Chapter 7: Interpolation
Topics:

e Background

e Fxamples

e Polynomial interpolation: bases, error, Chebyshev, piecewise
e Orthogonal polynomials

e Splines: error, end conditions

e Parametric interpolation

e Multivariate interpolation: f (:z:, y)

Classic Interpolation: Piecewise Linear

3

e Here, we have n interpolation points

(blue dots)

e The interpolant is the blue line, p(t) ~ f(t)
(the red line)

e This is generally the type of interpolation used in look-up tables

e (Questions:

— What is the error (e.g, max, [p(t) — f(t)|) as a function of n?
— Is the interpolation error bounded as n — o0?

— Can we improve the rate of convergence’
(e.g., reduced error for same n or same error for lower n)

— Are there properties, such as monotonicity, that we should preserve?

— etc.

Piecewise Linear
e Frror vs h?

e Piecewise constant?

Interpolation Problem Definition

e Basic interpolation problem: For given data

(tl,yl), (tz,yg), Ceey (tmaym) with t; <ty < -+ <,

determine function f : IR — IR such that

f(tz> = Yi, 1=1,....,m

(interpolatory condition)

e f is interpolating function, or interpolant, for given data

o Additional data might be prescribed, such as slope of interpolant at
grven points

o Additional constraints might be imposed, such as smoothness, mono-
tonicity, or convexity of interpolant

o f could be a function of more than one vartable

p(t)

Example

4!
matlab “pchip()” function
| \M . .
"’H 2 ! G 8 10
Al \ matlab “spline()” function
\
\\/‘\——*“
% 1 6 8 10

Purposes for Interpolation

e Look-up tables

e Plotting smooth curve through discrete points

e Differentiating or integrating tabular data

e (Quick and easy evaluation of mathematical function
e Replacing complicated function by simple one

e Basis functions for approximation in numerical solution of ordinary and par-
tial differential equations (example)

e Basis functions for developing integration rules

e Basis functions for developing differentiation techniques

Interpolation vs Approximation

e Interpolatory condition, f(t;) = y; implies that interpolant fits given data
points exactly

e Interpolation is not appropriate if data points subject to significant errors

e [t is usually preferable to smooth noisy data, for example by least squares
approximation

e Approximation is also more appropriate for special function libraries

e curve_fit.m

Issues in Interpolation
Arbitrarily many functions interpolate given set of data points
e What form should interpolating function have?

e How should interpolant behave between data points?

e Should interpolant inherit properties of data, such as monotonicity, convex-
ity, or periodicity?

e Are parameters that define interpolating function meaningful?
(For example, function values, slopes, etc.?)

e If function and data are plotted, should results be visually pleasing?

Choosing Interpolant

Choice of function for interpolation based on

e How easy interpolating function is to work with

e determining its parameters
e cvaluating interpolant

e differentiating or integrating interpolant

e How well properties of interpolant match properties of data to be fit (smooth-
ness, monotonicity, convexity, periodicity, etc.)

e [s it easy to update the interpolant if new information is provided?
(e.g., Newton divided-difference approach)

Functions for Interpolation

e Families of functions commonly used for interpolation include
e polynomials
e piecewise polynomials (e.g., piecewise linear)
e trigonometric functions
e exponential functions

e rational functions

e Primarily focus on polynomials and piecewise polynomials

e interp lin.m

Polynomial Interpolation

J Two types: Global or Piecewise

- Two scenarios:
dA: points are given to you
dB: you choose the points

] Case A: piecewise polynomials are most common — STABLE.
0 Piecewise linear
0 Splines
0 Hermite (matlab “pchip” — piecewise cubic Hermite int. polynomial)

] Case B: high-order polynomials are OK if basis chosen wisely:
3 t; = roots of orthogonal polynomials
0 Convergence is exponential: err ~ Ce¢", instead of algebraic: err~Cn*

Error for Piecewise Linear Interpolation of sin(x) on [0:2.5]

1.2

0.8

0.6

0.4

0.2

Piecewise Linear Interpolation, f = sinx

Max Error: 0.65275

interp lin.m

Piecewise Linear Interpolation, f = sinx

100

107 F

10° F

—If =Pl
— th—Q

[Slope of log-log plot shows error ~ n? -
- We will often use plots like this.

10
10°

10"
n = number of points

102

Example: Table Look-Up

e Suppose you're tasked with tabulating data such that linear interpolation
between tabulated values is correct to 4 digits.

(o = [fsnt : o = [con! :
x n Si(x) j: "L 8 Cie) = [2a 5
41.00 1.50494 33514 -23986 -0.00327 89946 + 4456
"0l 9490 34645 23936 0351 95823 4695
J02 9486 11840 23881 0375 97005 4932
.03 9481 65154 23826 0399 93255 5170
.04 9476 94642 23766 0423 84335 5405
41.06 1.59472 00364 -23706 -0.00447 70010 + 5642
.06 9466 82381 23642 0471 50043 5878
.07 9461 40756 23577 0495 24198 6110
.08 9455 75554 23508 0518 92243 6347
209 9449 86844 23439 0542 53941 6577
41.10 1.50443 74695 -23365 -0.00566 09062 + 6811
1 9437 39181 23290 0589 57372 7042
12 9430 80377 23214 0612 98640 7273
3 9423 98359 23134 0636 32635 7502
24 9416 93207 23053 0659 59128 a2
41.15 1.59409 65002 -22067 -0.00682 77839 + 7959
16 9402 13830 22883 0705 88691 8187
17 9394 39775 22793 0728 91306 8412
18 9386 42927 22703 0751 85509 8639
‘19 9378 23376 22609 0774 71073 8862

e Q: How many table entries are required on the interval [0:1]7

e (Q: How many digits should you have in the tabulated data?

e To answer this question we will need some error estimates

Error for (Global Polynomial Interpolant

e Suppose that f(x) € C™ on interval [a, b] that contains x1, xo, ..., T,, T

o If p(x) € IP,,_1 (the space of polynomials of degree < n — 1) and
p(x;) = f(x;), 5 =1,...,n, then there exists a 6 € [a, b] such that

f)

n!

fz) —plr) =

(x —z)(x —x9) -+ (T —)

e In particular, for linear interpolation on [xy : xs] we have

£
2

flz) —plx) =

(x — x1)(x — o)

e The L°° error bound is

£ (0)? h?
_ < R _
|f(z) — p(x)] < max T M T

where M = max,,..,)| f"(x)| and h = 29 — 2

Table Look-Up, continued

Example: f(x) = cos(x)

e We know that | f”| < 1 and thus, for piecewise linear interpolation
h2

F@)—plo)l < 5

e If we want 4 decimal places of accuracy, accounting for rounding, we need

|[f(z) = pl(z)]
h2
h

— < -x10*
8 2

4 x 1074

A

VAN
-
-
N

r cos(x)
0.00 1.00000
0.02 0.99980
0.04 0.99920
0.06 0.99820
0.08 0.99680

e The table would look like

Piecewise Polynomial Interpolation

J Example — Given the table below,

T |
0.6 | 1.2
0.8 | 2.0
1.0 | 2.4

1 Estimate f(x=0.75)

Polynomial Interpolation

J Example — Given the table below,

T |
0.6 | 1.2
0.8 | 2.0
1.0 | 2.4

1 Estimate f(x=0.75)
J A: 1.8 --- You've just done (piecewise) linear interpolation.

J Moreover, you know the erroris < (0.2)?f’ /8.

