: Companion Matrix, n = 3

• Consider companion matrix

C =

2

4
0 0 �c0
1 0 �c1
0 1 �c2

3

5

• Evaluate determinant of C� �I

|C � �I| =

������

�� 0 �c0
1 �� �c1
0 1 �(c2 + �)

������

= �c0

����
1 ��
0 1

���� + c1

����
�� 0
0 1

���� � (c2 + �)

����
�� 0
1 ��

����

= �c0 � c1� � c2�
2 � �3 = 0

• Roots of resultant monic polynomial, p(�) = c0 + c1� + c2�2 + �3 = 0,
are the 3 eigenvalues, �1, �2, and �3

2

Example: Companion Matrix, n = 3

• Consider companion matrix

C =

2

4
0 0 �c0
1 0 �c1
0 1 �c2

3

5

• Evaluate determinant of C� �I

|C � �I| =

������

�� 0 �c0
1 �� �c1
0 1 �(c2 + �)

������

= �c0

����
1 ��
0 1

���� + c1

����
�� 0
0 1

���� � (c2 + �)

����
�� 0
1 ��

����

= �c0 � c1� � c2�
2 � �3 = 0

• Roots of resultant monic polynomial, p(�) = c0 + c1� + c2�2 + �3 = 0,
are the 3 eigenvalues, �1, �2, and �3

2

Characteristic Polynomial, continued

• Computing eigenvalues using characteristic polynomial is not recommended
because of

• work in computing coe�cients of characteristic polynomial

• sensitivity of coe�cients of characteristic polynomial

• work in solving for roots of characteristic polynomial

• Characteristic polynomial is a powerful theoretical tool but usually not

useful computationally

• In fact, in many cases we use eigenvalue solvers to find the roots

of poynomials

1

Example: Characteristic Polynomial

• Consider A =


1 ✏

✏ 1

�

with ✏M < ✏ <
p
✏M

• Exact eigenvalues of A are 1 + ✏ and 1� ✏

• Computing characteristic polynomial in float point arithmetic leads to

det(A� �I) = �
2 � 2� + (1� ✏

2
) = �

2 � 2� + 1

which as 1 as a double root

• Thus, eigenvalues cannot be resolved by this method even though they are

distinct to working precision

2

Algebraic
Multiplicity

Geometric
Multiplicity

Multiplicity and Diagonalizability

• Multiplicity is number of times root appears when polynomial is written as

product of linear factors (e.g., (1� �)
3
(2� �)

2
(5� �))

• Eigenvalue with multiplicity 1 is simple

• Defective matrix has eigenvalue of multiplicity k > 1 with fewer than k

linearly independent corresponding eigenvectors

• Nondefective matrix A has n linearly independent eigenvectors, so it is

diagonalizable

X�1AX = D

where X = [x1 x2 · · ·xn] is nonsingular matrix of eigenvectors

• Note: every matrix is ✏ away from being diagonalizable

3

Diagonalization
• The real merit of eigenvalue decomposition is that it simplifies powers of a matrix.

• Consider X�1AX = D, diagonal

AX = XD

A = XDX�1

A2
=

�
XDX�1

� �
XDX�1

�

= XD2X�1

Ak
=

�
XDX�1

� �
XDX�1

�
· · ·

�
XDX�1

�

= XDkX�1

= X

2

664

�k
1

�k
2

. . .

�k
n

3

775X�1

• High powers of A tend to be dominated by largest eigenpair (�1, x1),

assuming |�1| � |�2| � · · · � |�n|.

1

pow_a.m

Matrix Powers Example
• Consider our 1D finite di↵erence example introduced earlier.

d2u

dx2
= f(x) �! � ui�1 � 2ui + ui+1

�x2
⇡ f(xi).

where u(0) = u(1) = 0 and �x = 1/(n+ 1).

• In matrix form,

Au =
1

�x2

0

BBBBBBBB@

2 �1

�1 2 �1

�1
. . .

. . .

. . .
. . . �1

�1 2

1

CCCCCCCCA

0

BBBBBBBB@

u1

u2
...

...

um

1

CCCCCCCCA

=

0

BBBBBBBB@

f1

f2
...

...

fm

1

CCCCCCCCA

• Eigenvectors and eigenvalues have closed-form expression:

(zk)i = sin k⇡xi = sin k⇡i�x �k =
2

�x2
(1� cos k⇡�x)

• Eigenvalues are in the interval ⇠ [⇡2, 4(n+ 1)
2
].

Matlab Example: heat_demo.m

q Repeatedly applying A to a random input vector reveals the
eigenvalue of maximum modulus.

q This idea leads to one of the most common (but not most efficient)
ways of finding an eigenvalue/vector pair, called the power method.

q h

Diagonalization
• Note that if we define A0

= I, we have any polynomial of A defined as

pk(A)x = X

2

6666664

pk(�1)

pk(�2)

. . .

pk(�n)

3

7777775
X�1x.

• We can further extend this to other functions,

f(A)x = X

2

6666664

f(�1)

f(�2)

. . .

f(�n)

3

7777775
X�1x.

• For example, the solution to f(A)x = b is would be

x = X [f(D)]
�1 X�1b.

• The diagonalization concept is very powerful because it transforms systems
of equations into scalar equations.

2

Stopped Here

Eigenspaces and Invariant Subspaces

• Eigenvectors can be scaled arbitrarily: if Ax = �x, then A(�x) = �(�x)
for any scalar �, so �x is also eigenvector corresponding to �

• Eigenvectors are usually normalized by requiring some norm of eigenvector

to be 1 (2-norm is most favored...)

• Eigenspace = S� = {x : Ax = �x}

• Subspace S of lR
n
(or lC

n
) is invariant if AS ✓ S

• For eigenvectors x1 · · ·xp span([x1 · · ·xp]) is invariant subspace

• Q: When might invariance fail?

A: In floating-point arithmetic, because of round-o↵ error

4

Relevant Properties of Matrices

• Properties of matrix A relevant to eigenvalue problems

Property Definition

diagonal aij = 0 for i 6= j

tridiagonal aij = 0 for |i� j| > 1

triangular aij = 0 for i > j (upper)

aij = 0 for i < j (lower)

Hessenberg aij = 0 for i > j + 1 (upper)

aij = 0 for i < j � 1 (lower)

orthogonal ATA = AAT
= I

unitary AHA = AAH
= I (A 2 lC

n⇥n
)

symmetric A = AT

skew-symmetric A = �AT

Hermitian A = AH

normal A = AH

normal AHA = AAH

5

Upper Hessenberg (from Chap03…)

q A is upper Hessenberg – A is upper triangular with one additional
nonzero diagonal below the main one: Aij = 0 if i > j+1

q Requires only n Givens rotations, instead of O(n2), to effect QR
factorization.

Examples: Matrix Properties

• Transpose


1 2
3 4

�T
=


1 3
2 4

�

• Conjugate transpose


1 + i 1 + 2i
2� i 2� 2i

�H
=


1� i 2 + i

1� 2i 2 + 2i

�

• Symmetric:


1 2
2 3

�
(A = AT)

• Skew-Symmetric:


0 2

�2 0

�T
= �


0 �2
2 0

�
, (A = �AT)

1

Examples, continued

• Nonsymmetric:


1 2
3 4

�

• Hermitian


1 1 + i

1� i 2

�

• NonHermitian


1 1 + i

1 + i 2

�

2

Examples, continued

• Orthogonal:


0 1
1 0

�
,


�1 0
0 �1

�
,

" p
2
2

p
2
2

�
p
2
2

p
2
2

#

• Unitary:

"
i
p
2

2

p
2
2

�
p
2
2 �i

p
2
2

#

• Nonorthogonal


1 1
1 2

�

• Normal

2

4
1 2 0
0 1 2
1 0 1

3

5

• Nonnormal


1 1
0 1

�

3

ß “canonical non-normal matrix”
 Defective – has only one eigenvector.

Normal Matrices

Normal matrices have orthogonal eigenvectors, so xH
i
xj = �ij

XT = X�1

A = XDXH

Normal matrices include

• symmetric (A = AT)

• skew-symmetric (A = �AT)

• unitary (UHU = I)

• circulant (periodic+Toeplitz)

• others . . .

1

Normal Matrices

Normal matrices have orthogonal eigenvectors, so xH
i
xj = �ij

XT = X�1

A = XDXH

Normal matrices include

• symmetric (A = AT)

• skew-symmetric (A = �AT)

• unitary (UHU = I)

• circulant (periodic+Toeplitz)

• others . . .

1

Properties of Eigenvalue Problems

Properties of eigenvalue problem a↵ecting choice of algorithm and software

• Are all eigenvalues needed, or only a few?

• Are only eigenvalues needed, or are corresponding eigenvectors also needed?

• Is the matrix real or complex?

• Is the matrix relatively small and dense, or large and sparse?

• Does the matrix have any special properties such as symmetry, or is it a

general matrix?

