
Chapter 9: Ordinary Differential Equations

• Numerical Solution of ODEs: Initial Value Problems



Differential Equations

• Differential equations involve derivatives of unknown solution function

• Ordinary differential equation (ODE): all derivatives are with respect to
a single independent variable

• If it is an initial value problem (IVP), then the independent variable is
typically thought of as time, t

• If it is an boundary value problem (BVP), the independent variable is
typically thought of as space (e.g., x)

• IVP Examples: ODE I.C. Solution

ẏ = 3 y(0) = 2 y(t) = 2 + 3t

ẏ = 3y y(0) = 1 y(t) = e3t

ÿ = 4y
y(0) = 2
ẏ(0) = 0

y(t) = e2t + e−2t



Single ODE (IVP) Examples:

• First-order derivative in time - initial value problem.

• y0 =
1

2
y, y(0) = 1 : y(t) = e

1

2
t.

• y0 = �2 � y + y2 + I.C.s (Ricatti Equation example)

• y0 = sin(t) + I.C.s

• y0 = λ y + cos(t) + I.C.s

• y0 = e�y + I.C.s

• etc.



Scalar ODE Examples

• All of the examples of the preceding slide can be solved numerically

• Meaning that, starting with an initial condition (say, y(t) = y0 at t = 0),
we can evaluate y(t) for t > 0 to almost arbitrary accuracy

• Common questions are,

• Will the numerical solution blow up (i.e., be unstable)?

• Will the true solution blow up?
•

• What is the accuracy of the numerical solution?

• How can one assess the accuracy?
•

• What is the cost?

• How can we mitigate the cost?



ODE Solvers as Integrators

• Two common approaches to developing numerical methods for IVPs are
based on evaluating the following at specific time points, tk,

i. Approximating the derivative at tk

f (tk, yk) =
dy

dt

�

�

�

�

tk

≈ finite-difference approximation

=
yk+1 − yk

∆t
+ O(∆t)

≈

yk+1 − yk

∆t
(for example)

where h = ∆t = tk+1−tk is the step size, which may or may not be uniform
for all tk



ODE Solvers as Integrators

ii. Approximating the integral

yk+1 = yk +

Z tk+1

tk

f (t, y) dt

= yk + ∆tf (tk, yk) + O(∆t2)

≈ yk + ∆tf (tk, yk)

where we have used the (locally) O(h2)-accurate rectangle rule to approximate
the integral on [tk, tk+1]

• Both approaches are equally viable and equally used

• Because of the second approach, however, timesteppers for solving IVPs are
frequently referred to as ODE integrators



Example

• In the preceding example, each approach provided a formula for updating
yk+1, an approximation to y(tk+1), based on yk and fk = f (tk, yk)

• Because they do not involve solving for the argument of f (t, y), these meth-
ods are termed explicit in time, as opposed to implicit.

• Also, because they involve only information at tk and (nominally) tk+1,
these are single-step methods

• The particular approximations made on the preceding slides lead to the
same update formula:

yk+1 = yk + ∆tf (tk, yk)

which is known as Euler Forward timestepping

• It is first-order accurate in time, meaning that for a fixed final time T , the
accuracy is O(∆t) when taking n steps of size ∆t such that n∆t = T .



Assessing Accuracy

• The most common approach to assessing accuracy, in practice, is to run
numerical experiments

• We will also of course analyze the methods to understand how to control
the accuracy but, because code is involved, testing is mandatory to assess
whether the software matches the expected theoretical behavior

• Consider the nonlinear Ricatti equation example,

dy

dt
= y2 − y − 2, y(0) = 0

• Solutions for this problem are well known

• According to chatgpt, the analytical solution for this particular case is

y(t) = 2
1− e3t

1 + 2e3t

which (as is obligatory) we can check numerically



Ricatti Example, continued

• In the following matlab code, we run a sequence of tests out to time t = tfinal
using n steps of size ∆t = tfinal/n

• Using Euler forward, we would expect that the final error is O(∆t)

ricatti.m 

ricatti_conv.m



Ricatti Example, continued

• The first plot shows that the exact solution and EF agree

• The second shows that the error is indeed O(∆t)

ricatti.m 

ricatti_conv.m



Local Truncation Error

• Whether derived from the integral or differential approach, the update step

for Euler forward has the following form

yk+1 = yk + ∆tf (tk, yk) + O(∆t2)
| {z }

LTE

,

where LTE stands for local truncation error

• The LTE is the error incurred in moving from one step to the next if yk had
been the exact solution at tk, y(tk)

• In the case of Euler forward, the LTE is O(∆t2)



Global Truncation Error

• We also have the global truncation error, or GTE, which is the difference
yk − y(tk+1) or, more specifically, yn − y(T ), where T = tfinal is the target
integration time.

• Note that T is fixed, independent of n.

• As we refine the stepsize, h −→ 0, we must increase n, such that T = n∆t

is fixed

• It is in this context that we talk about the order of accuracy of the method
(i.e., the GTE)

• In the case of Euler forward, the GTE is O(h) (i.e., O(∆t))



Order of Accuracy

• In general, if the LTE is O(hp+1

k ), the GTE will be of order O(hp), and the
order of accuracy will be p

• We can understand this result as follows:

– If we make an LTE of O(hp+1) on each step, we can expect, on average
that the incurred error per step is O(hp+1), which is committed n times,
for a total error of

n ·O(hp+1) = O(nh · hp) = O(T · hp) = T ·O(hp)
· · · ·

• Assuming y is sufficiently smooth, then if the order of accuracy is p = 2,
then the error (at time t = T !) will drop by a factor of 4 when we take
twice as many steps with stepsize h = T/n

• If p = 1, we would expect the error to reduce by a factor of 2 under the
same circumstances

• Notice that whether the error scales as O(T ) or not very much depends on
the ODE itself



Relationship between LTE and GTE

f

O(Dt2)

dy

dt
= f ⇐⇒ yn = y0 +

Z
T

0

f(t, y) dt

• If LTE = O(∆t2), then commit O(∆t2) error on each step.

