CHAPTER 8: Numerical Integration & Differentiation

Outline

e Numerical Integration

— General form: Q = Y w; fi = [fdz.

— Conditioning

— Newton-Cotes: (midpoint, trapezoidal, Simpson)
— Gauss quadrature & degree of quadrature rule
— Composite trapezoidal rule

— Richardson extrapolation

— Tensor-product integration

e Numerical Differentiation
— Conditioning
— Finite differences

— Derivative matrices

Numerical Differentiation Techniques

Three common approaches for deriving formulas
- Taylor series
- Taylor series + Richardson extrapolation

- Differentiate Lagrange interpolants
Readily programmed, see, e.g., Fornberg’s spectral methods text.

Using Taylor Series to Derive Difference Formulas

Taylor Series:

h? h’ ht
(1) fix1 = fij +hfj + Efjl'/ + af]/'” + — A&

4!
(2) fi = 1

h? h? ht
(B) fi = fi = bfi+ Sf = 5+)

Approximation of fi:= f'(z;):

1 fit1— 1 / h .
)= @): T = 4 off ot

1 _ f’+1_f'—1 . / h2 "
g ()= @) ZHoS = s ot

Richardson Extrapolation

 Formula for computing derivative at x;

g UL b gl 4 eh
O2p fj+22h— fj = fj/ + c12h + 624h2 + 638h3 + .-
Af. « — AF. o f
20), — Oop = f]+12h f] . fj+22h f]
_ T3S A4S — S
2h

— f]/‘|—52h2—|—63h3‘|—

* Formula is improved from O(h) to O(h?)

fix)

x]+1)

pr2)

>

)(J.+1

Xj+2

Stop Here

Finite Difference Example
2

e Suppose we wish to estimate o3 using function values fj1 := f(x; £ h)
x
Lj

e As before, to evaluate derivative at x;, use the Taylor series expansion about x;:

h* h? ' . h® 5 hY
W) S = v b+ SH A 5f 5+ 0

4!
2 fi =1

Mo B ey R L
- L LI

/ h2 2 h3 "
(3) fi-r = fj — hfj + ?f] N gfj u 5!

e If we add (1) & (3), we have: .

1 h
froat fra = 2y + 07+ A0+ 5 (7060 + £Oe))

e Subtract 2 x (2) and divide by h*:

fi-i =21+ fin
72

h2
— 7+ Ef}‘” + O(hh)

7

-~

truncation error: O(h?)

e This is the central difference formula for fj’-’ with uniform spacing, x; = xo+j - h

e If the spacing is nonuniform, accuracy is only O(h). (WHY?) noncentral.m

Richardson Example

e To get a higher order (e.g., O(h')) approximation to fi, we can derive a
formula with a “5-point” stencil involving f;_a, fi—1, fj, fj+1, and fjio

e A cleaner approach for the uniform grid case is to once again apply Richard-
son extrapolation.

e Define

% _: Ji-1—2f;+ finm
ox? h?

where ¢; is a constant independent of A (per preceding slide)

= [+ oh® + O(h?),

e With this definition, the formula for “2A” is

02, f; _ Jico = 2f;+ fj+2
ox? (2h)?

= fI + &(2h)* + O(hY),

e To annihilate the O(h?) term we take 4x the first equation minus 1x the
second to yield

Onfi _ ot
dx? dx?
e Dividing by 3 gives the desired O(h?*) formula

40ufi 101
3 dx? 3 dx?

4 = 3f] + O(h*)

= fj + O(h)

Richardson Example, continued

e Notice that if we had a noncentered FD formula for f then the leading

2 r.
order error term in 222 would be O(h) and not O(h?).

dx?

e Consequently, the Richardson extrapolation weights would not be % and —%,
they should instead be 2 and —1

e [f we use the wrong weights the convergence in this case is only O(h)

e If we use, however, 2 and —1, we can at least recover O(h?) accuracy.

rich_central.m

Finite Difference Properties

e Assuming that f is k + p times differentiable in the neighborhood of z;,
then

dhf, kS 5k I f
dé?: 59 LAY, _.5Q+.;w(jf.+omww
! x\’ tmnMrmr v !
ED approzx.

e This formula will be ezact whenever f € Py, because f (k+p) = ()

e For example, on a uniform grid,

Ot

h2
B g4 sh) Ot = f) VS ey

e On a nonuniform grid,

Ot

%ﬁzjy+qu+om%:jﬂ Vf € Py

J

e Consequence is that we can derive FD formulas by differentiating the unique
polynomial interpolant that pass through the relevant (x,ix, fjix) pairs,
which is particularly useful in the nonuniform case

Differentiation via Lagrange Polynomials

e Recall the polynomial interpolation matrix
Jij = 1;(Z:)

where the Lagrange cardinal functions satisfy [;(zx) = 9, for nodal points
by k:1,...,n

e The (n — 1)th-order polynomial approximation to f(Z;) is given by
p = Jf
e We can also define the deriwative matriz,
D;; = l(%;)
which would yield p'(Z;) as an approximation to f/(Z;):
p = Df

e [t is generally easier, however, to define a derivative matrix D, based on the
nodes z; rather than the (arbitrary) target interpolation points ;

e One can then (exactly) interpolate the approximation to f/(Z;), which is a
polynomial of degree n — 2 using J.

e Thus, the arbitrary interpolation matrix is D = J D

Derivative Matrices via Lagrange Interpolants

e Consider

plz) = > Lix)f;
=1

, B - dl;

p(r) = ' @fy
7=1

/ - dl] : / ~

p(xz) — Z% fJ_Zdwfjjp:Df
j=1 Ty 7=1

e Recall Lagrange cardinal polynomial,
(@) = aj@—)@ —a2) - (@ -2y (@ - 2p) - (2 - 2),
with

;= [y — @)@y —x) - (25— o) (g — wp) - (25— @a)]

Derivative Matrices via Lagrange Interpolants

e Recall Lagrange cardinal polynomial,
L) = ay(e—m)(@—w2) e (0 — 25)(@ — 2y1) -+ (& — 20),
with
;= [y — @)@y —xo) - (2 —ay) (g — ap) - (2 —@)]
e Define the linear functions g;(z) := (x — x;), such that
li(x) = ajlg1g92 -+ gj—19j+1 - gnl].