Existence, Uniqueness, and Conditioning

e Existence and uniqueness of interpolant depend on number of data points
m and number of basis functions n

e If m > n, interpolant usually doesn’t exist (this is LLSQ case...)

e If m < n, interpolant is not unique

e If m = n, then basis matrix A is nonsingular provided data points ¢; are
distinct and basis functions are linearly independent, so data can be fit ex-
actly

e Sensitivity of parameters x to perturbations in data depends on cond(A),
which depends on choice of basis functions

Basis Functions

e Family of functions for interpolating given data points is spanned by basis

functions, ¢1(t), ..., ou(t)

e Interpolating function f is chosen as linear combination of basis functions,
n
ft) = > wiot)
j=1
e Requiring f to interpolate data (t;, y;) means
n
flt) = Y mo(ts)
j=1

which is a system of linear equations Ax =y for n-vector x of parameters
z;, where entries of m x n matrix A are a;; = ¢;(1;)

Basis Function Example: Fourier

e For functions that are periodic on, say, [0, L], we can consider the Fourier
bases comprising sines and cosines.

e For example, consider L = 27 and let

[D1(1) Pa(t) -~ Pu(t)] =
lcos Ot cos1t --- coskt sinlt cos2t --- cos(k — 1)t]

be a set of basis functions with n = 2k.

e This basis is stably (and optimally) sampled by n uniformly-spaced points
with spacing At = L/n, which means we do not include both endpoints.

e A typical distribution is t; = 2wi/n, for i = 1,...,n with L = 27

e We build the Vandermonde matrix with entries a;; = ¢;(¢;) and solve
Ax =y, where y; = f(t;) holds the function values at the test points

Fourier Example, continued

e Once we have the basis coefficients, x, we can evaluate the interpolant on a
finer set of points {t;} for plotting or other purposes

e Let A be an m X n matrix with a;; = ¢(t;)

e For plotting purposes, we typically take m > n and t; = 2wi/m for
1=0,...,m

e Unlike the interpolation problem, we do not need to worry about solvability
for the reconstrunction matrix, A, so we can admit the redundant row pair
that results from ¢ = 0 and ¢ = 27

e The finely-sampled output is then
y = Ax = AAly

and we can plot (¢;, ;) drive_cs2.m

Fourier Example, continued drive_cs2.m

e Here is a code that implements interpolation with the cosine/sine basis on n points

%% Generalized Van der Monde example, Fourier
hdr;

if mod(N,2)=1; N=N+1; end; % Force N to be even
Nf=20+18%N; % Nf >> N, fine points

[z,w] =zwuni(N); x
[zf,wfl=zwuni(Nf); xf

pik(z (2:end)+1); % retain only one end-point
pik(zf(l:end)+1); % retain both, for plotting

we=[0:N/21"'; % Cosine wavenumbers
ws=[1:N/2-1]1'; % Sine wavenumbers
C cos(xxwc'); S sin(x*xws'); A [C S]; %% Interpolation matrix

Cf = cos(xfxwc'); Sf = sin(xfxws'); Af = [Cf Sf]l; %% Fine—-mesh reconstructor

f = exp(cos(2x%x))+sin(x).*xexp(cos(9%x)); % coarse mesh input

ff = exp(cos(2%xf))+sin(xf).*kexp(cos(9xxf)); % fine-mesh solution, verification
fN = Afx(A\f); % interpolant on fine mesh

plot(xf, @xxf, 'k-',1w,2,xf,ff,'r-',1w,2,x,f,'r.'",ms,12,xf,fN, 'k-"',1w,1.9);
axis tight;

max(max(abs(fN)));

eold = enorm; iold=inorm;
enorm = norm(ff-fN)/norm(ff);
inorm = max(abs(ff-fN));

disp([N enorm eold/enorm inorm iold/inorm])

Fourier Example, continued

N =32 Convergence for Fourier Interpolation

10% T T T

]] 1 1 1 | " L | L

150 200

100
Number of Points, n

Polynomial Interpolation
e Simplest and most common type of interpolation uses polynomials

e Unique polynomial of degree at most n — 1 passes through n data points
(t;,y:), i = 1,...,n, where t; are distinct

o If f(¢) is smooth and ¢;s are carefully chosen, polynomial interpolant con-
verges rapidly to f

e There are many ways to represent or compute interpolating polynomial but,
in theory (i.e., in infinite-precision arithmetic), all must give the same result

Monomial Basis (bad)

e Monomial basis functions

oit) = V7 j=1,....n
give interpolating polynomial of form

Pno1(t) = oy +at+ -+ AL

e Coeflicients x given by the n X n linear system

_1t1"' t?_l_ —331— —yl_
o o o n_l
AX: 1t2 t2 L9 _ Y9 — y
_1tn--- tz_l_ | Ty | | Un |

e Matrix of this form is called Vandermonde matriz

e We will also refer to a matrix having entries ¢;(;) as a generalized Vander-
monde matrix, or simply Vandermonde matrix

Example: Monomial Basis

e Determine polynomial of degree two interpolating three data points (-2,-27),
(0,-1), (1,0)

e Using monomial basis, linear system is

1t1 t% _331_ _yl_
Ax = |1 t9 t% x| = || =y
1t3 t% _5133_ _yg_

e For these particular data, system is

(1 —24] [x4 —27
1 00 o | = | =1
1 11 |23 0

e Solution is x = [-1 5 — 4], so interpolating polynomial is

po(t) = —1 + 5t — 47

Monomial Basis, continued

e Monomial basis functions become similar as n becomes large
e Matrix A is increasingly ll-conditioned as degree increases
e Condition number of A grows exponentially with n

e Resulting basis coefficients will be poorly determined

07

1ber6 of A

S
T

-3
2
T

2
8
T

Cd) ~ 107
for n~21

~_ Condition Nun

2
[
T

2

(=]
z

n

as

Monomial Basis, continued

e Solving system Ax = b using standard linear equation to determine basis
coefficients x requires O(n?) work

e Conditioning and amount of computational work can be improved by using
a different basis

e For example, can improve conditioning by centering and scaling the inde-
pendent variable from ¢ € [a, b] to € € [—1, 1] via the transformation

. t—c\’™
¢ = y © and setting ¢;(t) = &7 = (d C)

where @ = mint;, b = maxt;, ¢ = (b+a)/2 is midpoint and d = (b —a)/2
is half of the range of the data

e Condition improves, but still exhibits exponential growth with n

Monomial Basis, continued

_ Condition Number of A,, ~ . _ _ . _

Monomial Basis, continued

e More progress can be made by changing basis to something other than
monomials

e Orthogonal polynomaials provide a good alternative
e Lagrange polynomaals, with a good choice of nodal points, are also effective

e Change of basis still gives the same interpolating polynomial for given data,
but representation of polynomial will be different