6

Sparsity

q Sparsity, either direct or implied, is a big driver in choice of
eigenvalue solvers.

q Typically, only O(n) entries in entire matrix, where n ~ 109—1018
might be anticipated.

q Examples include Big Data (e.g., google page rank) and physics
simulations (fluid, heat transfer, electromagnetics, fusion, etc.).

q Usually, need only a few (k << n) eigenvectors / eigenvalues.

q Often, there are special properties of A that make it difficult to
create A. Instead, work strictly with matrix-vector products

 y = A x

Add growth example

Conditioning of Eigenvalue Problems

• Condition of eigenvalue problem is sensitivity of eigenvalues and eigenvec-

tors to changes in matrix

• Condition of eigenvalue problem is not same as conditioning of solution to

linear system for same matrix

• Finding � = 0 is a common situation in eigenvalue problems, but indi-

cates a singularity when trying to solveAx = b sensitivity of coe�cients

of characteristic polynomial

• Di↵erent eigenvalues and eigenvectors are not necessarily equally sensitive

to perturbations in matrix

7

Conditioning of Eigenvalues

• If µ is eigenvalue of A + E of nondefective matrix A, then

|µ� �k|  cond2(X)kEk2
where �k is closest eigenvalue of A to µ and X is the nonsingular matrix of

eigenvectors of A

• Absolute condition number of eigenvalues is condition number of matrix of

eigenvectors with respect so solving linear equations (e.g., Xc = b)

• Eigenvalues may be sensitive if eigenvectors are nearly linearly dependent

(i.e., matrix is nearly defective)

• For normal matrix (AAH
= AHA), eigenvectors are orthogonal, so eigen-

values are well-conditioned

8

Conditioning of Eigenvalues

• If (A + E)(x + �x) = (� + ��)(x + �x), where � is a simple eigenvalue

of A, then

|��| . kyk2 · kxk2
|yHx| kEk2 =

1

cos ✓
kEk2

where x and y are corresponding right and left eigenvectors and ✓ is the

angle between them

• For symmetric or Hermitian matrix right and left eigenvectors are same so

cos ✓ = 1 and eigenvalues are inherently well-conditioned

• Eigenvalues of nonnormal matrices may be sensitive

• For multiple or closely clustered eigenvalues, corresponding eigenvectors may

be sensitive

9

Problem Transformations

• Shift: If Ax = �x and � is any scalar, then (A � �I)x = (� � �)x, so
eigenvalues of shifted matrix are shifted eigenvalues of A

• Inversion: If A is nonsingular and Ax = �x with x 6= 0, then � 6= 0 and
A�1x = (1/�)x, so eigenvalues of inverse are reciprocals of �(A)

• Powers: If Ax = �x, then Akx = �kx, so eigenvalues of power of matrix
are �k

• Polynomial: If Ax = �x, and p(t) is a polynomial, then p(A)x = p(�)x,
so eigenvalues of polynomial in A are p(�).

•

1

Similarity Transformation

• B is similar to A if there exists a nonsingular matrix T such that

B = T�1AT

• Then,

By = �y =) T�1ATy = �y =) ATy = �Ty

so A and B have the same eigenvalues, and if y is eigenvector of B, then
x = Ty is eigenvector of A

• Similarity transformations preserve eigenvalues and eigenvectors are easily
recovered

2

Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Problem Transformations
Power Iteration and Variants
Other Methods

Example: Similarity Transformation

From eigenvalues and eigenvectors for previous example,


3 �1
�1 3

� 
1 1
1 �1

�
=


1 1
1 �1

� 
2 0
0 4

�

and hence

0.5 0.5
0.5 �0.5

� 
3 �1

�1 3

� 
1 1
1 �1

�
=


2 0
0 4

�

So original matrix is similar to diagonal matrix, and
eigenvectors form columns of similarity transformation
matrix

Michael T. Heath Scientific Computing 23 / 87

Diagonal Form

• Eigenvalues of diagonal matrix are diagonal entries, eigenvectors are X = I

• Diagonal form is desirable in simplifying eigenvalue problems for general
matrices by similarity transformations

• But not all matrices are diagonalizable

• Closest one can get, in general, is Jordan form, which is nearly diagonal but
may have som nonzero entries on first superdiagonal corresponging to one
or more multiple eigenvalues

3

Simple non-diagonalizable example, 2 x 2 Jordan block:
Simple non-diagonalizable example, 2⇥ 2 Jordan block:

"
1 1

0 1

x1

x2

!
= �

x1

x2

!

�����
1� � 1

0 1� �

����� = (1� �)2 = 0

Only one eigenvector: x =

1

0

!

"
1 1

0 1

1

0

!
=

1

0

!

1

3⇥ 3 Non-Diagonalizable Example

A =

2

664

2

2

2

3

775 , B =

2

664

2 1

2 1

2

3

775 .

• Characteristic polynomial is (�� 2)
3
for both A and B.

• Algebraic multiplicity is 3.

• For A, three eigenvectors. Say, e1, e2, and e3.

• For B, only one eigenvector (↵e1), so geometric multiplicity of B is 1.

Triangular Form

• Every matrix can be transformed into triangular, Schur, form by similarity
and diagonal entries of triangular matrix are the eigenvalues

• Eigenvectors are less obvious but straightforward to compute

• If

A� �I =

2

664

U11 u U13

0 0 v
T

O 0 U33

3

775

is triangular, then U11y = u can be solved for y so that

x =

2

664

y

�1

0

3

775

is corresponding eigenvector

1

Eigenvectors / Eigenvalues of Upper Triangular Matrix
Triangular Form

• Suppose A is upper triangular

A =

2

664

A11 u U13

0 � v
T

O 0 A33

3

775

• Then

0 = (A� �I)x =

2

664

U11 u U13

0 0 v
T

O 0 U33

3

775

2

664

y

�1

0

3

775 =

2

664

U11y � u

0

0

3

775

(A� �I) x 0

• Because U11 is nonsingular, can solve U11y = u to find eigenvector x.

2

Block Triangular Form

• If

A =

2

66664

A11 A12 · · · A1p

A22 · · · A2p

.

App

3

77775

with square diagonal blocks, then

�(A) =

p[

j=1

�(Ajj),

so eigenvalue problem breaks into p smaller eigenvalue problems

• Real Schur form has 1⇥ 1 diagonal blocks corresponding to real eigenvalues

and 2 ⇥ 2 diagonal blocks corresponding to complex conjugate eigenvalue

pairs

1

Similarity Transformations

• Given B = T�1AT

A = T B T�1

• If A is normal (AAH = AHA),

A = Q⇤QH

B is diagonal, T is unitary (T�1 = TH).

• If A is symmetric real,

A = Q⇤QT

B is diagonal, T is orthogonal (T�1 = T T).

• If B is diagonal, T is the matrix of eigenvectors.

Forms Attainable by Similarity: B = T�1AT

A T B
distinct eigenvalues nonsingular diagonal

real symmetric orthogonal real diagonal

complex Hermitian unitary real diagonal

normal unitary diagonal

arbitrary real orthogonal real block triangular

(real Schur)

arbitrary unitary upper triangular

(Schur)

arbitrary nonsingular almost diagonal

(Jordan)

• Given matrix A with indicated property, B and T exist with indicated

properties such that B = T�1AT

• if B is diagonal or triangular, eigenvalues are its diagonal entries

• if B is diagonal, eigenvectors are columns of T

2

Always
exists

Computing Eigenpairs via Various

(Sophisticated!) Forms of Power Iteration

Power Iteration

• Simplest method for computing one eigenvalue-eigenvector pair is power
iteration, which repeatedly multiplies matrix times initial starting vector

• Assume A has unique eigenvalue of maximum modulus, say �1, with corre-

sponding eigenvector v1

• Starting from nonzero vector x0, iteration scheme

xk = Axk�1

converges to multiple of eigenvector v1 corresponding to dominant eigen-
value �1

3

Convergence of Power Iteration

• To see why power iteration converges to dominant eigenvector, express start-

ing vector x0 as linear combination Starting from nonzero vector x0, itera-

tion scheme

x0 =

nX

j=1

cjvj

where vj are eigenvectors of A

• Then

xk = Axk�1 = A2xk�2 = · · · = bAkx0

=

nX

j=1

�k
j cjvj = �k

1

2

4c1v1 +

nX

j=2

�k
j

�1

!k

cjvj

3

5

• Because |�j/�1| < 1 for j > 1, successively higher powers go to zero, leaving

only v1 component

4

2 x 2 Example

A =

"
1.5 0.5

0.5 1.5

#

D =

"
1

2

#
X =

"
�1/

p
2 1/

p
2

1/
p
2 1/

p
2

#

1

Limitations of Power Iteration

• Power iteration can fail for various reasons

• Starting vector may have no component in dominant eigenvector (i.e., c1 =
0). Not a problem in practice because rounding error usually introduces

such a component in any case

• There may be more than one eigenvalue having same maximum modulus,

in which case iteration may converge to linear combination of corresponding

eigenvectors

• For real matrix and starting vector, iteration can never converge to a compex

eigenvector

5

Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Problem Transformations
Power Iteration and Variants
Other Methods

Example: Power Iteration
Ratio of values of given component of xk from one iteration
to next converges to dominant eigenvalue �1

For example, if A =


1.5 0.5
0.5 1.5

�
and x0 =


0
1

�
, we obtain

k xT

k
ratio

0 0.0 1.0
1 0.5 1.5 1.500
2 1.5 2.5 1.667
3 3.5 4.5 1.800
4 7.5 8.5 1.889
5 15.5 16.5 1.941
6 31.5 32.5 1.970
7 63.5 64.5 1.985
8 127.5 128.5 1.992