Note that g, =1 and g;(x;) = 0.

e Differentiate [;(z) term-by-term:

dl;

dr aj[gy g2 - gi-1 Gis1 Gn

+ 9195 Gj-1Gi+1 " On

+ 9192 - Gj—1 Gj+1 - G |-

Derivative Matrices, continued

e If we now evaluate this expression at x = x; # x;, then every row drops out
except for the 7th one:

dl

dx "

&3[9192 gl—lg;g@+1 o gi—1 9541 " gn]
Oéj[glg2 e g@—1°1'gz+1 L g]—lgj+1 N gn]
a][glg2 e gZ—l'l’gZ+1 L g]—lg]g]+1 . .. gn]
9j
—1
aj |o;]
9j
&
O.{'
5 = Djj

e Here, because we are evaluating the functions at x;, we have ¢g; = 0
(which is not present), and g;(z;) = x; — z;.

Derivative Matrices, continued

e To find D;;, we use the fact that Dp=0if p=[11... 1]’ because the
derivative of p(x) := 1 is identically zero.

e So, for each row i, we have

j=

J#
e In summary:
—1
aj = |(z;—)@ —x2) (15 — mjma) (25 — Tja) - (@5 —)]
Q : .
Dz] — .j o 1 7é J>

e As usual, this approach is stable for large n only if the z;s are
Chebyshev, Gauss-Legendre, or other similar set of points.

deriv_conv.m

Example: ODE-IVP

e We can use approximations to % to solve (numerically) the following ordi-
nary differential equation (ODE), which is an initial value problem (IVP)
for an unknown function f(t),

df

with initial condition f(t = 0) = fj

o For A = —2 and fy = 1, the solution is f(t) = e, so the solution at ¢ = 1
is f(1) =e2

e Here, we will use kth-order backward difference formulas, BDFk, to ap-
proximate Z—J;:

BDF1: Lol — 2\ + O(n)

3fi—dfi 1+ fi
BDF2: T — N+ O(R?)

BDF3: 11fj—18fj—1g;b9fj—2—2fj—3 _)\fj 4+ O(h3)

kth-order Backward Difference Formula

02 04 0.6 0.8

e BDFk combines k known values from prior timesteps with the unknown
value f; to approximate the derivative at the new step (¢;).

e This approximation is then equated to the rhs of the ODE

e These schemes are implicit because the unknown appears on the rhs

ODE-IVP Example, continued

e Upon rearranging and dropping the O(h) error term, BDF1 leads to the
update formula

(L= = fi

e For BDF'1, we can start with fy; and compute fi, fo, and so on.

e For BDF2, we have
3 4 1
(5 —Ah) f; = §fj—1 — 5fj—2

e For BDF2, we also need f_; to get started, which we typically do not have.

e As a substitute, we can perform one step of BDF1 to get f; and then use
f1 and fy to move forward.

e And for BDF3,

11 1

8 9 2
(g —Ah)f; = gfj—l - 6fj_2 + 6fj_3

e For BDF3 we need to similarly bootstrap with one step of BDF'1 followed
by one step of BDF2.

ODE-IVP Example, continued

lambda = -2; T = 1; %% Final time

for bdf=1:3; BDF1, 2, and 3 for f; = \f
kk=0; 10° ¢ L | U L L |
for k=2:10; kk=kk+1; 3
nsteps=2"k; h=T/nsteps; lh = lambdaxh;
10" | 3
f3=0; f2=0; f1=0; fo=1; %% INITIAL CONDITION
for j=l:nsteps t=hxj;
F%O'Z E =
if j<2 || bdf==1; |
b0=1; bl=1; b2=0; b3=0; +
elseif j<3 || bdf==2; o
b@=1.5; bl=2; b2=-.5; b3=0; Tyl |
else é
b0=11/6; bl=3; b2=-9/6; b3=2/6; <
end; 63
f3=f2; f2=f1; f1=f@; % Shift old values off stack goE 3
.-
+~
£0=(b1*f1+b2%F2+b3%F3) / (bO-1h) ; 3
Q
end; P E
fe = exp(lambdaxt); %% Exact solution at time t
ek (kk,bdf) = abs(fe-f0)/abs(fe); 10 E
hk (kk,bdf) = h; : == 501 | 2
i == B0F2 |]
end; , | 1 l == eore |
. 107 =t * E— * E— E—
end; 10 10 102 10" 10°
loglog(hk(:,1),ek(:,1), " 'ro-",1w,2,...
hk(:,2),ek(:,2),'bo-",1w,2,... 2
K(:13),0k(:,3), ko 1w, 2) e BDF3 shows only O(h?) error.
legend('BDF1', 'BDF2', 'BDF3', 'location', 'southeast')
axis square;
xlabel('h',intp,1tx, fs,24); VV HY?

ylabel('Relative Error at $t=1%$',6intp,1ltx,fs,24);
title('BDF1, 2, and 3 for $f_t = \lambda f$', intp,1ltx,fs,22);

ode ivp.m e Error on first step is already O(h?)!

Example: BVP-ODE

e Here, we consider a boundary value problem (BVP), which has a single
independent variable, x, and thus is also characterized as an ODE

e We'll take the example of an unknown function @(x) for x € [0, 1] with

prescribed boundary values 4(0) = 0 and u(1) = 0.

o Let u(x) satisfy

= S, o) = a(1) = 0

Advection-Diffusion: N = 40

BVP-ODE Example, continued

e We will approximate @(x) by a Lagrange polynomial interpolant with un-
known basis coeflicents, u;, 7 =0,..., N

u(z) ~ u(z) = sz(x)uj

J=0
e In this collocation approach, we set —u! = f;; i« = 1,...,N — 1 and
uy = uy =0
e Discounting the boundary conditions, we have N —1 unknowns, w1, ..., uyx_1,

and (n — 1) equations associated with f;, ¢ =1,..., N — 1.

e Because u(x) € PPy, we can compute its second derivative exactly with
the derivative matrix described earlier.

e Define D;; = [;(z;) to be the (N + 1) x (N + 1) derivative matrix that is
evaluated at all nodes, including x¢ and xy.

olf i = [ug u; ---upn|]’ is the vector of basis coeffients representing an

Nth-order polynomial, then the vector

— =2 _
u = D'u

is the vector of basis coeflients representing the second derivative of u

e Unfortunately, D” is not invertible. (WHY?)

e ANS: D1 =0

e Fortunately, we only need rows 1 to N — 1 of D’ because the differential

equation applies only at those rows.