Uniqueness of Interpolating Polynomial

e Suppose you have two polynomial interpolants, p(t) and ¢(t) of degree n—1,
each satisfying the interpolatory condition

plti) = qt:) = v
e Then p(t) = q(t).

e That is, assuming exact arithmetic, the interpolating polynomial is unique,
no matter how constructed.

e Proof.
e Denote IP,,_1 as the space of polynomials of degree < n — 1.
e Both pand g € IP,,_4
e Therefore, d : =p—q € P,_1.
e However, d(t;) = p(t;) —q(t;) =0,i=1,...,n.

e The only polynomial in IP,,_; that has n roots is the zero function, d = 0,
which establishes the uniqueness result

Lagrange Interpolation

e Because of its convenience and stability, Lagrange interpolation is one of
the most commonly used polynomial interpolants for science and engineer-
ing and applications

e [t avoids the ill-conditioning of the Vandermonde matrix by building a poly-
nomial basis that automatically satisfies the interpolatory conditions

Lagrange Bases

e For a given set of interpotion points, ¢;, « = 1,...,n, the Lagrange poly-
nomial basis functions (also known as cardinal functions) are defined as
follows,

=1, 1= o
lj<t> € Py, lj<ti) = 0j5 = {:O i#;” tL,j=1,...,n

e Consequently, the generalized Vandermonde matrix A has entries a;; = 0;;,
which means that A =1, the n X n identity matrix

e Moreover, the basis coeflicients are the function values, y;

e Thus, Lagrange polynomial interpolating data (t;, y;) is

Pn—1(t) = yili(t) + yalo(t) + - - - + ynl(t)

Construction of the Cardinal Functions

e Lagrange interpolation relies on satisfying the conditions
1. l]<t) clP,_1

e To meet the first two conditions, consider the polynomial
[j(t) = Cjt = ty) -~ (t = L) (= Lja) -+ (L= L),

which contains all terms in the nth-order polynomial

G = (t —t)(t —to) - (t — 1)

save for the jth one.

e Consequently, [;(¢t;) =0fori e |1,...,n|, i # j.

o If C; is a constant, then [;() is a polynomial with n —1 roots and therefore
satisfies Condition 1

Construction of the Cardinal Functions

e Lagrange interpolation relies on satisfying the conditions
1. l]<t> clP,_1

3. lj(?fj) =1

e To satisty Condition 3, we need to scale C; so that [,(¢;) = 1.

e This condition is met by setting

Ci=(t;—t) - (t; —tj—1) (tj —tjen) -~ (b — tn)]

e A compact representation of [; is

J Here, we have two basis functions

0.8
0.6
0.4 r

0.2

Lagrange Basis Functions, n=2 (linear)

[1(%)

. 0.8

. 0.6

- 04+

_ 0.2

[>(1)

|
1.6

]
1.8

Lagrange Basis Functions, n=3 (quadratic)

 Here, we have three basis functions

[1(%)

[>(1)

[3(%)

Fast Lagrange Evaluation

e We construct the Lagrange (cardinal) basis functions as follows:
(@) = a;(@—a)@—22) (T —2;1)(@ — 2531) - (& —),

which clearly is in IP,,_; and satisfies [;(x;) = 0 when 7 # j.

e To get the scaling condition, /;(z;) = 1, set

aj = (@ —21)(zj—22) (25 — 2j1) (T — Tja) -+ (35 — 20)]

e A compact form for I;(x) is

o - 132

o

e However, the first form involving «; is generally faster for multiple queries
(multiple evaluations with different x values).

e To implement the fast form for a given x, first define

S1 - 1 tn =

So = 81-(x—x) tno1 = tp-(x—2x,)

§3 = Sa- (517 - 5172) th2 = Tp_1- ($ - xn—l)
Sn = Sp_1° (T —Tp_1) th = ty (v —x2)

then set l;(z) = a;-s;-tj, forj=1,...,n.

Fast Lagrange Evaluation

e Notice that this form requires O(n) operations for n outputs, i.e., the cost is linear in n.

e To be precise, the cost to interpolate from n input points to m output values is O(n?) for
generating the full set of a;s, and O(mn) for generating m results.

e For certain choices of interpolation nodes (e.g., Chebyshev points), barycentric formulas
eliminate the O(n?) cost and allow n = 10% in just seconds on a laptop!
(See L.N. Trefethen, Approzimation Theory and Approzimation Practice, Oxford.)

e Often, sample points and nodes are unchanged, but f(x) changes.
In this case, recognize that

p@) =) L@ f
J=1
P = Jf, Wltth = lj<i’z)

For moderate m and n (say, < 200) this matrix-vector product approach is ideal, especially
if you have O(n) right-hand sides or more.

Stopped Here, 4/3/25

Newton Basis

e Start with p,(t) € P,—; and p,—1(tj) = f; = f(tj), 5 =1,...,n

e Recursively define
Pult) = pnalt) + C(E =)t —to) -~ (t — 1)
= Pn—1(t) + Ct = t1)qn(t)
such that p,(tni1) = fta

® Set
O _ fn—i—l _pn—l(tn—i—1>

Qn<tn+1)

e Newton bases are interesting because they are adaptive—you can choose/update
the points as you increase the order of approximation.

e However, they do depend on the f;s, which means you have to recompute
everything if f(¢) changes, which is not the case for the Lagrange approach.

Unstable and Stable Interpolating Basis Sets

e Eixamples of unstable bases are
e monomials (modal): ¢; = a7~}

e high-order Lagrange (nodal) bases on uniformly-spaced points

e Eixamples of stable bases are

e Orthogonal polynomials (modal) such as Chebyshev or Legendre poly-
nomials

e Lagrange (nodal) polynomials on Gauss quadrature points (e.g., Gauss-

Legendre, Gauss-Chebyshev, and Gauss-Lobatto-Legendre), all of which
are clustered near the interval endpoints

e Can map back and forth between stable nodal/modal bases with minimal
information loss

Orthogonal Polynomials

e We have seen that the condition number of the Vandermonde matrix asso-
ciated with the monomial basis grows exponentially with n.

e We asserted that the growth was due to near linear dependency of the mono-
mials

e [t would make therefore make sense to consider orthogonal polynomaials

e The question is, in what sense should they be orthogonal?

Orthogonal Polynomials, continued

e To define orthogonality for functions, we follow the same approach as for
vector norms in which we define an inner product

e [t is common to use a weighted L? inner-product of the form

(f.9) = / w(x) f(z) g(e) da

1

and associated norm, || fllw := /(f, [)w

e Other domain choices are possible, but [—1, 1] is the standard for Legendre
and Chebyshev polynomials

e [f the domain of interest is x € [a,b], one can use the transformation
z = —14+2(x—a)/(b— a) to map the problem to §2 := [—1,1].

e In the inner product, w(x) > 0 is a nonnegative weight function on)

e For Legendre polynomials, w(x) = 1, and for first-kind Chebyshev polyno-

mials, w(z) = (1 — z%) 2

Orthogonal Polynomials, continued

e Table 7.1 from the text gives parameters for several common orthogonal
polynomials

Name Symbol | Interval Weight function
Legendre Py [—1,1] 1

Chebyshev (1st kind) Ty [—1,1] (1 —t%)~1/2
Chebyshev (2nd kind) | Uy, [—1,1] (1 —t2)1/?