Ratio is converging to dominant eigenvalue, which is 2

Michael T. Heath Scientific Computing 30 / 87

Limitations of Power Iteration

• Power iteration can fail for various reasons

• Starting vector may have no component in dominant eigenvector (i.e., c1 =
0). Not a problem in practice because rounding error usually introduces

such a component in any case

• There may be more than one eigenvalue having same maximum modulus,

in which case iteration may converge to linear combination of corresponding

eigenvectors

• For real matrix and starting vector, iteration can never converge to a com-

plex eigenvector

5

Normalized Power Iteration

• Geometric growth of components at each iteration risks eventual overflow

(or underflow if |�1| < 1)

• Approximate eigenvector should be normalized at eath iteration, say, by

requiring its largest component to be 1 in modulus, giving iteration scheme

yk = Axk�1

xk = yk/kykk1

• With normalization, kykk1 �! |�1|, and xk �! v1/kv1k1

6

Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Problem Transformations
Power Iteration and Variants
Other Methods

Example: Normalized Power Iteration

Repeating previous example with normalized scheme,

k xT

k
kykk1

0 0.000 1.0
1 0.333 1.0 1.500
2 0.600 1.0 1.667
3 0.778 1.0 1.800
4 0.882 1.0 1.889
5 0.939 1.0 1.941
6 0.969 1.0 1.970
7 0.984 1.0 1.985
8 0.992 1.0 1.992

< interactive example >

Michael T. Heath Scientific Computing 33 / 87

Geometric Interpretation

• Behavior of power iteration depicted geometrically

• Initial vector x0 = v1+v2 contains equal components in v1 and v2 (dashed

arrows)

• Repeated multiplication by A causes component in v1 (corresponding to

larger eigenvalue 2) to dominate, so sequence of vectors xk converges to v1

7

Convergence Rate of Power Iteration

Convergence rate of power iteration depends on relative separation of �1 and �2.

Assuming c1 6= 0 and |�1| > |�j|, j > 1, we have

Akx =
nX

j=1

xj �
k
j cj

= �k
1 c1

"
x1 +

nX

j=2

xj

�k
j

�k
1

cj
c1

#

⇠ x1 �
k
1 c1 as k �! 1

⇠ �k
1 c1

"
x1 + x2

✓
�2

�1

◆k c2
c1

#

1

In preceding text examples, ratio is ½, so error is reduced by ½ with each iteration.

demo10/err_norm.m

Power Iteration with Shift

• Convergence rate of power iteration depends on ratio |�2/�1|, where �2 is

eigenvalue having second largest modulus

• May be possible to choose shift, A� �I such that
����
�2 � �

�1 � �

���� <

����
�2

�1

����

so convergence is accelerated

• Shift � must then be added to result to obtain eigenvalue of original matrix

• In earlier example, if we pick � = 1 (equal to other eigenvalue), ratio be-

comes zero and method converges in one iteration

• In general, we would not be able to make such fortuitous choice, but shifts

can be extremely useful in some contexts, particularly with inverse itera-
tion, which we will see later

8

Power Iteration with Shift

• Convergence rate of power iteration depends on ratio |�2/�1|, where �2 is

eigenvalue having second largest modulus

• May be possible to choose shift, A� �I such that
����
�2 � �

�1 � �

���� <

����
�2

�1

����

so convergence is accelerated

• Shift � must then be added to result to obtain eigenvalue of original matrix

• In earlier example, if we pick � = 1 (equal to other eigenvalue), ratio be-

comes zero and method converges in one iteration

• In general, we would not be able to make such fortuitous choice, but shifts

can be extremely useful in some contexts, particularly with inverse itera-
tion, which we will see later

8

Eigenvalue Ratios: Shifted and Unshifted

s = 3

Eigenvalue Ratios: Shifted and Unshifted

s = 5

Eigenvalue Ratios: Shifted and Unshifted

Power Iteration with Shift

(A� �I)x = �x� �x = (�� �)x = µx

If �k 2 {1 .91}, then
�2

�1
= 0.9

If � = 0.4, then µk 2 {.5 .4 . . . � .4} and

µ2

µ1
= 0.8,

so about twice the convergence rate.

Shifted power iteration, however, is somewhat limited.

The real power derives from inverse power iterations with shifts.

1

Inverse Iteration

• If smallest eigenvalue of matrix is required rather than largest, can make use
of fact that eigenvalues of A�1 are reciprocals of �(A), so smallest eigen-
value of A is largest eigenvalue of A�1

• This leads to inverse iteration scheme,

Ayk = xk�1

xk = yk/kykk1

which is equivalent to power iteration applied to A�1

• Inverse of A not computed explicitly, but factorization of A used to solve
system of equations at each iteration

• Can of course reuse the LU factors so that cost of successive iterations is
relatively low because we only need to solve triangular systems Lz = xk�1

and Uyk = z

1

Very Important!

Inverse Iteration, continued

• Inverse iteration converges to eigenvector corresponding to smallest eigen-
value of A

• Eigenvalue obtained is dominant eigenvalue of A�1 and hence its reciprocal
is smallest eigenvalue of A in modulus

2

Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Problem Transformations
Power Iteration and Variants
Other Methods

Example: Inverse Iteration

Applying inverse iteration to previous example to compute
smallest eigenvalue yields sequence

k xT

k
kykk1

0 0.000 1.0
1 �0.333 1.0 0.750
2 �0.600 1.0 0.833
3 �0.778 1.0 0.900
4 �0.882 1.0 0.944
5 �0.939 1.0 0.971
6 �0.969 1.0 0.985

which is indeed converging to 1 (which is its own reciprocal
in this case)

< interactive example >

Michael T. Heath Scientific Computing 39 / 87

Again, the error is reduced by ~½ on each iteration.

Inverse Iteration with Shift

• As before, shifting strategy, working with A � �I for some scalar �, can
greatly improve performance

• Inverse iteration is particularly useful for computing eigenvector correspond-
ing to approximate eigenvalue because it converges rapidly when applied to
shifted matrix A� �̂I, where �̂ is approximate eigenvalue

• Inverse iteration is also useful for computing eigenvalue closest to given
value � because, if � is used as shift, then desired eigenvalue corresponds
to smallest eigenvalue of shifted matrix

3

• Power Iteration: x = A
kx �! cx1

• Normalized
Power Iteration:

y = Ax
x = y/||y||

�
||y|| �! |�1|
x �! x1

• Inverse Iteration:
y = A

�1x
x = y/||y||

�
||y|| �! |�n|�1

x �! xn

• Inverse Iteration
with shift:

M = A� �I

y = M
�1x

x = y/||y||

9
=

;
||y|| �! |µk| = max |�k � �|�1

x �! xk

Inverse iteration with shift can be arbitrarily fast since separation ratio can be 0.

eig_inv_demo.m

Inverse Iteration Rate of Convergence

• Assume |�1| > |�2| > . . . > |�n�1| > |�n|

• x
k = A

�k
x
0

=
nX

j=1

xj

✓
1

�j

◆k

cj

=

✓
1

�n

◆k
2

4xncn + xn�1

✓
�n

�n�1

◆k

cn�1 +
n�2X

j=1

xj

✓
�n

�j

◆k

cj

3

5

⇠
✓

1

�n

◆k
"
xncn + xn�1

✓
�n

�n�1

◆k

cn�1

#

• Rate of convergence is controlled by ratio |�n/�n�1|

4

Inverse Iteration Illustration

q With shift and invert, can get significant ratios of dominant eigenvalue

Eigenvalues of A Eigenvalues of A-1

Ratio ~ .9 Ratio = 0.5

Rate of Convergence for Inverse Iteration with Shift

• Assume |�1| > |�2| > . . . > |�n�1| > |�n|

• Let M := A� �I

µj := �j � �, and

l such that |� � µl| < |� � µj|, j 6= l.

• Then, x
k = M

�k
x
0

=
nX

j=1

xj

✓
1

µj

◆k

cj

=

✓
1

µl

◆k
2

4xlcl +
X

j 6=l

xj

✓
µl

µj

◆k

cj

3

5 .

• Using current approximation to �l can select |� � �l| = |µl| to be small.

(Cannot do the same with shifted power iteration.)

• Blow-up is contained by normalizing after each iteration.

5

Stopped Here

Rayleigh Quotient

• Given approximate eigenvector x for real matrix A, determining best esti-
mate for corresponding � can be considered as a n⇥1 LLSQ approximation
problem,

x� ⇡ Ax

• From normal equation, xTx� = xTAx, LLSQ solution is

� =
xTAx

xTx

• This quantity, known as the Rayleigh Quotient has many useful properties

1

Example: Rayleigh Quotient

• Rayleigh quotient can accelerate convergence of iterative methods such as
power iteration because Rayleigh quotient xT

kAxk/xT
kxk gives better ap-

proximation to � that basic power iteration

• For previous example from text using power iteration, value of Rayleigh
quotient at each iteration is shown below

2

shift_rayl_demo.m

Convergence of Rayleigh Quotient, Symmetric A

• Suppose x = x1+✏w with x1 the unit 2-norm eigenvector ofA andw ? x1

also having unit 2-norm

• kx� x1k = ✏

• Consider Rayleigh quotient,

x
T
Ax

xTx
=

x
T
1Ax1

xT
1x1 + ✏2

+
✏
2
w

T
Aw

1 + ✏2

= �1 + O(✏2)

2

shift_rayl_demo.m

Some Rayleigh Quotient Properties

• View r(x) as a function of x 2 lRn,

r(x) =
xT

Ax

xTx
.