e Moreover, because uy = uy = 0, we do not need column 0 nor column N

of D’
o Let Dojj =]_D?j define the matrix comprising rows ¢ = 1 : N — 1 and
columns j =1: N — 1 of f)2, and let u = [u; ---uy_1]! be the vector of

interior basis coeflients

oIf f = [f; --- fy_i1]! is the rhs data, then the collocation system for our

2-point BVP is
—D2u = f

e Note that D5 is not the square of (say) D. It is the interior of the square
of D

bvp ode.m, bvp ode2.m

BVP-ODE Example, continued

kk=0;
for N=3:50; kk=kk+1;

[z,w]l=zwglc(N); xb=.5%(z+1); % Chebyshev nodes

Dh = deriv_mat(xb); D2 = Dhx*Dh;
A = -D2(2:end-1,2:end-1);

X = xb(2:end-1);

k = 1;

f = sin(kxpixx);

ue= f/(kxkxpixpi); % Exact solution: f/(kxpi)~*2;
u = A\f;

er(kk) = max(abs(ue-u))/max(abs(ue));
en(kk) N;

end;

semilogy(en,er, 'k-',1w,2,en,er, 'k."',ms,14);

axis square;

xlabel('Polynomial Order, N',intp,1ltx,fs,24);
ylabel('Relative Error',intp,ltx,fs,24);

title('Spectral Collocation Convergence',intp,ltx,fs,22);

bvp ode.m, bvp ode2.m

Spectral Collocation Convergence
T T

T T

L 1 1 1

40 50

20 30
Polynomial Order, N

Numerical Quadrature

Numerical Quadrature

Numerical Quadrature

e (Quadrature is the term used for approximating definite integrals of the form
b
T = / f(x)dx

o A quadrature rule is a weighted sum of a finite number of sample values of
integrand function

0.8} f

06

f(x)

0.4

0.2

0.2

Numerical Quadrature

e (Quadrature is the term used for approximating definite integrals of the form
b
7 = / f(x)dx

o A quadrature rule is a weighted sum of a finite number of sample values of
integrand function

e Computational work is measured by number of evaluations of integrand
function

e To obtain desired accuracy at low cost,

e How should sample points be chosen?

e How should weights be chosen?

Quadrature Rules

e An n-point quadrature rule has the form
n
Qu(f) = Y _wif(w)
i=1
e Sorted points x; are called nodes or quadrature points

e Multipliers w; are called weights

e (Quadrature rule is

e openita < xyand x, <b

o closedifa =z and z,, = b

Quadrature Rules, continued
e (Quadrature rules are based on polynomial interpolation
e Integrand function f is sampled at finite set of points

e Polynomial interpolating those points is determined

e Integral of interpolant is taken as estimate for integral of original function

e In practice, interpolating polynomial is not determined explicitly, but is
used to determine weights corresponding to nodes

e [f Lagrange interpolation is used, then the weights are

b
wi:/ li(x)de, i=1,...,n

f(x)

Quadrature Overview

e Choose nodes x;, and weights, w;, to approximate f;f(a:) dz.

2.5 T T T T T T T

b n
/ f(z)dz = ijfj
5 j=1
(3327 f?)

I 1
0.5} ! 1 =t

Quadrature Overview

b n
I(f) = / f(t)dt ~ sz‘fi, =: Qn(f) fi == f(t)

e [dea is to minimize the number of function evaluations.
e Small n is good.
e Several strategies:

— global rules
— composite rules
— composite rules + extrapolation

— adaptive rules

Global (Interpolatory) Quadrature Rules

e Generally, approximate f(¢) by polynomial interpolant, p(t).

FO) ~ p(t) = YU f

e We will see two types of global (interpolatory) rules:

— Newton-Cotes — interpolatory on uniformly spaced nodes.

— Gauss rules — interpolatory on optimally chosen point sets.

Method of Undetermined Coeflicients

e Alternative derivation of quadrature rule uses method of undetermined co-
efficients

e To derive n-point rule on |a, b| take nodes x1, ..., x, as given and consider
weights wq, . .., w, as coefficients to be determined

e Force quadrature rule to be exact for first n polynomial basis functions (e.g.,
v/, j=0,...,n—1)

e By linearity, rule will be exact for all f € P,,_

e Thus, we obtain system of moment equations that determines weights for
quadrature rule

Finding Weights: Method of Undetermined Coefficients

Find w; for [a,b] = [1,2], n =3, with t; = 1, t, = 3/2, and t3 = 2
e First approach: f = 1, t, t2.

3
(1) =) w1 =1
1=1

3 1 2
Ity =) wi-t; = 5752
1=1

1

3 1 2
I(t?) =) w-t] = §t3
1=1

1

Results in 3 x 3 matrix for the w;s.

Finding Weights: Method of Undetermined Coefficients

e Second approach: Choose f so that some of the coefficients multiplying
the w;s vanish.

o= w(l-2)1-2) = /IQ(t——)(t—Q)dt

L = w2<§—1)(§—2> _ /1(t—1)(t—2)dt

I = w3(2—1><2—§) _ /1(75—1)(75—;)415

Corresponds to the Lagrange interpolant approach with 3 basis functions
that span IPo(x):

m(z) = (&) —2)

>
N
2
|
~—~
=
|
N
B
|
=

Method of Undetermined Coefficients

Example 2: Find w; for [a,b] = [0,1], n = 3, but using f; = f(t;) = f(¢),
with ¢; = -2, -1, and 0. (The t;’s are outside the interval (a,b).)

e Result should be exact for f(¢) € Py, Py, and Ps.
o Take f=1, f=t, and f=t°.

Zwi — 1 :/11dt
0

1 1
—2”(1}_2 — W1 = — = / tdt
2 0
1 1
4’LU_2 + w., = - = / t2 dt
3 0
o Find
5 16 23
W_9 = —— Ww_p = —— wy = —.
2712 ! 12 07 19

e This example is useful for finding integration coefficients for explicit time-
stepping methods that will be seen in later chapters.