Jacobi Ji —1,1] (1=t +8t)° a,8>—1
Laguerre Ly [0, 0o et

Hermite Hy (—00, 00) et

e Chebyshev (1st kind) and Legendre are most widely used for numerical in-
terpolation, differentiation, and integration, and as bases for solving partial
differential equations.

Legendre Polynomials

e Legendre polynomials are defined by the orthogonality condition

1 . .
B | | 1 fore=
Bop) = [P@p@d = {§ o

with P;j(1) = 1. (An alternative scaling is to require ||F;|| = 1, in which
case the polynomials are orthonormal.)

e Using Gram-Schmidt orthogonalization, it’s easy to show that all orthogonal
polynomials satisty a three-term recurrence of the form

Per1(r) = (o + Br)pe(x) — Yipr—1(x)

o If w(x) is symmetric, then 5;=0

e These recurrence formulas provide an efficient and stable way to evaluate
orthogonal polynomials, even for large values of k

Legendre Polynomials, continued

e Starting with

P=1, P =

Ly

the recurrence formula for the kth-order Legendre polynomial is

Piyi(z) =

2k +1

k
t Pu(t) — —— P y(t
kE+1) E+1 1)

e The first few Legendre polynomials are

OO RN RN =S8 =

1.0

0.0

—0.5

0.5

! ! ! |
—1.0 —-0.5 0.0 0.5 1.0

Figure 7.4: First six Legendre polynomials.

Chebyshev Polynomials

e Starting with Ty=1, 1) ==,
recurrence for the kth-order (1st-kind) Chebyshev polynomial is

Tk+1($) — QITk(I) — Tk_l(ib)

e The first few Chebyshev polynomials are

TO — 1 1.0:‘
7y = x 0.5 |
T, = 22° —1
Ty = 42° — 32 o
T, = 8x*—8x*+1 05
Ty = 162° — 202° + b2 o
109 Ry 00

Figure 7.5: First six Chebyshev polynomials.

Interpolating with Orthogonal Polynomials

e Interpolation or weighted least-squares (i.e., projection) can be easily im-
plemented with orthogonal polynomials

e Simply set up the Vandermonde matrix and solve for the coefficients

e Here is a 3x3 case with Chebyshev polynomials

1 Ti(x1) To(z1) | [e [f1]
Ac = | 1 Ti(x2) To(xo) el = |/
| 1 T (z3) Ta(zs) | | 3 | 3

e One then evaluates

Interpolating with Orthogonal Polynomials

e Here is an example comparing the conditioning of the Vandermonde matri-

ces for the Legendre basis vs. a monomial basis.

%% Generalized Van der Monde example, Legendre v. Monomial
hdr;

for kpass=1:2;

k=0;
for n=2:20; k=k+1;

N=n-1; % Polynomial order is N = n-1
[z,w] =zwuni(N);

if kpass==1;

A=legendp(z,N); % Evaluate [PO, P1, ... , PN] at [z1,z2,...

clr='r."';
else;

A=monop (z,N); % Evaluate [P0, P1, ... , PN] at [z1,z2,..

clr='b."';
end;

cn(k) = cond(A); nn(k) = n;
end
semilogy(nn,cn,clr,ms,14);

xlabel('Matrix Size, n',fs,22)
ylabel('Cond(A)"', fs,22)
title('Conditioning of Vandermonde Matrix', fs,18)
pause(2); hold on;
end
legend('Legendre', 'Monomials', 'location', 'southeast')

10°

108

Conditioning of Vandermonde Matrix

T

@® Legendre

@ Monomials

e We see that the Legendre basis much better conditioned than the monomi-

als, as expected

Matrix Size, n

20

Polynomial Interpolation Error

e Without going into all the details, let’s see if we can make an educated
guess about the form of the polynomial interpolation error, f(x) — p(x),
with p(x) € IP,_1 being the interpolant

e Because of interpolatory condition, the error at the nodes vanishes,

flzi) —plz;) =0, t=1,....n

e [t is reasonable therefore to expect an error of the form

f=p=Cla)w —2)(—x2) - (2~ 2,)

e The projective property, f(x) — p(x) =0 for all f € IP,,_1, suggests that
Clx) = vf"(€)

where 7 is a constant and & = £(x) depends not only on x but also on z;

e Dimensional analysis indicates that the constant ~ is dimensionless since
the units of the product f™g,(x) match those of f itself

Interpolation Error, continued

e To determine v, consider the case f(z) = 2" & IP,_;, for which ") = n|

e In this case, the error is 2" — p,_1(x), which is a monic polynomial of
degree n (leading coefficient = 1) that vanishes at all the nodes, x1, ..., x,.

e Consequently, " — p,_1(x) = g,(x), which is also a monic polynomial of
degree n.

e We can see this by noting that their difference is € IP,,_1, yet has n zeros
and therefore they must be the same

® In this Case, f(ll?) B p”_1<x) - Vf(n)(€>Qn<x> — Vn! Qn($> — Qn<$>a
which indicates that v = &

n!’

Interpolation Error, continued

e Therefore, we can expect that form of the error is

(n)

with
q(z) = (r —x1)(x —22) -+ (x —)

e The precise location of £(x) is in general not known as it depends on f, x,

and the z;s.

e However (via repeated application of Rolle’s Thm), it can be shown to be
in the interval containing [z1, o, ..., z,, z|.

e The error formula thus applies even for extrapolation: x ¢ interval contain-
ing [x1, To,..., T

Example
e Consider f(z) =a (%)2, with 1 = —h and x5 = h.
e Here,

n=2-— p(ZC) S]Pn—h

so p(x) is linear and, in this particular case, is a constant, p(x) = a

\ p=a interpolant [

e The error is

f—p= a[(%)Q _ 1] _ %(erh)(a:—h)

— g(:17 — x1)(x — 29)

h2

e Since f" = 255, the multiplier in front of (x — z1)(z — x2) is f"/2!

\ p=a interpolant [

A Crude Error Bound

o Assume t; <ty < --- < t, and define At; . =¢t,.1 —t;fore=1,...,n—1

o If h := max; At; and |f| < M for all ¢ € [to, ,] then

max |f(0) = pua(t)] < 2N

telty tnl 4n

e For n fized, error diminishes as h"

e For h fized, the error diminishes with increasing n only if |f(¢)| does not
grow too rapidly with n

e [t is important to note that a sharper estimate is possible in the case of the
t;s being the Chebyshev nodes.