• Then gradient of r is

@

@xj
r(x) =

2

xTx
(Ax � r(x)x)j

rr(x) =
2

xTx
(Ax � r(x)x) .

• If x is an eigenvector of A then r(x) = �.

• Moreover, rr(x) = 0.

• Main result: If qj is the jth eigenvector of A, then

|r(x) � r(qj)| = O(kx� qjk2) as x �! qj.

Rayleigh Quotient Iteration

• For approximate eigenvector, Rayleigh quotient yields good estimate for

corresponding �

• Moreover, inverse iteration converges rapidly to eigenvector if approximate

eigenvalue is used as shift

• Combining these two ideas leads to Rayleigh Quotient Iteration,

�k = x
T
kAxk/x

T
kxk

(A � �kI)yk+1 = xk

xk+1 = yk+1/kyk+1k2

• If we start from x0 with kx0k2 = 1, the normalization x
T
kxk is not needed.

3

Rayleigh Quotient Iteration, continued

• Rayleigh quotient iteration is especially e↵ective for symmetric matrices and
usually converges very rapidly (e.g., just one or two iterations may su�ce)

• Using di↵erent shift at each iteration means matrix must be refactored each
time to solve linear system, so cost per iteration is high unless matrix has
special form that makes factorization easy

• Factorization overhead can be amortized by taking several iterations by
reusing LU factors between refactorizations. Fixed point iteration will still
be convergent

• If A is tridiagonal, factorization and solve cost is only ⇡ 8n operations

4

Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Problem Transformations
Power Iteration and Variants
Other Methods

Example: Rayleigh Quotient Iteration

Using same matrix as previous examples and randomly
chosen starting vector x0, Rayleigh quotient iteration
converges in two iterations

k xT

k
�k

0 0.807 0.397 1.896
1 0.924 1.000 1.998
2 1.000 1.000 2.000

Michael T. Heath Scientific Computing 45 / 87

demo10/eig_shift_invert.m

eig_inv_demo.m
eig_shift_invert.m

Deflation

• After eigenvalue �1 and corresponding x1 has been computed, additional

eigenvalues can be computed by deflation, which e↵ectively removes known

eigenvalue

• Let H be any nonsingular matrix such that Hx1 = ↵e1, scalar multiple
of first column of identity matrix (Householder transformation is a good

candidate for H)

• Then similarity transformation determined by H transforms A into form

HAH
�1

=

"
�1 b

T

0 B

#

where B is order n� 1 matrix having eigenvalues �2, . . . ,�n

5

Deflation, continued

• Thus, we can work with B to compute next eigenvalue �2

• Moreover, if y2 is eigenvector of B corresponding to �2, then

x2 = H
�1

"
↵

y2

#
, where ↵ =

b
T
y2

�2 � �1

is eigenvector corresponding to �2 for original matrix A, provided �1 6= �2

• Process can be repeated to find additional eigenpairs

6

Deflation – Finding Second Eigenpair
Deflation – chasing second eigenpair (x2, �2).

• Choose H to be elementary Householder matrix such that Hx1 = e1.

• Consider

Ax1 = �1 x1

AH
�1
Hx1 = �1H

�1
Hx1

AH
�1e1 = �1H

�1e1

HAH
�1e1 = �1 e1 ⇤

A2 := HAH
�1 = HAH

�1
I

= HAH
�1 [e1 e2 . . . en]

=

2

664

�1 bT

0
0 B

0

3

775

• Apply method of choice to B to find �2.

Matrix-Free Deflation – Symmetric A

Deflation via Projection.

for k = 1, 2,...

y = Ax

y = y � x1
xT
1 y

xT
1 x1

= y � x1x
T
1 y

x = y/||y||.

• Guarantees that x is devoid of any component of x1 prior
to start of each application of power method.

• Do not require knowledge of A.

• Only need a routine that provides y � Ax.

• Convenient for large sparse matrices when trying to
avoid computing known eigenpairs.

*assuming x1 has unit 2-norm.

*

Can e↵ect deflation on the fly — Subspace Iteration.

• Take two independent vectors Y = (y1 y2).

for k = 1, 2,...

Z = AY

y1 = z1/||z1||.

y2 = z2 � y1y
T
1 z2

y2 = y2/||y2||

• y1 converges to x1 (standard power iteration).

• (y1 y2) converge to span(x1 x2).

• y2 converges to x2 if A is symmetric or x2 ? x1.

• zT1 x1 �! �1 and zT2 x2 �! �2.

Deflation on the Fly – Subspace Iteration

y2 orthogonal
to y1

subspace.m

Simultaneous Iteration

• Simplest method for computing many eigenpairs is simultaneous iteration,
which repeatedly multiplies matrixA times matrix of initial starting vectors.

• Starting from n⇥ p matrix X0 of rank p, iteration scheme is

Xk = AXk�1

• span(Xk) converges to invariant subspace determined by p dominant eigen-
values of A provide |�p| > |�p+1|

• Also called subspace iteration

1

Subspace Iteration Variants

Let X0 2 lRn⇥p be a matrix of rank p.

• Alg. 1:

for k = 1, 2,...

Xk = AXk�1

end

• Alg. 2:

for k = 1, 2,...

QR = X Q 2 lRn⇥p, orthogonal

X = AQ

end

Note: in power iteration notation, Alg. 2 would be:

for k = 1, 2,...

Y = AX Q 2 lRn⇥p, orthogonal

X = Y R�1 � orthonormalize

end

and Xk �! (x1 x2 . . . xp).

So, for Alg. 2:

Qk = (q
1
q
2
. . . q

p
) �! (x1 x2 . . . xp),

Xk �! (�1x1 �2x2 . . . �pxp).

1

Simultaneous Iteration

• Suppose A is symmetric (�! eigenvectors are orthogonal)

• Start with n⇥ p random matix Q.

for k = 1, 2, . . .

Z = AQ

QR = Z (Normalize z1, orthonormalize zj, j > 1.)

end

• Results:Q = [q1 q2 . . . qp] �! [x1 x2 . . . xp]

Rkk �! �k if first p eigenvalues have distinct modulus.

• This is a Rayleigh quotient scheme.

• Rate of convergence for �1 is the same as power iteration with
Rayleigh quotient:

R = Q
T
Z = Q

T
AQ

r11 =
qT
1Aq1

qT
1 q1

= Rayleigh quotient.

Very Important!

• q1 is una↵ected by the presence of qj, j > 1.

• Convergence of the entire subspace will depend on the ratio �p+1/�p.

• Convergence of �p will also depend on the ratio �p/�p�1.

• Expect convergence of �p to scale like s
2k, where

s := max

⇢����
�p+1

�p

����

����
�p

�p�1

����

�
< 1,

assuming distinct moduli and orthogonal eigenvectors.

• Can extend Z to span all of Rn (i.e., p = n, Z is square).

• In this case, convergence of �n will scale like (�n�1/�n)2k.

• This is similar to Rayleigh quotient iteration without shift.

• Can incorporate shift also.

• But there is a more e�cient “simultaneous iteration” scheme:
QR-iteration.

Matlab Demo:

• subspace_demo.m

• n=10, p=4

Simultaneous Iteration

subspace_demo.m

• In this example,

.875 =
�4

�3
<

�5

�4
= .9714,

which implies asymptotic rate will be
dominated by the most slowly decaying
value, i.e.,

|�4 �R44| ⇠ C

⇣
�5
�4

⌘2k
= C (0.9714)2k.

• With carefully chosen (yet random) A and
Z, the behavior at the beginning is more
like (0.875)2k because, e.g., the initial x5

component in Z might be small.

subspace_demo.m

• q1 is una↵ected by the presence of qj, j > 1.

• Convergence of the entire subspace will depend on the ratio �p+1/�p.

• Convergence of �p will also depend on the ratio �p/�p�1.

• Expect convergence of �p to scale like s
2k, where

s := max

⇢����
�p+1

�p

����

����
�p

�p�1

����

�
< 1,

assuming distinct moduli and orthogonal eigenvectors.

• Can extend Z to span all of Rn (i.e., p = n, Z is square).

• In this case, convergence of �n will scale like |�n/�n�1|2k.

• This is similar to Rayleigh quotient iteration without shift.

• Can incorporate shift also, so convergence scales like:
����
�n � �

�n�1 � �

����
2k

,

which can be made fast with � = Rnn ⇡ �n.

• But there is a more e�cient “simultaneous iteration” scheme:
QR-iteration.

Simultaneous Iteration

shift4.m demo

Important Role of QR in Orthogonal Iteration

• Consider Z =

2

4
1
1
1

3

5 = Q1R|{z}
Reduced QR

=

2

4
1/
p
3

1/
p
3

1/
p
3

3

5 ⇥ p
3
⇤

= QR|{z}
Full QR

=
⇥
Q1 Q2

⇤  R

O

�
.

|{z}
R(Z)

|{z}
R(Z)?

• For a rank-deficient matrix, Z, full QR produces two subspaces,

R(Q1) = R(Z) and R(Q2) = R(Z)?.

• Consider now what happens with orthogonal iteration in the case where
an n⇥ n matrix A has a single 0 eigenvalue, �n.