3rd-Order Adams-Bashforth Example

b
25 / f(:U) dr ~ wifi + wafo + wsfs

Method of Undetermined Coefficients

3rd-Order Adams-Bashforth Example

b
251 / f(@)de = wifi + wafo + wsfs, f(z) € P

0.5

Method of Undetermined Coefficients

3rd-Order Adams-Bashforth Example

7

Method of Undetermined Coefficients

3rd-Order Adams-Bashforth Example

Method of Undetermined Coefficients

Example 2: Find w; for [a,b] = [0,1], n = 3, but using f; = f(t;) = f(¢),
with ¢; = -2, -1, and 0. (The t;’s are outside the interval (a,b).)

e Result should be exact for f(¢) € Py, Py, and Ps.
o Take f=1, f=t, and f=t°.

Zwi — 1 :/11dt
0

1 1
—2?1}_2 — W1 = — = / tdt
2 0
1 1
4’LU_2 + w., = - = / t2 dt
3 0
o Find
y 5 16 23
9 = — Ww_qg = —— wy = —.
2712 ! 12 07 19

Scale weights by h if (uniform) interval width is h.

Accuracy of Quadrature Rules

e Quadrature rule is of degree d if it is exact for every polynomial of degree
d, but not exact for some polynomial of degree d + 1

e By construction, n-point interpolatory rule is of degree at least n — 1

e Rough error bound,
1

where h = max{x;.1 — x;}, shows that Q,(f) — I(f) as n — o0,
provided ™ remains well behaved

A o,

e Higher accuracy can be obtained by decreasing A

o If (" remains well behaved, can also increase n

Conditioning

e Absolute condition number of integration:

1) = |
1) = | e

1(£) = 1(f) /ab(f—f)dt‘ < [b—al [If = fll~

e Absolute condition number is |b — a.

Conditioning

e Absolute condition number of quadrature:

n

Z W (fz' - fz)

1=1

< fi— f

n
< Z |w;| max
(4

1=1

1=1

C = > |
i=1
o If Q,(f) is interpolatory, then > w; = (b—a) :
n b
Qn(l) = Zwi'l = / ldt = (b—a).
i=1 a

o If w;, >0, then C = (b—a).

e Otherwise, C' > (b — a) and can be arbitrarily large as n — oo.

Stopped Here

Newton-Cotes Quadrature

Newton-Cotes quadrature rules use equally spaced nodes in |a, b]

o Midpoint rule M(f) = (b—a)f(m), m:=(a+b)/2

o Trapezoidal rule T(f) = f(fla)+ f(b))

e Simpson’s rule S(f) = (f(a) + 4f(m) + f(b))

flz) = 2 — a*
10 = [s
M) = 2 00) = 22 = 4
r) 2 AV
g |
f(x) |
/

Example

(lerror|=2/3)
(|lerror|=4/3)

Midpoint Rule

f(x)

Trapezoidal Rule

f(x)

+1

-1

+1

-1

« Error for midpoint rule is generally 2 that of trapezoidal rule.

+1

Quadrature Accuracy Example

e Recall the interpolatory-quadrature error bound,

1F) = QuA)] < TH 17

b
e Consider trapezoidal rule, / f(x)dr ~ hf<a) ; ﬂb),

with b =a + h

e Here, n = 2 as we are evaluating f(x) at two points, so we would
expect that the error is O(h?)

e Let’s take f = cos(x), for which |f"”| < 1, and choose a = 2.
e The exact answer is I = sin(2 4+ h) — sin(2).

e demo trap

Error for Midpoint Rule

e Define m = “TM

e Midpoint rule is M(f) = (b —a) f(m) ~ I(f)

e Assuming sufficiently smooth (i.e., differentiable) f, Taylor series about m,

(z —m)3

(gj—m)z 3)J%‘F

fla) = flm) + (@ —m)fy + =

e Integrate from a to b,

5

I(f) = (b—a)f(m) + 0- f + f”+0+&f + 0+ O(R")

h3 1" h5 7
= M+ fo+ s f) + O

\\/-/ ———

E(f) F(f)

e The leading-order error for the midpoint rule, E(f), is O(h?)

Error for Trapezoidal Rule

e Here, we need the Taylor series expansions for f, := f(a) and f, :=

f(b):

)2 3
fla) = f(m)+(:c—m)f7’n+<x 2m> f;,g+(“"'3 3'm> e
h h? h3 X
Ja = fm_§f7/” _f;’/L 8- 3 m+16 4vf(4)+'”
h h? h3 KA
Jo = Jm+ f + f”—l——f”/—|— f$)+...

8- 3 16 - 4!

e Apply to trapezoidal rule, T'(f):

(l_l_
— bt g 4 o
T8 16410
:M+h—3f”+ i F9 4 O(hT)
7M™ 16417

= (I(f) — E — F + O(h")) + 3E + 5F + O(h")

= I(f) + 2E + 4F + ---

e The leading-order error for the trapezoidal rule, —2E(f), is O(h?)
I(f) = T(f) — 2E — 4F + ---

Error, continued

e Can estimate the error by taking difference of midpoint and trapezoidal
rules

=

~

N—
I

M(f)+ E+ F + ---

I(f) = T(f) — 2E — 4F + ---

T—-M =0+3E +5E ~ 3E

Tr— M
3

Simpson’s Rule

e Can use preceding results to annihilate the leading order E term (for which
we now have an estimate!)

sum = 2M(f) + T(f)

o Frror Model:

2 R’
model = =——|fW|
31920

Accuracy of Newton-Cotes Quadrature

e Since n-point Newton-Cotes rule is based on polynomial of degree n — 1,
we expect it to have degree n — 1

e Thus, we expect midpoint to have degree 0, trapezoid degree 1, and Simp-
son’s to have degree 2

e From Taylor series expansion, error for midpoint rule depends on second
and higher derivatives of integrand, which vanish for linear and constant
polynomials

e So midpoint rule integrates linear polynomials exactly and degree is 1

e Similarly, Simpson’s rule depends on 4th and higher derivatives, which van-
ish for all f € IP3, so Simpson’s rule of degree 3

Accuracy of Newton-Cotes Quadrature

e In general, Newton-codes with odd number of points gains extra degree
beyond that of polynomial interpolant on which it is based because odd
functions (about the midpoint) contribute nothing to the integral or to the
quadrature

e n-point Newton-Cotes rule is of degree n — 1 if n is even but of degree n if
n is odd

Figure 8.3: Cancellation of errors in midpoint (left) and Simpson (right) rules.