Controlling the Error

e Whether interpolating on segments or globally, error formula applies over
the interval.

o If p(t) e P,y and p(t;) = f(t;), j=1,...,n, then FE € [t1,ta, ..., Ly, 1]
such that
S

n

ft) —plt) = (t=t)(t —ta) - (t — 1)

e We generally have no control over f™(£), so instead seek to optimize choice
of the ¢; in order to minimize

/
e |gn(t)]

e Such a problem is called a minimax problem and the solution is given by
the t;s being the roots of a Chebyshev polynomial, as we discuss shortly

e First, however, we look at some examples of the basis functions

Lagrange Polynomials: Good and Bad Point Distributions

Uniform | Gauss-Lobatto-Legendre

Optimizing the Choice of Nodes

e The switch from monomial bases to orthogonal polynomials significantly
improves the conditioning of the Vandermonde matrix

e In exact arithmetic, however, both will give the same result

e We can significantly reduce the interpolation error by abandoning uniformly-
distributed nodes in favor of optimized nodes

e The idea is to shift the nodes toward the endpoints where g,(x) is large in
the case of uniform points

e Another way of posing the problem is: For n points on [—1,1|, what is
the set that will minimaize

hax () = hax (@ —zi)(x —22) - (T —2y) 7

e We will see that the optimal set corresponds to the n roots of T,(x) and
that the corresponding maximum will be 1/2"~1 for n > 0.

Optimizing the Choice of Nodes, continued

o For z € [—1, 1], we can define x = cos) <= 0 =cos ' x

e Then the trigonometric identity, cos(k+1)0 = 2cos @ cos k) — cos(k —1)0
leads to

T.(x) = T,(cosf) = cos(nd)

e Thus, on [-1,1], T),(x) is a cosine function with maximal absolute extrema
value of 1.

e [f we define the monic polynomial (for n > 0),

To(z) = in_lTn@-)

then its roots correspond to the roots of cosnf, i.e.,

T (. 1 ,
8‘7:5]—§ ,]:1,,7’1,

and we have Tj= cos ™1 Hj

e Notice that

T(z) =
Jax To(w) = 50

Nth-order Chebyshev points
e Fort € [—1, 1], Chebyshev polynomial of degree N is T (t) = cos(N®), with 6 := cos™*(¢).

oZerosoccurwhenﬁj:W(j—%),j:1,...,N

+— 60 =7/N

\ /
“‘““—m\ o — 1 | |« 66/2

. . . - .-'-. — . . .

e Distribution is “clustered” near the endpoints of the interval, which controls the wild
oscillations seen with uniformly-distributed nodes

Nth-Order Gauss Chebyshev Points
Matlab Demo: cheb fun_demo.m
t=0:.01:(2*pi); t=t'; x=cos(t); y=sin(t);
n=9; z=cos(n*t);

plot3(x,y,z,'r', 'LineWidth',5); axis equal

: Tw(z) = cos(N6)

04

0.2

r = cos(f)

-0.2
-0.4

-0.6

-0.8

nnnnn

1 .l
08 -06 -04 -02 0 02 04 06 08

Tn(x)

Behavior of Cardinal Functions: Uniform vs. Chebyshev

Uniform: n=3 Chebyshev: n=3

In+1/2

0 0.2 0.4 0.6 0.8 1
X

Matlab Demo: lag_subplot.m

Behavior of Cardinal Functions: Uniform vs. Chebyshev

Uniform: n=5 Chebyshev: n=5

In+1/2

Behavior of Cardinal Functions: Uniform vs. Chebyshev

Uniform: n=7

Chebyshev: n=7

-0.4

Behavior of Cardinal Functions: Uniform vs. Chebyshev

Uniform: n=9 Chebyshev: n=9

In+1/2

Behavior of Cardinal Functions: Uniform vs. Chebyshev

Uniform: n=11 Chebyshev: n=11

In+1/2

“0 02 04 06 08 | 0 02 04 06 08 .

Behavior of Cardinal Functions: Uniform vs. Chebyshev

Uniform: n=13 Chebyshev: n=13

5 1
0.8}
0
0.6F
= 0.4}
-10 0.2¢ .
0
-15
-0.2 } .
-20 : : - : -0.4 : : : .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Behavior of Cardinal Functions: Uniform vs. Chebyshev

Uniform: n=37 Chebyshev: n=37

1e+07

-4e+07

Q: What happens to the derivative of I,(x) in each of these cases?
What about the integral?

Impact of Optimal Node Set vs Uniform

e ['rom the preceding slide, we can see that max |l;(x)| grows exponentially
with n for uniform points.

e Suppose f(z) is analytic (e.g., sinz), for which we have convergence even
with uniform points

e At the nodes, the floating point representation will be of the form
flxg) = fi + ¢
e Suppose the interpolant is computed without further error.

e The interpolant will be of the form

pl) = Y filix) + Zﬁjlj(ﬂ?)

e The first term on the right will converge, but the second term, with random
coefficients of order |e;| < el f]| will lead to variations that scale with
exr|| f|| max |I;(z)|, which can be large

Interp_sine.m

STOPPED HERE

Composite Interpolation

e An alternative to high-order polynomial interpolation is to use piecewise
polynomials

e Scenarios where this approach might be useful:
e cases where the function is highly oscillatory in some regions and relatively
smooth elsewhere

e situations in which data is available only at prescribed points (x;, f;)

e For the latter case, splines are of particular interest because they match the
data (i.e., are interpolatory) and they can be very smooth

e [rom a practical standpoint, piecewise polynomials of degree £ > 1 are of
interest because they typically converge as O(h*1) as the subdomain width
h is reduced.

Piecewise Polynomial Bases: Linear and Quadratic

\
\
\
\

/ |\ /
\ /
/ \ /

S — G—# > o—o—6——0
X

g Ty I X Xy T

Lo C5’33 4 275 %6 it ?28
Q0 QU Q5 Q% QO Ty 0y

Examples of one-dimensional piecewise linear (left) and piecewise quadratic
(right) Lagrangian basis functions, ls(z) and [3(x), with subdomains €2,.

Splines

e Spline is a piecewise polynomial of degree k that is k —1 times differentiable

e For example, linear spline is of degree 1 and has 0 continuous derivatives,
i.e., it is continuous but not smooth

o Cubic spline is piecewise cubic that is twice continously differentiable

e Interpolating data (n points) and requiring two continous derivatives leaves
2 free parameters at the endpoints

e In the example below, we could write cubic on each domain as

s(x)lg, = a; + bz + c;x’ + d;a’

f2

[ReE---
—_

&

[\

S
w
[b---
W

Cubic Splines, continued

e Continuity leads to a system of equations for 4 coeflicients on each interval
o Interval Q; = |zj, 2,14, j=1,...,n—1
s;i(z) € Ps(x) on),
si(z) = a; + bjx + cjz° + da®
e 4n — 4 unknowns
si(z;)) = f;, j=1,...,n—1

sj(xjy1) = fir, 7=1,...,n—1

/ . — /. . ': — " mgm
@) = @) =1 ,n =2 Spline Conditions:

2

"zj01) = sT(2js), j=1,....,n—2 enforce continuous
1st & 279 derivatives

S

e 4n — 2 equations

e T'wo more equations from boundary conditions on s(x)