Z = rand(n, n)

QR = Z =) R(Q) = R(Z)

Z = AQ =) R(Z) = R(A)

QR = Z =) R(Q1) = R(A), R(Q2) = R(A)?.

• After the second pass, orthogonal iteration has discovered xn,
the eigenvector associated with �n = 0!

qrtest.m demo

Important Role of QR in Orthogonal Iteration

• Consider Z =

2

4
1
1
1

3

5 = Q1R|{z}
Reduced QR

=

2

4
1/
p
3

1/
p
3

1/
p
3

3

5 ⇥ p
3
⇤

= QR|{z}
Full QR

=
⇥
Q1 Q2

⇤  R

O

�
.

|{z}
R(Z)

|{z}
R(Z)?

• For a rank-deficient matrix, Z, full QR produces two subspaces,

R(Q1) = R(Z) and R(Q2) = R(Z)?.

• Consider now what happens with orthogonal iteration in the case where
an n⇥ n matrix A has a single 0 eigenvalue, �n.

Z = rand(n, n)

QR = Z =) R(Q) = R(Z)

Z = AQ =) R(Z) = R(A)

QR = Z =) R(Q1) = R(A), R(Q2) = R(A)?.

• After the second pass, orthogonal iteration has discovered xn,
the eigenvector associated with �n = 0!

qrtest.m demo

Orthogonal Iteration

• As with power iteration, normalization is needed with simultaneous iteration

• Each column of Xk converges to dominant eigenvector, so columns of Xk

become increasingly ill-conditioned basis for span(Xk)

• Both issues addressed by QR factorization at each iteration

Q̂kRk = Xk�1

Xk = AQ̂k,

where Q̂kRk is reduced QR factorization of Xk�1

• R(Xk) and R(Q̂k) converge to invariant subspace, span{x1 . . . xp}, and
are related by

Xk = AQ̂k = Q̂kBk () Bk = Q̂
T
kAQ̂k

• Bk converges to block-upper triangular (Schur) form if eigenvalues are com-
plex, or to upper-triangular matrix if eigenvalues are distinct

• If A is symmetric then Q̂k �! eigenvectors of A; otherwise additional
(straighforward) work is required to retrieve eigenvectors

2

Deflation in Case of Orthogonal Iteration with Shifts

• As we will see, QR iteration with shifts will produce an upper-block trian-
gular similarity transformation of A of the form

Bk =

2

66664

b1,1 . . . b1,n�1 b1,n
b2,1 . . . b2,n�1 b2,n
...

bn�1,1 . . . bn�1,n�1 bn�1,n

0 . . . 0 bn,n

3

77775

• Incorporated with shifts, bn,n rapidly converges to simple �n

• Afterwards, simply work on the leading (n � 1) ⇥ (n � 1) block, applying
shifts of form � = bn�1,n�1 (or more sophisticated choice if target eigenvalue
is not simple)

• Because system morphs into upper block triangular form, explicit deflation
is not needed

1

Reducing Work per Eigenvalue: QR iteration

• We now have the basic ingredients of a fast eigensolver.

• However, each matrix-vector product, AQ, and each QR

factorization requires O(n
3
) work.

• If we assume a fixed number of iterations (e.g., < 4) for

each of the n eigenvalues, then the total work per

eigenvalue is O(n
3
), giving a total complexity of O(n

4
).

• QR iteration is an approach that allows us to reduce the

work per eigenvalue to O(n
2
).

Orthogonal Iteration �! QR Iteration

• Goals: Incorporate shifts to accelerate convergence

Reduce cost per iteration to O(n2) instead of O(n3)

• Orthogonal iteration with computation of Bk with p = n and X0 = A

Q̂kRk = Xk�1

Xk = AQ̂k,

Bk = Q̂
T

k
AQ̂k = Q̂

T

k
Xk �!

⇢
upper triangular via
similarity transform

• Consider next the QR iteration, starting with X0 = A

Q1R1 = A, B1 = Q
T

1AQ1 = Q
T

1 (Q1R1)Q1 = R1Q1

Q2R2 = B1, B2 = Q
T

2B1Q2 = Q
T

2Q
T

1AQ1Q2 = similarity transform

= Q
T

2 (Q
T

2R2)Q2 = R2Q2

Q3R3 = B2, B3 = R3Q3 = Q
T

3Q
T

2Q
T

1| {z }
Q̂T

3

AQ3Q2Q1| {z }
Q̂3

2

Orthogonal Iteration �! QR Iteration

• Goals: Incorporate shifts to accelerate convergence

Reduce cost per iteration to O(n2) instead of O(n3)

• Orthogonal iteration with computation of Bk with p = n and X0 = A

Q̂kRk = Xk�1

Xk = AQ̂k,

Bk = Q̂
T

k
AQ̂k = Q̂

T

k
Xk �!

⇢
upper triangular via
similarity transform

• Consider next the QR iteration, starting with X0 = A

Q1R1 = A, B1 = Q
T

1AQ1 = Q
T

1 (Q1R1)Q1 = R1Q1

Q2R2 = B1, B2 = Q
T

2B1Q2 = Q
T

2Q
T

1AQ1Q2 = similarity transform

= Q
T

2 (Q
T

2R2)Q2 = R2Q2

Q3R3 = B2, B3 = R3Q3 = Q
T

3Q
T

2Q
T

1| {z }
Q̂T

3

AQ3Q2Q1| {z }
Q̂3

2

Orthogonal Iteration �! QR Iteration

• Goals: Incorporate shifts to accelerate convergence

Reduce cost per iteration to O(n2) instead of O(n3)

• Orthogonal iteration with computation of Bk with p = n and X0 = A

Q̂kRk = Xk�1

Xk = AQ̂k,

Bk = Q̂
T

k
AQ̂k = Q̂

T

k
Xk �!

⇢
upper triangular via
similarity transform

• Consider next the QR iteration, starting with X0 = A

Q1R1 = A, B1 = Q
T

1AQ1 = Q
T

1 (Q1R1)Q1 = R1Q1

Q2R2 = B1, B2 = Q
T

2B1Q2 = Q
T

2Q
T

1AQ1Q2 = similarity transform

= Q
T

2 (Q
T

2R2)Q2 = R2Q2

Q3R3 = B2, B3 = R3Q3 = Q
T

3Q
T

2Q
T

1| {z }
Q̂T

3

AQ3Q2Q1| {z }
Q̂3

2

Orthogonal Iteration �! QR Iteration

• Goals: Incorporate shifts to accelerate convergence

Reduce cost per iteration to O(n2) instead of O(n3)

• Orthogonal iteration with computation of Bk with p = n and X0 = A

Q̂kRk = Xk�1

Xk = AQ̂k,

Bk = Q̂
T

k
AQ̂k = Q̂

T

k
Xk �!

⇢
upper triangular via
similarity transform

• Consider next the QR iteration, starting with X0 = A

Q1R1 = A, B1 = Q
T

1AQ1 = Q
T

1 (Q1R1)Q1 = R1Q1

Q2R2 = B1, B2 = Q
T

2B1Q2 = Q
T

2Q
T

1AQ1Q2 = similarity transform

= Q
T

2 (Q
T

2R2)Q2 = R2Q2

Q3R3 = B2, B3 = R3Q3 = Q
T

3Q
T

2Q
T

1| {z }
Q̂T

3

AQ3Q2Q1| {z }
Q̂3

2

Orthogonal Iteration �! QR Iteration

• Goals: Incorporate shifts to accelerate convergence

Reduce cost per iteration to O(n2) instead of O(n3)

• Orthogonal iteration with computation of Bk with p = n and X0 = A

Q̂kRk = Xk�1

Xk = AQ̂k,

Bk = Q̂
T

k
AQ̂k = Q̂

T

k
Xk �!

⇢
upper triangular via
similarity transform

• Consider next the QR iteration, starting with X0 = A

Q1R1 = A, B1 = Q
T

1AQ1 = Q
T

1 (Q1R1)Q1 = R1Q1

Q2R2 = B1, B2 = Q
T

2B1Q2 = Q
T

2Q
T

1AQ1Q2 = similarity transform

= Q
T

2 (Q
T

2R2)Q2 = R2Q2

Q3R3 = B2, B3 = R3Q3 = Q
T

3Q
T

2Q
T

1| {z }
Q̂T

3

AQ3Q2Q1| {z }
Q̂3

2

QR Iteration

• For p = n and X0 = I, matrices

Ak = Q̂kAQ̂k

generated by orthogonal iteration converge to triangular or block triangular

form, yielding all eigenvalues of A

• QR Iteration computes successive matrices Ak without explicitly forming

product above

• Starting with A0 = A, at iteration k compute QR factorization

QkRk = Ak�1

and form reverse product

Ak = RkQk (= QT

k
Ak�1Qk)

• Successive Ak unitarily similar to Ak�1

• Diagonal entries (or eigenvalues of diagonal blocks) ofAk converge to eigen-

values of A

1

• If A is symmetric,

• then symmetry is preserved by QR iteration, so Ak converges to matrix
that is both triangular and symmetric, hence diagonal.

• Qk converges to matrix of corresponding eigenvectors

2

Qualitative Interpretation of QR Iteration

• Notice that when we run the QR-iteration we should generate

Q̂k := Q̂k�1Qk = Q1Q2 · · ·Qk,

as it is the matrix that contains the approximate eigenvectors.