Drawbacks of Newton-Cotes Rules

e Newton-Cotes rules are simple and often effective, but they have drawbacks

e For large n, behavior can be erratic because of the usual instabilities of
high-order polynomial interpolation on uniform grids

e Moreover, for n > 11, every Newton-Cotes rule has at least one negative
weight and > " | Jw;| — 00 as n — 00, so Newton-Cotes rules become
arbitrarily ill-conditioned

e Finally, Newton-Cotes rules do not realize the highest degree possible with
N points

Newton-Cotes Formulae: What Could Go Wrong?

Demo: newton_cotes.m
Newton-Cotes formulae are interpolatory.

For high n, Lagrange interpolants through uniform points are ill-
conditioned.

In quadrature, this conditioning is manifest through negative
q uad ratu re Welg htS (bad) - Lagrange Interpolants on n Points

Lagrange Polynomials: Good and Bad Point Distributions

- . n D [
/ / 4
/ /!
/ 7
f— — s e = o
—x7 o= TS ,.—\)\\—-
l‘] 1‘2 .1‘3 X 4

=4 g— o= &

Uniform : Gauss-Lobatto-Legendre

We can see that for N=8 one of the uniform weights is close to becoming negative.

f(x)

Quadrature Rules: Stable and Unstable

« Left — Unstable; Center — stable & rapid; Right — stable & O(h?)

Newton-Cotes Rule for f(x)=sin(« x) on [0,1] GLL Rule for f(x)=sin(x x) on [0,1] Trapezoidal Rule for f(x)=sin(x x) on [0,1]

AN

08F

06}

f(x)
f(x)

04F

02F

L L L L L : L L
0.6 0.8 1 0 0.2 0.4 0.6 0.8
X

Newton-Cotes Gauss-Lobatto-Legendre Composite-Trapezoidal

Composite Rules

« Main Idea: Use your favorite rule on each panel and sum across
all panels.

« Particularly good if f(x) not differentiable at the knot points.

Wi ’3' h h h h h h e ';‘

£(x)

0.8

0.6 |

0.4

0.2

Trapezoidal Rule for f(x)=sin(=« x) on [0,1]

n-1

—

O(h?) x h
= 0(h’)

Cumulative Error:

n x O(h3) =
(b-a)O(h?)

1
0.2

1
0.4

1
0.6

1
0.8

trap v _gll k

Composite Quadrature Rules

Composite Trapezoidal (Qc7) and Composite Simpson (Qgs) rules work
by breaking the interval [a,b] into panels and then applying either
trapezoidal or Simpson method to each panel.

Q¢ is the most common, particularly since Qg is readily derived via
Richardson extrapolation at no extra work.

Q7 can be combined with Richardson extrapolation to get higher order
accuracy, not quite competitive with Gauss quadrature, but a significant
Improvement.

This combination is known as Romberg integration.

For functions that are periodic on [a,b], Qc7 is a Gauss quadrature rule.

Implementation of Composite Trapezoidal Rule

Assuming uniform spacing h = (b — a) /k,

k
ZQ; — Z (fi—1+ f5)
j=1
= §f0+hf1—I—hf2+---—|—---‘|‘hfk:—1“|‘gfk:

= E wj fj, Wy = Wp = 5 w;j = h, otherwise.

a= Iy T To T3 Ty < g s 3 S T =20

Wwi;.

h h h h h h e ’;‘

Composite Trapezoidal Rule

b
e Trapezoidal rule is also interpolatory, Q,(f) = Z / li(x)f;dz

j=1

e Lagrangian interpolants are piecewise linear “hat” functions

e On uniform grid with spacing h, fab lj(x)dx = h for interior basis func-
tions, j = 2,...,n—1, and h/2 for end-point basis functions {1 (z) and I,,(x)

1 h(x) la(x) Li(x)

Error: Composite Trapezoidal Rule

L= [f@ds = S0 + Ok

= Q; + O(h?)
= @ + cjh?’ + hagher order terms.

¢j < — max |f"(x)]

1
4 [z;_1,;]

b n mn
a j=1 j=1

——
Qcr

I —Qcr| + hoot.=h? ¢i < h’nmax|e;| = (b— a)h?max|c;
J ax1< ax1<

f(xj]
f(:n:j_1)
X X

Composite Rule: Sum trapezoid rule across n panels:

_ [I} £ eh® fIy el) 4 cgh” £+ }
. 2

(3

= i + 62h2 [hzfz”l + C4h4 hZf;El + .-
i=1 =1
~ h2 b I 4 ’ 1
=] + o f"dr + h.ot.| + c4h f“dx + hot.| + ---
- h2 4
= 1+ 5 [f'(0) = f@] + 0.

e Global truncation error is O(h?) and has a particularly elegant form.

e Can estimate f'(a) and f'(b) with O(h?) accurate formula to
yield O(h') accuracy.

e With care, can also precisely define the coefficient for h*, h°,
and other terms (Euler-Maclaurin Sum Formula).

Euler-Maclaurin Sum Formula
e Let f € C%Ja, b)), and define h = =2

e Then the Euler-Maclaurin formula applied to the trapezoidal rule gives:

h6
30240

h4
720

/ F@)dr =T, + " (F(8) ~ @)~ 2 (F00) — 1 @) + o (F00) - 1P @) + B,

where the composite trapezoidal rule is:

T,=5 <f<a> 23 flat jh) + f(b)) ,

e 13 denotes the remainder atter three correction terms.

e The coeflicients arise from Bernoulli numbers:

1 1 1
By—~ By—=——, Bs——.
2 67 4 307 6 49

Examples.

e Apply (composite) trapezoidal rule for several endpoint

conditions, f'(a) and f'(b):
1. Standard case (nothing special).
2. Lucky case (f'(a) = f'(b) = 0).
3. Unlucky case (f'(b) = —o0).
4. Really lucky case (f%(a) = fR(b), k=1, 2,...).

for kase=1:4;
for k=1:10; n=2"k; h=1/n; x=[0:n]'/n;
e Functions on [a,b] = [0, 1] ¢ Kasemei; f-exp(); s
f ka =2; f=exp(x).*(l-cos(2*pi*x)); nd;
f kase==3; f=sqgrt(l-x.*x); nd;
x f ka =4; f=log(2+cos(2*pi*x)); nd;
(1) flz) = e
w=l + 0*x; w(l)=0.5; w(end)=0.5; w=h*w;
x Ih(k)=w'*f;
(2) f(x) = €" (1 — cos2mx) |
if k>1; Id(k-1)=Ih(k-1)-Ih(k); end;
if k>2; Ir(k-2)=Id(k-2)/Id(k-1); end;
hk(k)=h;
3) flz) = V1—a?
- if k>2; RATIO = Id(k-1)/Id(k-2); [n RATIO]; end;
(4) f(x) = log(2 + cos2mx).

e quadl.m example.