8 Unknowns

2
s1(z) = ag + o + azx” + aux

Cubic Spline Formulation — 2 Segments

3

so(x) = B1 + P + Bi2° + Puz®

8 Equations

Interpolatory
si(z1) = fi
si(w2) = fo
so(w2) = fo
s2(w3) = fi

Continuity of Derivatives
s1(x2) = sh(x2)

si(xg) = sh(x2)

End Conditions
si(xy) = 0
sy(x3) = 0

(Natural Spline)

0.8

06

04 r

02

02 -

_04 —

fi

/2

f

0.2

0.4

0.6

0.8

Cubic Splines, continued

e [t is convenient to write the cubic in terms of the known interpolatory con-
straints (s(z;) = f;) and the unknown second derivatives (s7 and s7, ;) at
each endpoint of €2,

e This direct approach is easily realized using the Ist-order Lagrange cardinal
functions on [;(x) and l;41(z), which have overlapping support on €2,

/o

L1 L2 L3 L4

e |t is clear that we can construct the red cubic on €25 as a linear combination
of [s and [3 plus a pair of cubics that vanish at x9 and x5

Cubic Splines, continued

s(x)lg, = sj(x) = L) f; + L) fia + h2lgj(z)s? + gja(z)s]]
where

1

g;(z) 6(1?—11) gin(@) = = (51 = lin)

| =

e Here, the [;s are the standard linear Lagrange interpolants on {2; that sat-
isfy 1j(w;) = dij, f; = f(x;), and 87 := s"(x;).

: : /! /! :
e In this expression, f;, fj+1, s7, and s;,, are four numeric values that

uniquely define the cubic polynomial s;(z) on €2;.

f2

Cubic Splines, continued

s(@)|g. = sj(z) = L@)f; + (@) fia + Blgi(@)s] + gj1(2)s]]

J
o f; and f;4; will be the respective interpolation values f(z;) and f(x;:1)

e si and s7, | are two unknowns that are to be determined.

e If we knew the second derivative of f it would be appropriate to set
si = f"(z;)

e For cubic splines, we use the continuity conditions on s'(x) and s”(x) to set
up a system of equations for these unknown values

Cubic Splines, continued

e Note that

I = —hij

o= b

g =~ +q
gjr1 = %ﬁﬂ _h%

e Return to s(x) on €,

sj()

and evaluate its second derivative

e So, we do indeed have s7(x;)

d2

s(2) = —— (Bilg;(@)s] + gji
= 1j(2)s] + lj1(2)s]44
= s and s5(zj1) =

"
lj

1"
J+1

/!
9;

/!
9j+1 =

= Ui(@)fj + (@) fia + hilgi(x)s] + gj(@)s]),

S]+1

e Here, we think of s7 and s7, | as unknown values that are to be determined

e They are basis coefficients in the expression for s;(z)

Cubic Splines, continued

e Differentiating s on €2;, the first derivative of s(z) is

fj+1 f]

S;(LE) — hj 6 [(Slj—l—l)S]+1 o (3l2 R 1)]
e Rearranging, we have the following equations for 7 =2,...,n —1
fij—1 fj1+ Ry h; Afy Afja

Gt T S T T T

e Thisis an (n—2)x (n—2) tridiagonal system that can be solved in ~ 8(n—2)
operations, which is optimal

e Once the 3}’ values are known, the spline requires only a few operations to
evaluate, but you must first identify the interval {2; that holds the query
point .

e [ortunately, because the x;s are sorted, the interval can be found in log, n
time and in fact typically much less if there are many query (sorted) points,
because one can always first check if the interval of the preceding spline
evaluation holds the new query point

Boundary Conditions for Cubic Splines

e Natural cubic spline (s”(a) = s”(b) = 0):

— < Ch*M, M= "(6
max p — f| < : jnax RO

unless f”(a) = f"(b) = 0, or other lucky circumstances.

e Clamped cubic spline (s'(a) = f'(a), s'(b) = f'(b)):
—fl £ Ch*M, M= ().
ey Ip = SIS CRM, M= e 1776)]
e “Not-a-Knot” spline (s”(a + hy) and s (b — h,,) are continuous):

— < Ch*M, M= gy |.
ey o - Sl < g 1O

— Default spline in matlab.

e Can also prescribe periodic boundary conditions on s and s”

Some Cubic Spline Properties

Continuity
1st derivative: continuous
2nd derivative: continuous

“Natural Spline” minimizes integrated curvature:
over all twice-differentiable f(x) / n |S”(a:)|2da: < /:cn |f//(x)|2 dr
. . 1 - JI1
passing through (x;,f;), j=1,...,n.

Robust / Stable (unlike high-order polynomial interpolation)
Commonly used in computer graphics, CAD software, etc.

Usually used in parametric form There are other forms, e.g., tension-
splines, that are also useful.

For clamped and not-a-knot boundary conditions, convergence is O(h%)
For small displacements, natural spline is like a physical spline.

Spline in Practice

Lofting a Wooden Boat EP 3

= Questions:

= What kind of boundary conditions do you see in this photo?
= Natural?

= Clamped?

= [s this a function?
= Is it well approximated by our numerical spline?

p(t)

Example

4!
matlab “pchip()” function
| \M . .
"’H 2 ! G 8 10
Al \ matlab “spline()” function
\
\\/‘\——*“
% 1 6 8 10

Interpolation Testing

e Try a variety of methods for a variety of functions.
e Inspect by plotting the function and the interpolant.

e Compare with theoretical bounds. (Which are accurate!)

Typical Interpolation Experiment

o Given f(t), evaluate f; := f(t;),j=1,...,n.

e Construct interpolant:
pt) = > pios(t).
j=1

~

e Evaluate p(t) at t;, i =1,...,m, m > n. (Fine mesh, for plotting, say.)

e To check error, compare with original function on fine mesh, ¢;.

ei = p(t;) — f(t:)

6IIlaX

(Remember, it’s an experiment.)

Preceding description is for one trial.
Repeat for increasing n and plot ey (n) on a log-log or semilog plot.
Compare with other methods and with theory:

— methods — identify best method for given function / requirements

— theory — verify that experiment is correctly implemented

Repeat with a different function.

Theory: Summary of Key Convergence Results

e Piecewise linear interpolation:

h2 M = maxgeiap |f"(0)]
max|p—f]§—) (1)
t€la,b] 8 h = maxje[2,...n] (tj tj—l)) tj_1 < tj
e Polynomial interpolation through n points:
|4n(0)]
— < M 2
wax [p—[| < = M (2)
< "M tort € o) (3)
— or a
_— 4n) Y Y

ith M := (6)|.
wi X /" (0) |

— Here, ¢,(0) == (0 —t1)(0 —ta3) -+ - (0 — t,).
— Recall that max|q,(#)| is much smaller for Chebyshev points than uniform.

— The result (3) holds also for eztrapolation, i.e., t¢|a,b].