• Recall that since

Ak = RkQk = QT
k (QkRk)Qk = QT

kAk�1Qk,

we have Ak = Q̂T
kAQ̂k.

• If A has n orthogonal eigenvectors, then as Q̂k �! X, the matrix

of eigenvectors, we have

Ak = Q̂T
kAQ̂k �! X�1AX �! D,

the matrix of eigenvalues.

QR Iteration with Shifts

• Convergence rate of QR iteration can be accelerated by incorporating shifts

QkRk = Ak�1 � �kI

Ak = RkQk + �kI

where �k is rough approximation to eigenvalue

• Good shift can be determined by computing eigenvalues of 2⇥ 2 submatrix

in lower right of corner matrix (corresponding to ⇡ �min)

• Convergence is quadratic and possibly cubic, so only 1 or 2 iterations re-

quired per eigenvalue

• Then deflate and iterate on remaining (n � k) ⇥ (n � k) block for k =

1, . . . , n� 1

• BecauseAk is upper Hessenberg, using Givens rotations for QR factorization

leads to only O(n
2
) work per iteration

• Number of iterations is ⇡ n

7

Preliminary Reduction

• Notice that each QR iteration requires both a QR factorization and an

evaluation of the reverse product

QkRk = Ak�1 � �kI

Ak = RkQk + �kI

• For a general matrix Ak�1 the work is nominally O(n
3
)

• If Ak�1 were upper Hessenberg, however, then QR factorization could be

e↵ected in ⇡ 2n
2 ⌧ n

3
operations using Givens rotations

Rk = QT

k
(Ak�1 � �kI)

and Qk would also be upper Hessenberg.

• The reverse product, RkQk, could also be e↵ected in O(n
2
) operations

using the same Givens rotations on the columns of Rk, resulting in upper

Hessenberg Ak

1

Upper Hessenberg X Upper Triangular is Upper HessenbergUpper Hessenberg ⇥ upper triangular is upper Hessenberg.

2

66664

x x x x x
x x x x x

x x x x
x x x

x x

3

77775

2

66664

x x x x x
x x x x

x x x
x x

x

3

77775
=

2

66664

x x x x x
x x x x x

x x x x
x x x

x x

3

77775

1

Upper Hessenberg X Upper Triangular is Upper HessenbergUpper Hessenberg ⇥ upper triangular is upper Hessenberg.

2

66664

x x x x x
x x x x x

x x x x
x x x

x x

3

77775

2

66664

x x x x x
x x x x

x x x
x x

x

3

77775
=

2

66664

x x x x x
x x x x x

x x x x
x x x

x x

3

77775

1

• Same for upper triangular ⇥ upper Hessenberg.

• Start QR iteration with A0 := QT
0AQ0

such that A0 is upper Hessenberg.

• Then each Ak is upper Hessenberg, and

QkRk can be done with Givens rotations

in O(n2
) operations, instead of O(n3

).

• “Reverse” Givens can be used to compute Ak = RkQk.

• With shifted QR, need only O(n) iterations,
so total cost is O(n3

).

QR iteration:

for k = 1, 2,...

QkRk = Ak�1

Ak = RkQk

end

Upper Hessenberg X Upper Triangular is Upper HessenbergUpper Hessenberg ⇥ upper triangular is upper Hessenberg.

2

66664

x x x x x
x x x x x

x x x x
x x x

x x

3

77775

2

66664

x x x x x
x x x x

x x x
x x

x

3

77775
=

2

66664

x x x x x
x x x x x

x x x x
x x x

x x

3

77775

1

• Same for upper triangular ⇥ upper Hessenberg.

• Start QR iteration with A0 := Q
T
0AQ0

such that A0 is upper Hessenberg.

• Then each Ak is upper Hessenberg, and

QkRk can be done with Givens rotations

in O(n
2
) operations, instead of O(n

3
).

• With shifted QR, need only O(n) iterations,

so total cost is O(n
3
).

QR iteration:

for k = 1, 2,...i

QkRk = Ak�1

Ak = RkQk

end

1

• Same for upper triangular ⇥ upper Hessenberg.

• Start QR iteration with A0 := Q
T
0AQ0

such that A0 is upper Hessenberg.

• Then each Ak is upper Hessenberg, and

QkRk can be done with Givens rotations

in O(n
2
) operations, instead of O(n

3
).

• With shifted QR, need only O(n) iterations,

so total cost is O(n
3
).

QR iteration:

for k = 1, 2,...

QkRk = Ak�1

Ak = RkQk

end

1

Preliminary Reduction

• E�ciency of QR iteration can be enhanced by first transforming matrix as

close to triangular form as possible before beginning iterations

• Hessenberg matrix is triangular except for one nonzero diagonal immedi-

ately adjacent to main diagonal

• Any matrix can be reduced to Hessenberg form in finite number of steps by

orthogonal similarity transformation, for example, using Householder trans-

formations

• Symmetric Hessenberg matrix is tridiagonal

• Hessenberg or tridiagonal form is preserved during successive QR iterations

3

Preliminary Reduction, continued

• QR iteration is implemented in two stages

symmetric �! tridiagonal �! diagonal

or

general �! Hessenberg �! triangular

• Preliminary reduction requires definite number of steps whereas subsequent

iterative stage continues until convergence

• Most e�cient approach for preliminary reduction of general matrix to uup-

per Hessenberg is to use Householder transformations, requiring O(n
3
) op-

erations

• With A0 in upper Hessenberg form, only modest number of iterations usu-

ally required in practice so much of the work is in the preliminary reduction

unless eigenvectors are needed

• Cost of accumulating eigenvectors, if needed, dominates total cost

• Note: it is important that initial reduction is only to upper Hessenberg

and not upper triangular.

5

Cost of QR Iteration

Approximate overall cost of preliminary iteration and QR iteration,

counting both additions and multiplications

• Symmetric matrices

• 4
3n

3
for eigenvalues only

• 9n
3
for eigenvalues and eigenvectors

• General matrices

• 10n
3
for eigenvalues only

• 25n
3
for eigenvalues and eigenvectors

6

Stopped Here

Preliminary Reduction to Upper Hessenberg

• Cost per QR iteration is O(n
2
) if A0 is upper Hessenberg

• The following sequence of Householder reflections will produce A0 in O(n
3
)

operations, starting with Q = I, A0 = A,

for k = 1 : n� 2

a = 0

a(k + 1 : n) = A0(k + 1 : n, k)

↵ = �kak2 sign(ak+1)

v = a� ↵ek+1

H = I� 2
vv

T

vTv

A0 = HA0H
T

Q = QH
T

9
>>>=

>>>;

Perform Householder update

H = H
T
= H

�1

end

• Net result is A0 = Q
T
AQ is upper Hessenberg

1

Preliminary Reduction to Upper Hessenberg

• Cost per QR iteration is O(n
2
) if A0 is upper Hessenberg

• The following sequence of Householder reflections will produce A0 in O(n
3
)

operations, starting with Q = I, A0 = A,

for k = 1 : n� 2

a = 0

a(k + 1 : n) = A0(k + 1 : n, k)

↵ = �kak2 sign(ak+1)

v = a� ↵ek+1

H = I� 2
vv

T

vTv

A0 = HA0H
T

Q = QH
T

9
>>>=

>>>;

Perform Householder update

H = H
T
= H

�1

end

• Net result is A0 = Q
T
AQ is upper Hessenberg

1

Not efficient! Use factored form

prelim.m demo…

Preliminary Reduction to Upper Hessenberg

• Cost per QR iteration is O(n
2
) if A0 is upper Hessenberg

• The following sequence of Householder reflections will produce A0 in O(n
3
)

operations, starting with Q = I, A0 = A,

for k = 1 : n� 2

a = 0

a(k + 1 : n) = A0(k + 1 : n, k)

↵ = �kak2 sign(ak+1)

v = a� ↵ek+1

H = I� 2
vv

T

vTv

A0 = HA0H
T

Q = QH
T

9
>>>=

>>>;

Perform Householder update

H = H
T
= H

�1

end

• Net result is A0 = Q
T
AQ is upper Hessenberg

1

Preliminary Reduction to Upper Hessenberg

• Cost per QR iteration is O(n
2
) if A0 is upper Hessenberg

• The following sequence of Householder reflections will produce A0 in O(n
3
)

operations, starting with Q = I, A0 = A,

for k = 1 : n� 2

a = 0

a(k + 1 : n) = A0(k + 1 : n, k)

↵ = �kak2 sign(ak+1)

v = a� ↵ek+1

H = I� 2
vv

T

vTv

A0 = HA0H
T

Q = QH
T

9
>>>=

>>>;

Perform Householder update

H = H
T
= H

�1

end

• Net result is A0 = Q
T
AQ is upper Hessenberg

• A0 �Q
T
AQ

1

Finding All Eigenpairs
sym_eig_qr_w_shift.m demo…

Finding All Eigenpairs

q Once l_n has converged (Rnn à ln),
q Reduce matrix: n à n-1
q Continue with shifted QR to target next smallest eigenvalue.

q sym_eig_qr_w_shift.m
q full_qr_iter.m

Krylov Subspace Methods

• Assume in the following that A is a symmetric positive definite matrix
with eigenvalues �1 � �2 � · · · � �n.