Strategies to improve to O(h') or higher?

e Endpoint Correction.

— Estimate f/(a) and f'(b) to O(h?) using available f; data.

— How?

— Q: What happens if you don’t have at least O(h?) accuracy?

— - Requires knowing the ¢ coefficient. :(

e Richardson Extrapolation.

Iy,

I

I + ch? + O(hY)

j -+ 402h2 + O(h4)

(Reuses f;, i=even!)

4 1
[—Ih — =l

3 3

IsiMPSON

|

|

trap _endpoint.m

Composite Trapezoidal + Richardson Extrapolation
Can in fact show that if f € C?5+! then

I = Qor + &h® + &b + Gh + ... + Grh® + O+

Suggests the following strategy:
(1) I = Qcrpy + &h* + &h* + &h° + ...
(2) I = Qcren + 6(2h)* + é(2h)* + &(20)° + ...

Take 4 x(1)-(2) (eliminate O(h?) term):
Al — 1 = 4Qcrm) — Qeren + dh* + h® + ...
4 1 . .
I = gQCT(h) — §QCT(2h) + eqh* + egh® + ...

= Qs@n) + &b’ + &h° + h.o.t.

4 1
gQCT(h) — gQCT(%)

Here, Qgn)

Composite Trapezoidal + Richardson Extrapolation

Can in fact show that if f € C?5+! then

I = Qor + &h® + &b + Gh + ... + Grh® + O+

Suggests the following strategy:
(1) I = Qcrpy + &h* + &h* + &h° + ...
(2) I = Qcren + 6(2h)* + é(2h)* + &(20)° + ...

Take 4 x(1)-(2) (eliminate O(h?) term):
Al — 1 = 4Qcrm) — Qeren + dh* + h® + ...
4 1 . .
I = gQOT(h) - gQCT(Qh) + &bt + e6h® + ...

= Qs@n) + &b’ + &h° + h.o.t.

4 1
gQC’T(h) — gQCT(Qh)

Here, | Qgn)

Composite Trapezoidal + Richardson Extrapolation

Can in fact show that if f € C?5+! then

I = Qcr Gt + EhS + L+ Ggh® + O(RMEHY)
\ Origina/ error — O(hZ)

Suggests the following strategy:
(1) I = Qcrpy + &h* + &h* + &h° + ...
(2) I = Qcren + 6(2h)* + é(2h)* + &(20)° + ...

Take 4 x(1)-(2) (eliminate O(h?) term):

Al — 1 = 4Qcrm) — Qeren + dh* + h® + ...

4 1 R .
I = gQOT(h) — 5Qcren + eaht + e6h® + ..

= Qs(2n)

4 1
gQCNM“gQGN%)

Here,
s New error — O(h*)

Richardson Extrapolation + Composite Trapezoidal Rule

Ty

—8 & L= & £ L= & & 89—
a — Ty I i) I3 Ty T —
h W % h h h h h h %
2h: w; 2 0 2h 0 2h 0 2h - 2v (k even)
4 1.~ h 4h 2h 4h 2h 4h 2h 2h
3Wj — 3W; 3 3 3 3 3 3 3 3

Richardson + Composite Trapezoidal = Composite Simpson
But we never compute it this way.

Just use QCS = (4 QCT(h) — QCT(Zh)) /3

No new function evaluations required!

Trapezoidal + Repeated Richardson Extrapolation
(Romberg Integration)

* We can repeat the extrapolation process to get rid of the O(h*) term.
* And repeat again, to get rid of O(h®) term.

Tvo = Trapezoidal rule with h = (b —a)/2"
Ty — Thq i
Tk,] —) 1 17] 1
47 — 1
h T())()
]’L/2 Tl,O 110
h/4 Too Too Tnpg
h/8 Ts.0 T34 139 133

O(h?) O(h*) O(h%) O(h®)

* |dea works just as well if errors are of form c;h + c;h? + c;hs + ... | but
tabular form would involve 2! instead of 4!

Repeated Richardson Extrapolation
(Romberg Integration)

* We can repeat the extrapolation process to get rid of the O(h*) term.
* And repeat again, to get rid of O(h®) term.

exact = exp(l)-1;
n=16;
x=0:n; x=x'/n; h=x(2)-x(1); f=exp(cos(5*x)); f=exp(-x.*x); f=exp(Xx);

T=zeros(5,5);

T(l,1)=16*h*(sum(f(l:16:end))-(£(1)+£f(n+1))/2); % n must be divisible by 16
T(2,1)= 8*h*(sum(f(l: 8:end))-(£f(1)+£f(n+1))/2);

T(3,1)= 4*h*(sum(f(l: 4:end))-(£(1l)+£f(n+1))/2);

T(4,1)= 2*h*(sum(f(l: 2:end))-(£(1)+£f(n+l1))/2);

T(5,1)= 1l*h*(sum(f(l: l:end))-(£f(1)+£f(n+l1l))/2); % Finest approximation

format compact; format longe
T(:,1:1)
for j=2:5; for i=j:5; jl=j-1;

T(i,j)=((47J1)*T(i,j-1)-T(i-1,3-1))/(4"31 - 1);
end;end;

N

Richardson Example

1
]:/ e’ dx
0

Initial values, all created from same 17 values of f(x).

.859140914229523
.753931092464825
.727221904557517
.720518592164302
.718841128579994

Using these 5 values, we build the table (extrapolate) to get more precision.