Convergence Results for Piecewise Cubic Splines (presented shortly)

e Natural cubic spline (s”(a) = s"(b) = 0):

max |p — f| < Ch*M,

t€la,b]

M = £ 4
Grg[%l (9) 1, (4)

unless f”(a) = f"(b) = 0, or other lucky circumstances.

e Clamped cubic spline (s'(a) = f'(a), s'(b)

max |p — f| < Ch*M,

tela,b]

e “Not-a-Knot” spline (3’”(@ + hl) and Slll(b _

max |p — f| < Ch*M,

tela,b]

— Default spline in matlab.

= f'()):

M = fiv 5
mas [17(0)|. 5)

h,) are continuous):

M = [6
max [17(0)|. 0

Other Conditions Limiting Accuracy

e Nyquist sampling theorem:
— The mazimum frequency that can be resolved with n points is N = n/2.

— Roughly: You need h < the smallest wavelength before you will
observe the asymptotic behaviors given by the above theory.

— Note that the theory results (1)—(6) are still correct, but the bounds
are too conservative in the undersampled case.

e Round-Off:
— Stable Methods: Error will remain flat at = €.

— Unstable Methods: Error will remain grow at ~ €,; or earlier.

e Methods:

piecewise linear
polynomial on uniform points
polynomial on Chebyshev points

knot-a-not cubic spline

e Tests:

et

pcost
sint on [0, 7]
sint on [0, 7]
sin 15¢ on [0, 27]
e on [0, 27]

Runge function: mﬁ on [0, 1]

Runge function: 5=z on [—1,1]

Semi-circle: /1 — 2 on [~1,1]
Polynomial: ¢"

Extrapolation

Other

interp _test.m

Max Powntwise Error: Various interpolants

Yarious Interpolants

e Methods: S

12 -

— piecewise linear
— polynomial on uniform points
— polynomial on Chebyshev points

— natural cubic spline

e Tests:

— et

— eoost 0.2 F -

— sint on [077] -1 0.8 06 04 0.2 0 0.2 04 06 0.8 1
— sint on [0, 7]

— sin 15¢ on [0, 27]
— e ton [0, 27]

— Runge function: mﬁ on [0, 1]

May Pointwise Error: Runge Function

= S R o
y “\9—\?&5 e
1 Y !
¥\ oty

. . 1
— Runge function: ;—z7 on [—1,1] : :
— Semi-circle: /1 —t2 on [—1,1] wih
0’
— Polynomial: t" %, i
—<—Chebyshey J\i' f| — Chebyshev
. —e— ¢ 2 ol =2 Spine
— Extrapolation e —— i
Number of points: n Number of points: n

— Other

interp _test runge.m

Test Cases Revisited (Pay Attention to Splines)

exp(x)

10-15 L [—&— Uniform i 10-15 L | —&— Uniform
—©6— Chebyshev —©— Chebyshev
—©&— Spline —&— Spline
1 0-20 . . 1 0-20 R
0 20 40 60 10° 10" 102

Number of points: n Number of points: n

Test Cases Revisited (Pay Attention to Splines)

exp(cos(x))
2.8 T T T
2.6 |-
2.4 +
w— 2.2
oL
1.8
1.6
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t
10 Max Pointwise Error 10 Max Pointwise Error
10°°
o
= 10710
(0] X
—&— Linear
10-15 | | —&— Uniform 1 10-15 L | —&— Uniform
—©6— Chebyshev —©— Chebyshev
—©6— Spline —©6— Spline
1 0-20 A . 1 0-20 N
0 20 40 60 10° 10" 102

Number of points: n Number of points: n

Test Cases Revisited (Pay Attention to Splines)

—O— inear —&— Linear |
10-15 | | —&— Uniform 1 10-15 L | —&— Uniform
—©6— Chebyshev —©— Chebyshev
—©6— Spline —©6— Spline
1 0-20 . . 1 0-20 N
0 20 40 60 1 OO 1 01 1 02

Number of points: n Number of points: n

Test Cases Revisited (Pay Attention to Splines)

o sin(x)

10-15 | | —&— Uniform 1 10-15 L | —&— Uniform
—©6— Chebyshev —©— Chebyshev
—©6— Spline —©6— Spline
1 0-20 . . 1 0-20 .
0 20 40 60 10° 10" 102

Number of points: n Number of points: n

Test Cases Revisited (Pay Attention to Splines)

Runge Function

et I | I
”~ N

1 5 1 1 1 1 1 1 1 1
-1 0.8 -0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8 1
t
102 Max Pointwise Error 102 Max Pointwise Error
10° 10°
o o
t 10 2 e "':::J“:.:»:.:- t 10 2
(0] ()]
—&— Linear
10-4 —— Uniform 10-4 L | —&— Uniform
—©6— Chebyshev —©— Chebyshev
—©&— Spline —&— Spline
1 0-6 - . 1 0'6 a
0 20 40 60 1 OO 1 01 1 02

Number of points: n

Number of points: n

Test Cases Revisited (Pay Attention to Splines)

‘o Runge Function

| -
(@)
=
()] B
1010} [—e— Linear] 1010t [—e— Linear
~——&—— Uniform ~——&—— Uniform
—©6— Chebyshev —©— Chebyshev
—©&— Spline —&— Spline
1 0‘1 5 " N 1 0‘1 5 M <
0 20 40 60 10° 10" 102

Number of points: n Number of points: n

Test Cases Revisited (Pay Attention to Splines)

——&— Uniform ——— Uniform
—©6— Chebyshev —©— Chebyshev
—©&— Spline —&— Spline
1 0'3 i i 1 0'3 i
0 20 40 60 10° 10" 102

Number of points: n Number of points: n

Test Cases Revisited (Pay Attention to Splines)

%10’ Sin(1 5X)

1.5

Max Pointwise Error

1010 1010
10° 10° |
- | —
o o
5 5 X
100 |@ —o— biniar] 100t | —e— IL.Jinf:ar
—&— Uniform —&— Uniform
—©6— Chebyshev —©— Chebyshev
—©6— Spline —©6— Spline
1 0'5 i M 1 0'5 "
0 20 40 60 10° 10" 102

Number of points: n Number of points: n

Test Cases Revisited (Pay Attention to Splines)

10

-15 |-

-20

error

% 10°

exp(cos(5x))

Number of points: n

Number of points: n

1 1 1 1 1 1
0 1 2 3 4 5 6
t
10 Max Pointwise Error 10
10 - T 10
10° 10°
| —
(@)
=
()
10° 10° } | —e— Linear
53— Uniform BT 53— Uniform
—©6— Chebyshev . —6— Chebyshev
—©6— Spline —©6— Spline
1 0'5 A i 1 0'5 i
0 20 40 60 10° 10" 102

Test Cases Revisited (Pay Attention to Splines)

x11

10718} | —©— Uniform] 10715} | —©— Uniform pe
—©6— Chebyshev —©— Chebyshev
—©&— Spline —&— Spline
1 0-20 .] 1 0-20 .
0 20 40 60 10° 10" 102

Number of points: n Number of points: n

Parametftric Interpolation

* It's clear we can interpolate this: But what about this?

* though maybe not with great
accuracy.

It’s not even a function!