• Suppose we take k iterations of the power method to approximate �1:

Algorithm:

yk = Akx

� =
yT
kAyk

yT
k yk

⇡ �1

Code:

y = x

for j = 1 : k

y = Ay

end

� =
yTAy

yTy

• This approach uses no information from preceding iterates, yk�1, yk�2, . . . y1.

Krylov Subspace Methods

• Suppose instead, we seek (for y 6= 0),

� = max
y2Kk+1

yTAy

yTy

= max
y2lPk(A)x

yTAy

yTy

 max
y2lRn

yTAy

yTy
= �1.

• Here, the Krylov subspace

Kk+1 = Kk+1(A,x) = span{x Ax A2x . . . Akx}

is the space of all polynomials of degree  k in A times x:

Kk+1(A,x) = lPk(A)x.

Estimated eigenvalue Actual eigenvalue

Krylov Subspace Methods

• Consider the n⇥ (k + 1) matrix

Vk+1 =
⇥
x Ax A2x . . . Akx

⇤

• Assuming Vk+1 has full rank (k+1 linearly independent columns),
then any y 2 Kk+1 has the form

y = Vk+1 z, z 2 lRk+1.

• Our optimal Rayleigh quotient amounts to

� = max
y2Kk+1

yTAy

yTy
= max

z2lRk+1

zT
�
V T
k+1AVk+1

�
z

zT
�
V T
k+1Vk+1

�
z

Krylov Subspace Methods

• If we had columns vj that were orthonormal (vT
i vj = �ij), then we’d

have V T
k+1Vk+1 = I and

� = max
y2R(Vk+1)

yTAy

yTy

= max
z2lRk+1

zT
�
V T
k+1AVk+1

�
z

zT
�
V T
k+1Vk+1

�
z

= max
z2lRk+1

zT Tk+1 z

zTz

= µ1(Tk+1)  �1(A).

• Here, µ1 is the maximum eigenvalue of Tk+1 := V T
k+1AVk+1.

• Notice that this is a similarity transformation for A
if Vk+1 is square (i.e., k+1=n)

Krylov Subspace Methods

• This is the idea behind Arnoldi / Lanczos iteration.

• We use information from the entire Krylov subspace to generate optimal
eigenpair approximations.

• They require only matrix-vector products (unlike QR iteration, which
requires all of A).

• The approximation to �1 is given by the eigenvalue µ1 of the much smaller
(k + 1)⇥ (k + 1) matrix, Tk+1.

• It is the closest approximation to �1 out of all possible polynomials of
degree k in A and therefore superior (or equal to) the power method.

• Similarly, µk is the closest approximation to �n.

• The methods produce the best possible approximations (in this subspace)
to the extreme eigenvalue/vector pairs.

• Middle eigenpairs are more challenging—must use shift & invert.

Krylov Subspace Methods

• Note, for ||z|| = 1,

µ1 = max
||z||=1

zT Tk+1 z

corresponds to z = z1, so

µ1 = zT1 Tk+1 z1 = zT1 V
T
k+1AVk+1 z1 ⇡ �1.

• So, corresponding eigenvector approximation for Ax1 = �1x1 is

x1 ⇡ Vk+1z1.

• x1 is known as the Ritz vector and µ1 the Ritz value

Krylov Subspace Methods

• Remark: Shifting does not improve Lanczos / Arnoldi. WHY?

Krylov Subspace Methods

• Remark: Shifting does not improve Lanczos / Arnoldi. WHY?

– If p(x) 2 lPk(x), so is p(x+ 1), p(ax+ b), etc.

– So: K(A,x) ⌘ K(A+ ↵I,x).

– The spaces are the same and the Krylov subspace projections will
find the same optimal solutions.

• Shifting may help with conditioning, however, in certain circumstances.

• The essential steps of the algorithms is to construct, step by step, an
orthogonal basis for Kk.

• We turn to this for the symmetric (Lanczos) case.

Krylov Subspace Methods

• We start with the symmetric case, known as Lanczos iteration.

• The essence of the method is to construct, step by step, an
orthogonal basis for Kk.

q1 = x/||x||;
for k = 1, . . .

u = Aqk, u0 = ||u||
u = u � Pk u

�k = ||u||
if �k/u0 < ✏, break

qk+1 = u/�k
end

• Here, Pk := QkQ
T
k , is the orthogonal projector onto R(Qk), so

u = u� Pku = u�
kX

j=1

qj q
T
j u,

which is implemented as modified Gram-Schmidt orthogonalization.

• Q: Why is u0 useful?

Qk := (q1 q2 · · · qk)

Krylov Subspace Generation

• Notice how the orthogonal subspace is constructed.

q1 2 {x}
q2 2 {x, Ax}
qk 2 {x, Ax, . . . , Ak�1x} = Kk

• In the algorithm, we have

u = Aqk

qT
j u = qT

j Aqk

= qT
kA

Tqj = qT
kAqj

= qT
kwj+1, wj+1 := Aqj 2 Kj+1

• However,

qk ? Kj+1 8 j + 1 < k.

• Therefore

u = u� Pku

= u � qk

�
qT
kAqk

�
� qk�1

�
qT
k�1Aqk

�

= u � qk↵k � qk�1�k�1,

↵k := qT
kAqk �k := ||uk�1||.

Lanczos Iteration (A Symmetric)

• The Lancos iteration is:

q1 = x/||x||;
for k = 1, . . .

u = Aqk, u0 = ||u||
↵k = qT

ku

u = u � ↵kqk � �k�1qk�1

�k = ||u||
if �k/u0 < ✏, break

qk+1 = u/�k
end

Lanczos Iteration (A Symmetric)

• In matrix form,

AQk = QkTk + �k+1qk+1e
T
k

• Or,

A [q1 q2 · · · qk] = [q1 q2 · · · qk]

2

666664

↵1 �1

�1 ↵2 �2
. �k�1

�k�1 ↵k

3

777775
+ �kqk+1e

T
k .

Arnoldi Iteration (A Nonsymmetric)

• Arnoldi iteration is essentially the same as Lanczos, save that we do not
get the short term recurrence.

q1 = x/||x||;
for k = 1, . . .

u = Aqk, u0 = ||u||
u = u � Pk u

�k = ||u||
if �k/u0 < ✏, break

qk+1 = u/�k
end

Krylov Subspace Projections

XXXXXXXXXXXXXXXXXXXX

��������������XXXXXXXXXXXXXXXXXXXX

��������������
⌘
⌘

⌘
⌘
⌘

⌘
⌘

⌘
⌘
⌘

⌘
⌘
⌘⌘3

-

6

R(Kk)

1
hk+1,k

Aqk

qk+1

• Notice that Aqj will be in R(Kk) for all j < k.

• qk+1 ? R(Kk)

• qk+1 ? R(AKk�1) ⇢ R(Kk)

Krylov Subspace Methods

• Krylov subspace methods reduce matrix to Hessenberg (or tridiagonal) form

using only matrix-vector multiplication

• For arbitrary starting vector x0, if

Kk = [x0 Ax0 · · · Ak�1
x0]

then

K
�1
n
AKn = Cn

where Cn is upper Hessenberg (in fact, companion matrix)

• To obtain better conditioned basis for span(Kn), compute QR factorization,

QnRn = Kn

so that

Q
H

n
AQn = RnCnR

�1
n

=: H

with H upper Hessenberg

1

Krylov Subspace Methods, continued

• For each k = 1, . . . , n, define the n⇥ k Krylov matrix

Kk =
⇥
x0 x1 · · · xk�1

⇤
=
⇥
x0 Ax0 · · · A

k�1
x0

⇤
,

and the corresponding Krylov subspace to be the column space

Kk = R(Kk)

• For k = n, AKn =
⇥
Ax0 · · · Axn�2 Axn�1

⇤

=
⇥
x1 · · · xn�1 xn

⇤

= Kn

⇥
e2 · · · en a

⇤
=: KnCn

with a = K
�1
n
xn

11

Krylov Subspace and Similarity Transformation
• Consider the rank k matrix

Kk :=
�
x0 Ax0 A

2x0 · · · Ak�1x0

�
,

and associated Krylov subspace Kk := R(Kk).

• Krylov subspace methods work with the orthogonal

vectors qk 2 Kk, k=1, 2,. . . , satisfying QR = Kk.

• The similarity transformation

Q
�1
AQ = Q

T
AQ = H

with entries hij = qT
i Aqj is upper Hessenberg.

H =

2

66664

x x x x x

x x x x x

x x x x

x x x

x x

3

77775
, hij = 0 for i > j + 1.

• Proof: If vj 2 span{q1, . . . ,qj} ⌘ lPj�1(A)x ⌘ Kj

then Avj 2 span{Aq1, . . . , Aqj} ⇢ lPj(A)x ⌘ Kj+1.

qT
i Avj = 0, i > j + 1,

because, for i > j + 1, qi ? Kj+1.