= = =

None
.859140914229
.753931092464
. 727221904557
.720518592164
.718841128579

Round 1

1.718861151876
1.718318841921
1.718284154699
1.718281974051

Round 2

1.718282687924
1.718281842218
1.718281828675

Round 3

1.718281828794
1.718281828460

Round 4

1.718281828459

Richardson Example

Error for Richardson Extrapolation (aka Romberg integration)

1/h

=N =

16

O NN 0O W -

None

.4086e-01
.5649e-02
.9401e-03
.2368e-03
.5930e-04

0(h~2)

Round 1

5.7932e-04
3.7013e-05
2.3262e-06
1.4559e-07
0(h~4)

Gauss Quadrature Results

~N o Ok wNB

e O = = = =

On

.8591e+00
.7189e+00
.7183e+00
.7183e+00
.7183e+00
.7183e+00

E
1.4086e-01
5.7932e-04
1.0995e-06
1.1666e-09
7.8426e-13

0

Round 2 Round 3

8.5947e-07

1.3759e-08 3.3549e-10

2.1631e-10 1.3429e-12
0(h~6) 0(h"8)

Round 4

3.2419e-14

0(h~10)

Next Up

e Gaussian Quadrature

e Composite Trapezoidal Rule

e Richardson Extrapolation

Gaussian Quadrature

e Gaussian quadrature rules are based on polynomial interpolation, but
nodes as well as weights are chosen to maximize degree

e With 2n parameters, we can attain a degree of 2n — 1

e Gaussian quadrature rules can be found by method of undetermined coeffi-
cients, but resulting system of moment equations is nonlinear

e [t is relatively easy to show that the standard (open) Gauss nodes on [-1,1]
are the roots of P,(x), the nth-order Legendre polynomial

e The weights are the integrals of the corresponding Lagrange cardinal func-
tions based on these nodes

e The closed Gauss nodes, which include x = £1 are the roots of
(1—2%)P ()

Gaussian Quadrature

e The nodes and weights are extensively tabulated but are also available in
routines for most every programming language

e The open points are often referred to as Gauss or Gauss-Legendre quadra-
ture points

e The closed points are referred to as Gauss-Lobatto or Gauss-Lobatto-
Legendre points

e There are also Gauss-Chebyshev points, etc.

e Finally, there are Gauss-Radau points for the case where —1 is included as
a node but 41 is not (i.e., closed on left but open on the right)

Example: Gaussian Quadrature, n = 2

e Derive two-point Gauss quadrature rule on [-1,1],

Go(f) = wif(w1) + waf(w)

with (wj, ;) chosen to maximize degree of resulting rule
e Use method of undetermined coefficients

e Four parameters to be determined, so expect to be able to integrate cubics
exactly because cubics are determined by 4 parameters

Gauss Quadrature Example, continued

e Requiring rule to integrate first four monomials exactly yields four moment
equations

1
w1+w2=/ 1da:::1:|1_1:2
1

1
1
W11 + Woxry = / rdr = :1:2‘_1 =

! 1
W1 + WoTs = / v dr = 5:133

L 1
wir] + w2x§ = / 3 dr = Zaz"‘

Gauss Quadrature Example, continued

e In this case, can exploit symmetry, 1 = —x9, w; = wy = 1, to obtain
quadratic equation for xo

e Solution i1s x7; = —1/\/5, To = 1/\/§, w, =1, wy =1

e Resulting two-point Gauss quadrature rule has form

Go(f) = f(=1/V3) + f(1/V3)

e Remarkably, evaluating f at just two points allows us to exactly integrate
all polynomials up to and including degree 3

Gauss Quadrature Example, continued

e Degree of 2-point Gauss quadrature rule is d = 3

e In general, n-point Gauss quadrature rule has degree d = 2n — 1

e For n-point Gauss-Lobatto rule, which has endpoints &1 prescribed, degree
d = 2n — 3 as there are only 2n — 2 free parameters in this case

Gauss Quadrature, |

1
Consider [— / f(z) dz.
~1
Find w;, z; © = 1,...,n, to maximize degree of accuracy, M.
e Cardinality, |.[: [Py | = M + 1
|wi| + |zi| = 2n

M+1 = 2n <= M = 2n—1

e Indeed, it is possible to find z; and w; such that all polynomials of degree
< M = 2n — 1 are integrated ezactly.

e The n nodes, x;, are the zeros of the nth-order Legendre polynomial.

e The weights, w;, are the integrals of the cardinal Lagrange polynomials
associated with these nodes:

1
w; = / lz(x) dx, lz(ﬂi) c IPn_l, lZ(SE]) = 5l]

1

FE(E)
(2n)!

e n nodes are roots of orthogonal polynomials

e Error scales like |1 —Q,| ~C (@ exact for f(x) € IPy,_1.)

Change of Interval

e Gauss rules are prescribed on interval [—1, 1}, so usually need to transform
to a, b] for general application

e Suppose [&;, w;| are the Gauss points and weights associated with interval
[_17 1]

e Then, use the affine (i.e., linear) transformation,
ti=a+(b—a)&+1)/2,
which satisfies ¢ = —1 whent =a and £ =1 whent =b

e Here &, 1 =1,..., n are the Gauss points on |-1,1]

e You simply look up*the (&;, w;) pairs, use the above formula to get ¢;, then
evaluate

b— a —
Qn = 5 ;wz‘f@i)

(*that is, call a function)

Use of Gauss Quadrature

Table 25.4 ABSCISSAS AND WEIGHT FACTORS FOR GAUSSIAN INTEGRATION

n

+1
dz =~ w; :
J_ 7@ ZJ‘I if (i)
Abscissas=+z; (Zeros of Legendre Polynomials) Weight Factors=w;
+x; w; *xi wy
ne? n=8
0.18343 46424 95650 0.36268 37833 78362
0.57735 02691 89626 1.00000 00000 00000 0.52553 24099 16329 0.31370 66458 77887
0.79666 64774 13627 0.22238 10344 53374
n=3 0.96028 98564 97536 0.10122 85362 90376
0.00000 00000 00000 0.88888 88888 88889
0.77459 66692 41483 0.55555 55555 55556 n=9
0.00000 00000 00000 0.33023 93550 01260
n=4 0.32425 34234 03809 0.31234 70770 40003
0.33998 10435 84856 0.65214 51548 62546 0.61337 14327 00590 0.26061 06964 02935
0.86113 63115 94053 0.34785 48451 37454 0.83603 11073 26636 0.18064 81606 94857
5 0.96816 02395 07626 0.08127 43883 61574
7 =
0.00000 00000 00000 0.56888 88888 88889 n=10
0.53846 93101 05683 0.47862 86704 99366 0.14887 43389 81631 0.29552 42247 14753
0.90617 98459 38664 0.23692 68850 56189 0.43339 53941 29247 0.26926 67193 09996
0.67940 95682 99024 0.21908 63625 15982
n=6 0.86506 33666 88985 0.14945 13491 50581
0.23861 91860 83197 0.46791 39345 72691 0.97390 65285 17172 0.06667 13443 08688
0.66120 93864 66265 0.36076 15730 48139
0.93246 95142 03152 0.17132 44923 79170 n=12
0.12523 34085 11469 0.24914 70458 13403
n=T 0.36783 14989 98180 0.23349 25365 38355
0.00000 00000 00000 0.41795 91836 73469 0.58731 79542 86617 0.20316 74267 23066
0.40584 51513 77397 0.38183 00505 05119 0.76990 26741 94305 0.16007 83285 43346
0.74153 11855 99394 0.27970 53914 89277 0.90411 72563 70475 0.10693 93259 95318
0.94910 79123 42759 0.12948 49661 68870 0,98156 06342 46719 0.04717 53363 86512

There is a lot of software, in most every language, for computing the
nodes and weights for all of the Gauss, Gauss-Lobatto, Gauss-Radau
rules (Chebyshev, Legendre, etc.)