Parametftric Interpolation

Important when y(x) is not a function of x; then, define [x(t), y(t)]
such that both are (preferably smooth) functions of t.

Example 1. a circle.

%% LAZY WAY TO APPROXIMATE
15| - %% PERIODIC SPLINE

-7:8; t=t';

t3 x = 11-1-111-1-117; x=[x x 13
) / E 4 vy =[1-111--1-111=-11; v=[Yy 1:
|II ’
il [w | tt=-2:.01:2;
xx=spline(t,x,tt);
yy=spline(t,y,tt);
0S| t;
= § 1, | hold off;
1611- ~ - plot(xx,yy, 'b-', 'LineWidth',1.0); hold on;
N _— plot(x,y, 'ro', 'Linewidth',2.0);

axis equal
axis ([-1.8 1.8 -1.8 1.8 1)

Parametric Interpolation: Example 2

7 (SO G e (o0 * Suppose we want to
@Q/ % C(:(//@ ?(0/ oF éj/ approximate a cursive letter.
H I of KL oM Jse (minimally curvy) i
e _ ~ = Use (minimally curvy) splines,
oN 0 9P Q R @9\/@7 parameterized.
UYWAY, >
. “ i@
aécr/e/yét/é/mna/&

g7 4 [wfuwx/y%

1284667890

Parametric Interpolation: Example 2

\\"‘t

Once we have our (x;, y;)
pairs, we still need to pick t; .

One possibility: t, =i, but
usually it’s better to
parameterize by arclength, if x
and y have the same units.

An approximate arclength is:

S; = Z de, dSi = HXz — Xi_lHQ
7=0

Note — can also have Lagrange
parametric interpolation...but
splines are generally preferable

3.5

2.5

1.5

0.5

Parametric Interpolation: Example 2

1 1
o~
f \
5
.l'l p—
e
/ -
e .
e I'lI
llll II
/ \
! |

|)
E |Il
|__-- ~ p -',.- III
e h
l.ll'
I'.l
l'll.I
— ".l.
- =
—
AT
L X yd L=
- '-.____ ____;-_-,1 —
1 1 1 1

0 05 1 5
Pseudo-Arclength-Based

3 3.'5
Index-Based

Multidimensional Interpolation

- Multidimensional interpolation has many applications in computer
aided design (CAD), partial differential equations, high-parameter
data fitting/assimilation.

« Costs considerations can be dramatically different (and of course,
higher) than in the 1D case.

2D basis function, N=10 Y — @ E:3, N=4

Multidimensional Interpolation

There are many strategies for interpolating f(x,y) [or f(x,y,z), etc.].

One easy approach is to use tensor products of one-dimensional
Interpolants, such as bicubic splines or tensor-product Lagrange
polynomials.

U u u u U, l f
04,~"14 24 34,44
| — - o0 Z Z i

®

Ugz |U13 [Us3 3341443 1=0 5=0

a
A %4
oD

R
N

oot qUag U3g{U4o
</ N N N \)

[Ugy JU11 AUg U3 J U4
CJ ARy WV 3 \)

U u u u
004710 20 '30 40
B \1>

Consider 1D Interpolation

p(s) = Z Li(s) [
p(s> — Z lj(S) fj? S = [81 S - Sm]T

pi = Z L [y, lig = 1(si) = Ji
j=1
p = Jf

e s; — fine mesh (i.e., target gridpoints)
e J is the 1D interpolation matrix

e J is the matrix of Lagrange cardinal polynomials
evaluated at the target points, s;, 2 =1,...,m.

Two-Dimensional Case (say, n Xxn =2 m x m)

Yia U Yo Yas ay
04,114 24 34, U4q
10— o o—Q

p(87 t) — § E l f/[/] c>u03<>u13 <>U23 <>u33<>u43
= A Nl b M b B \uri 7, (¥
B ZZZ s) fij (1) Gt
g |u u u
_1®-00gy 10 420 473045740
1=1 j=1 & ;
n n
Ppg = P(sp,tg) = E :E : Lyi Jij lgg
=1 g=1
n n
= i
= 2.2 ufill,
=1 g=1

P = JFJ' € matrix-matrix product, fast

Two-Dimensional Case (say,n xn 2> mxm)

e Note that the storage of J is mn < m?+n?, which is the storage
of P and F' combined.

e That is, in higher space dimensions, the operator cost (J) is less
than the data cost (P, F)).

e This is even more dramatic in 3D, where the relative cost is mn
to m? + n’.

e Observation: It is difficult to assess relevant operator costs
based on 1D model problems.

Two-Dimensional Case (3 x 3 = 30 x 30)

Function: f=sin(x x)e” Polynomial Interpolant: p(x,y), n=3

Error: If-pl

" \‘ 008
ol AN
/ ,"-“_'" /\f."l;'\ " X ey
= / NA ‘,; 'x'
AR /) (XXX
04 'I) SR
,"l:/'é'é:ozot*%:::\‘:éﬁssa-\
S
0, " " " " 0.00.0.5\3‘\:3‘\3&;\
S
1 I'l'zl '0;'0.‘0:0:::0:0:‘::&‘

'l (N DS
(AR
I"z‘ '0‘00 %

05

interp2d.m

Two-Dimensional Case (3 x 3 = 30 x 30)

%% Interpolate f(x,y) for different values of n
lw='linewidth'; fs='fontsize'; format compact;
ax=0; bx=1; ay=0; by=1.5; %% DOMAIN: [ax,bx] X [ay,by]

m=30; %% Number of fine points

% Set up grids, X_ij and Y_ij

x =xglc(ax,bx,n); y =xglc(ay,by,n); %% Chebyshev nodes and
xt=xuni(ax,bx,m); yt=xuni(ay,by,m); %% uniform interrogation pts.

[X ,Y l=ndgrid(x ,y); %% Map (x,y) to 2D grid
[Xt,Yt]l=ndgrid(xt,yt); %% ... same for fine points

% Evaluate function

F = .3%sin(pi*X).*exp(Y); %% F_ij - Interpolation values

Ft= .3%sin(pi*Xt).*exp(Yt); %% Ft_ij - Exact values on fine mesh

% Construct interpolant

Jx=interp_mat(xt,x); %% 1-D Interpolation matrices
Jy=interp_mat(yt,y);
IPt = JIxxF*Jy'; %% TENSOR CONTRACTION I
subplot(1,3,1); %% PLOT ORIGINAL FUNCTION

hold off; mesh(X,Y,8%F,1w,2); hold on; mesh(Xt,Yt,Ft); axis equal;
title('Function: f = sin(\pi x) e*y',6 fs, 14);

subplot(1,3,2); %% PLOT INTERPOLANT
hold off; mesh(X,Y,0%F,1lw,2); hold on; mesh(Xt,Yt,Pt); axis equal;
title('Polynomial Interpolant: p(x,y), n=3',6fs,14);

subplot(1,3,3); %% PLOT ERROR
hold off; mesh(X,Y,0%F,1w,2); hold on; mesh(Xt,Yt,abs(Ft-Pt)); axis square
title('Error: |f-p|',fs,14);