Relationship of K and C

• Start with the Krylov matrix K =
⇥
x Ax A2x · · · Ak�1x

⇤

• Multiply by A to yield AK =
⇥
Ax A2x A3x · · · Akx

⇤

• Notice that the first k� 1 columns of AK are just the second through kth columns of K:

Ax = col 2 A2x = col 3 . . . , Ak�1x = col k

• The remaining term, Akx, is to be determined

• Since the vectors {x,Ax,A2x, . . . ,Ak�1x} are assumed to form a basis (or at least to be
linearly independent in the Krylov subspace), the vector Akx can be expressed as a linear
combination of them:

Akx = c0x + c1Ax + c2A
2x + · · · + ck�1A

k�1x

1

• This relation represents the characteristic polynomial for A relative to the vector x:

pk(A)x := Akx� ck�1A
k�1x� · · ·� c1Ax� c0x = 0

• Define the companion matrix C by

C =

0

BBBBB@

0 0 · · · 0 c0
1 0 · · · 0 c1
0 1 · · · 0 c2
...
0 0 · · · 1 ck�1

1

CCCCCA

• The e↵ect of post-multiplying K by C is to “shift” the columns of K one position to the
left, and the last column of KC becomes the linear combination of the columns of K with
the coe�cients c0, c1, . . . , ck�1.

• Explicitly, KC =
⇥
Ax A2x · · · Ak�1x pk(A)x

⇤

=
⇥
Ax A2x · · · Ak�1x Akx

⇤
= AK

• Thus, we obtain the matrix equality AK = KC

2

Krylov Subspace Methods

• Krylov subspace methods reduce matrix to Hessenberg (or tridiagonal) form

using only matrix-vector multiplication

• For arbitrary starting vector x0, if

Kk = [x0 Ax0 · · · Ak�1
x0]

then

K
�1
n
AKn = Cn

where Cn is upper Hessenberg (in fact, companion matrix)

• To obtain better conditioned basis for span(Kn), compute QR factorization,

QnRn = Kn

so that

Q
H

n
AQn = RnCnR

�1
n

=: H

with H upper Hessenberg

1

• As discussed earlier, QR factorization via Gram-Schmidt

Krylov Subspace Methods

• Equating kth columns on each side of AQn = QnH yields recurrence

Aqk = h1kq1 + · · · + hkkqk + hk+1,kqk+1

• Premultiplying by q
H

j
and using orthonormality,

hjk = q
H

j
Aqk, j = 1, . . . , k

• These relationships yield Arnoldi iteration, which produces unitary matrix

Qn and upper Hessenberg matrix Hn column by column using only matrix-

vector multiplication by A and inner products of vectors

3

Arnoldi Iteration

1: x0 = arbitrary nonzero starting vector . Initialize starting vector

2: q1
x0

kx0k2
. Normalize

3: for k = 1, 2, . . . do

4: uk Aqk . Generate next vector by applying A

5: for j = 1 to k do

6: hj,k q
H

j
uk . Subtract from new vector its components in all preceding vectors

7: uk uk � hj,k qj

8: end for

9: hk+1,k kukk2
10: if hk+1,k = 0 then

11: stop . Stop if matrix is reducible
12: end if

13: qk+1
uk

hk+1,k
. Normalize to generate next vector

14: end for

6

Arnoldi Iteration, continued

• If

Qk = [q1 · · · qk]

then

Hk = Q
H

k
AQk

is an upper Hessenberg matrix

• Eigenvalues of Hk, called Ritz values, are approximate eigenvalues of A

• Ritz vectors, given by Qky are approximate eigenvectors of A, where y is

an eigenvector of Hk

• Eigenpairs of Hk must be computed by another method, such as QR itera-

tion, but this is an easier problem if k ⌧ n

5

Arnoldi Iteration, continued

• Arnoldi iteration is fairly expensive in work and storage because each new

vector qk must be orthogonalized against all previous columns of Qk and

all must be stored for that purpose

• So Arnoldi process is usually restarted periodically with carefully chosen

starting vector (e.g., current approximate eigenvector)

• Ritz values and vectors produced are often good approximations to eigen-

values and eigenvectors of A after relatively few iterations

6

Lanczos Iteration (A Symmetric)

• The Lancos iteration is:

q1 = x/||x||;
for k = 1, . . .

u = Aqk, u0 = ||u||
↵k = qT

ku

u = u � ↵kqk � �k�1qk�1

�k = ||u||
if �k/u0 < ✏, break

qk+1 = u/�k
end

Lanczos Iteration (A Symmetric)

• In matrix form,

AQk = QkTk + �k+1qk+1e
T
k

• Or,

A [q1 q2 · · · qk] = [q1 q2 · · · qk]

2

666664

↵1 �1

�1 ↵2 �2
. �k�1

�k�1 ↵k

3

777775
+ �kqk+1e

T
k .

Lanczos Iteration

• ↵k and �k are diagonal and subdiagonal entries of symmetric tridiagonal

matrix Tk

• As with Arnoldi, Lanczos iteration does not produce eigenvalues and eigen-

vectors directly, but only tridiagonal matrix Tk, whose eigenpairs must be

computed by another method to obtain the Ritz values and vectors

• If �k = 0, then algorithm appears to break down, but in that case invariant

subspace has already been identified (i.e., Ritz values and vectors are already

exact at that point)

8

Lanczos Iteration, continued

• In principle, if Lanczos algorithm were run until k = n the resulting tridi-

agonal matrix would be orthogonally similar to A

• In practice, rounding error causes loss of orthogonality, invalidating this ex-

pectation

• Problem can be overcome by re-orthogonalizing vectors as needed, but ex-

pense can be substantial

• Alternatively, can ignore problem, in which case algorithm still produces

good eigenvalue approximations, but multiple copies of some eigenvalues

may be generated

9

Krylov Subspace Methods, continued

• Great virtue of Arnoldi/Lanczos iterations is their ability to produce good

approximations of extreme eigenvalues for k ⌧ n

• Moreover, the require only one matrix-vector multiply by A per step and

little auxialiary storage, so are ideally suited to large sparse matrices

• If eigenvalues are needed in middle of spectrum, say near �, algorithm can

be applied to (A� �I)
�1
, assuming it is practical to solve systems of form

(A� �I)x = y. (Presumably with a preconditioned iterative method.)

10

lanczos_and_power.m demo…

q Lanczos max eigenpair converges much
more rapidly than power iteration does
to lmax

q Even convergence to lmin is relatively
fast

Matlab Demo

q Lanczos vs Power Iteration. (lanczos_and_power.m)

q Lanczos does a reasonable job of converging to extreme eigenvalues.

Q: What is
happening
here?

Convergence to All Eigenvalues

q Although we would generally not use Lanczos for all eigenpairs, it is interesting to do so to
understand how Lanczos converges.

q Typically, the extreme eigenpairs emerge first

q Here, we look at a 29x29 example (see text) and plot the k eigenvalue estimates after the
kth iteration.

lanczos_plot_eigs.m demo

q Lanczos extreme eigenpairs converge
first

q Middle ones converge only at the end

Optimality of Lanczos, Case A is SPD

• Recall, if A is SPD, then xTAx > 0 8 x 6= 0.

• If Q is full rank, then T := QTAQ is SPD.

(Qy)T A (Qy) = yTQTAQy > 0 8 y 6= 0.

• If A is SPD then ||A||2 = �1 (max eigenvalue). Thus,

�1 = max
x 6=0

xTAx

xTx
= max

||x||=1
xTAx.

• Let Ty = µy. (T is k ⇥ k tridiagonal, k ⌧ n.)

µ1 = max
||y||=1

yTTy = max
||y||=1

yTQTAQy � xTAx 8 x 2 Kk

• Therefore, µ1 is the closest Rayleigh quotient estimate for all x 2 Kk, ||x|| = 1.

• Lanczos is as good as (or much better than) the power method for the same

number of matrix-vector products in A.

Lanczos/Arnoldi Example Applications

1. Solving Ax = b: Lanczos () conjugate gradient (CG) iteration (A-SPD)

• Preconditioned CG: Ax = b �! M�1Ax = M�1b () Ax = �Mz

• PCG (Lanczos) yields generalized eigenpair estimates (�k, zk)
with no extra matvecs.

• GMRES is the nonsymmetric Arnoldi equivalent.

• Both CG and GMRES produce the closest approximation to x
in Kk = R(Qk), in the appropriate norm:

– A-norm for CG, with A SPD

– ATA-norm for GMRES, with A invertible.

2. Solving ordinary di↵erential equations (ODEs)

du

dt
= �u, u(t = 0) = u0 =) u(t) = u0e�t

du

dt
= Au, u(t = 0) = u0 =) u(t) = eAtu0.

• Consider a small interval �t: tn := n�t, un ⇡ u(tn).

e�dt ⇡ 1 + ��t (Euler forward)

un+1 = un +�tAun ⇡ eA�tun.

• Higher-order polynomials (and rational polynomials
involving I ��tA) are also possbile.

• For linear problems, can also use Lanczos/Anoldi:

un+1 = QkSke
M�tS�1

k QT
ku

n.

• Stable and kth-order accurate.

3. Graph Partitioning

• Lanczos can be used for partitioning large sparse graphs.

• Find xn�1, the eigenvector associated with the first nonzero
eigenvalue of the Graph Laplacian, G.

– Gij = �1 if vertex i connected to vertex j.

– Gii = number of connections to vertex i.

– Gij = 0 otherwise.

• Upon sorting entries of x2 (the Fiedler vector), adjacent
entries in the sorted rank are connected.

• Partitioning the sorted list into two parts gives two connected
subgraphs.

• Recur, to get a set of connected subgraphs. (Recursive spectral bisection.)