Let’s work out an example for 3-Point Gaussian quadrature applied to

1
I = / e’ dx.
1

Table Look-Up: quadrature points, & € (—1,1) and weights, w;:

&=
§ =
& =

—0.774596669241483

0.000000000000000

0.774596669241483

wi; = 0.55955559555555H55

we = (.8838838838338390

ws = 0.55555559555H555H59

Function Eval: evaluate integrand f(x) = e® at quadrature points:

S
f2
f3

6—0.774596669241483

e 0.000000000000000

6—I—O.774596669241483

= 0.4608896344821015

1.0000000000000000
2.1697168371419185

Gauss-Legendre Quadrature

3F

N

5k

2k

15F

05F

. s s L L ' x ' 1
1 08 -06 -04 -02 0 02 04 06 08 1

Quadrature Rule: sum product of weights X function, w; f;:

Qar 0.555555555555555 * 0.4608896344821015

+ 0.888888888888888 + 1.0000000000000000
+ 0.555555555H555555 * 2.1697168371419185
2.350336928680011

Comparison: Compare to exact answer:

1
I = / eCdr = e — e ! = 2.350402387287603
-1

I — Qcr| = 6.545860759255007¢ — 05

Let’s compare to Simpson’s Rule:

Quadrature Points and Weights:

& = —1.0 w, = 1/3 (Recall, b — a = 2.)
52 — 0.0 Wy — 4/3

Function Eval: evaluate integrand f(x) = e* at quadrature points:

fi = e ' = 0.3678794411714423 i G L0
fo = €% = 1.0000000000000000 '
fs = et = 2.7182818284590452

' 1 L L L '} 1 L s
-1 08 -06 04 -02 0 02 04 06 08 1

Simpsons Rule: sum product of weights x function, w; f;:

1 4 1
Qsimp = §0.3678794411714423 + gl.OOOOOOOOOOOOOOOO + §2.7182818284590452

= 2.362053756543496

Comparison: Compare to exact answer:

I = Quimp] = 1.165136925589261¢ — 02

Error for Simpson’s rule is ~ 180 times larger.

Gauss-Legendre Quadrature Simpson's Rule

0
41 08 06 04 02 0 02 04 06 08 1 1 08 06 04 02 0 02 04 06 08 1

Gaussian Quadrature

e Gaussian quadrature rules have maximal degree and optimal accuracy for
the number of nodes used

e Weights are always positive and approximate integral always converges to
exact integral as n — 00

e Unfortunately, aside from Chebyshev, Gaussian rules of different orders do
not have points in common so Gaussian rules are not progressive

e If you want to improve the estimate by increasing n to n’, you have to re-
evaluate f at all n’ nodes

e Thus, estimating error using Gauss rules of different order requires a full
re-evaluation

e Gauss-Konrod rules augment the Gauss points with n’ — n points, but are
suboptimal

Gauss-Lobatto-Legendre Quadrature Example

format longe; format compact; lw='linewidth', fs='fontsize';
a=0; b=1;
exact = exp(1)-1; %% Integral from @ to 1 of e”*x

for n=2:19;
[z,w]l=zwgll(n-1); % Gauss-Lobatto-Legendre pts/wts

t=a + 0.5%x(z+1)*(b-a);

f=exp(t); 00 Gauss Quadrature Error: f(x)=e* on [0,1]
Q = w'xfx(b-a)/2.; *
err= abs(Q-exact); 102k
disp([n Q err])
o
semilogy(n,err,'ro',1w,2); hold on 10k
end;
title('Gauss Quadrature Error: f(x)=e*x on [0,1]',fs,14); § 10 F o
xlabel('Number of points, n',fs,14); T
ylabel('Quadrature Error',fs,14); o
axis square ‘% 108
S o
E
O 10-10 =
102} o
gauss _quad_demo.m il
— — ’ o
10-16 1 1 1 1 1 1 1 ?

2 3 4 5 6 7 8 9 10
Number of points, n

Closed Gauss Rules (Gauss-Lobatto-Legendre)

« (Gauss-Legendre quadrature

Endpoints not included
Open formula

« (Gauss-Lobatto-Legendre quadrature

+1 and -1 (i.e., a,b) included in function evaluation (like Simpson)
Closed formula

 GL is more efficient than GLL.

—- - - - = e GL points

o—o o © e—o GLL points

Gauss-Legendre Quadrature Example

a=0; b=1;
exact = exp(1)-1; %% Integral from @ to 1 of e”x
for kpass=1:2;
for n=2:10;
[z,w]l=zwgll(n-1); % Gauss-Lobatto-Legendre pts/wts
if kpass==2; [z,wl=zwgl(n); end; % Gauss-Legendre pts/wts

t=a + 0.5%(z+1)*(b-a);
f=exp(t);

Q@ = w'sxfx(b-a)/2.;

Gauss Quadrature Error: f(x)=e* on [0,1]

err= abs(Q-exact); 10°
disp([n Q err]) L

1072
if kpass==1; semilogy(n,err,'ro',1lw,2); hold on; end; "
if kpass==2; semilogy(n,err,'bo',1w,2); hold on; end; m4f
:23{ Lg'w's] o
! w
title('Gauss Quadrature Error: f(x)=e”x on [0,1]',fs,14); 2 .
xlabel('Number of points, n',fs,14); 5"
ylabel('Quadrature Error',fs,14); 8 o e
axis square G 107
print -dpng t.png; 1072} o)
lopen t.png
10-14_
o 8 o
o

gauss quad _demo2.m

Number of points, n