• Interested in final error at time t = T = n∆t.

• Interested in the final error en := y(tn) − yn in the limit n −→ ∞, n∆t = T fixed.

• Nominally, the final error will be proportional to the sum of the local errors,

en ∼ C n · LTE ∼ C n∆t2 ∼ C (n∆t)∆t ∼ C T∆t

• GTE ∼ LTE /∆t



Differential Equations

• Solution of differential equation is a function in an infinite-dimensional

space of functions

• Numerical solution of differential equations is based on finite-dimensional

approximation

• Differential equation is replaced by an algebraic equation whose solution

approximates that of the original equation

• The process of mapping from the infinite-dimensional solution space to the

finite-dimensional one is termed discretization



System of ODEs

• We can also have more than one unknown and, thus, more than one differ-
ential equation, with a corresponding number of initial conditions

• For two equations, we have

"

dy1
dt

dy2
dt

#

=

"

f1(t, y1, y2)

f2(t, y1, y2)

#

= f(t,y)

• We refer to this as a system of ODEs and express it in vector form as

y0 :=
dy

dt
= f(t,y)

• It of course holds true at a finite number of time points, which is what we
typically try to approximate

• That is, given initial value y(t0), we seek y(tk), k = 1, 2, . . . , satisfying
"

dy1
dt

dy2
dt

#

tk

=

"

f1(t, y1, y2)

f2(t, y1, y2)

#

tk

= f(tk,y(tk))



Orbiting Particle Example

• Consider a particle with position x(t),

x =

 

x

y

!

• Particle motion prescribed as

ẋ = −y

ẏ = x

• Vector form,

ẋ =

 

ẋ

ẏ

!

=

"

0 −1

1 0

# 

x

y

!

.

• We’ll see shortly that the eigenvalues of this linear ODE system, ẋ = Ax,
govern the overall behavior of the solution.

• In this example, the eigenvalues are imaginary, which means that the
norm of the solution neither decays nor grows.



Order of ODE

• Order of ODE is determined by highest order derivative of solution func-
tion appearing in ODE

• For example,
y00 = 3y0 + y2 + cos t,

would be a second-order ODE

• ODE with higher-order derivatives can be transformed into equivalent first-
order system (for IVPs)

• We will discuss numerical methods only for first-order ODE systems

• Most ODE software is designed to solve only first-order equations



Example: Second-Order ODE

• Consider the preceding example,

y00 = 3y0 + y2 + cos t,

• Define u1(t) = y(t), u2(t) = y0(t)

• By construction, y00 = u0
2

• Can thus write equivalent system of first-order ODEs,
"

du1
dt

du2
dt

#

=

"

u2(t)

3u2(t) + u1(t)
2 + cos t

#



Higher-Order ODEs, continued

• For kth-order ODE,

y(k) = f (t, y, y0, . . . , y(k�1))

define k new unknown functions,

u1(t) = y(t), u2(t) = y0(t), . . . , uk(t) = y(k�1)(t),

• Then original ODE is equivalent to first-order system

d

dt





















u01(t)

u02(t)

...

u0k�1(t)

u0k(t)










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






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
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













u2(t)

u3(t)

...

uk

f (t, u1, u2, . . . , uk)


















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4th-Order Example, Matrix Form

• Consider example:

yiv = f (t, y, y0, y00, y000)

Let u1 = y, u2 = y0, u3 = y00, and u4 = y000.

d

dt















u1

u2

u3

u4















=















0 1

0 1

0 1

0




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




















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













+




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
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

0

0

0

f
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
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du

dt
= Au + f



Example: Newton’s Second Law

• Newton’s Second Law of Motion, F = ma, is a second-order ODE since

acceleration, a, is second derivative of position coordinate, which we denote

by y

• Thus, ODE has form

y00 = F/m

where F is force and m is mass

• Defining u1 = y and u2 = y0 yields the equivalent system of two first-order

ODEs
"

u0
1

u0
2

#

=

"

u2

F/m

#



Example, continued

• We can now use methods for first-order equations to solve this system

• First component of solution u1 is position y of original second-order equation

• Second component u2 is the velocity, y
0



Ordinary Differential Equations

• General first-order system of ODEs has form

y0(t) = f(t,y)

where y : lR �! lRn, f : lRn+1
�! lRn, and y0 = dy/dt denotes derivative

with respect to t,














y01(t)

y02(t)

...

y0n(t)















=















dy1(t)/dt

dy2(t)/dt

...

dyn(t)/dt































• Function f is given and we wish to determine unknown function y satisfying
ODE

• For simplicity, we will often consider special case of single scalar ODE, n = 1



Initial Value Problems

• By itself, y0 = f(t,y) does not determine unique solution function

• This is because ODE merely specifies slope y0(t) of solution function at each
point, but not actual value of y(t) at any point

• Infinite family of functions satisfies ODE, in general, provided f is smooth

• To single out particular solution, y0 of solution function must be specified
at some point t0

• y0 is the initial condition



IVPs, continued

• Thus, part of given problem data is requirement that y(t0) = y0, which
determines unique solution to ODE

• Because of interpretation of independent variable t as time, think of t0 as
initial time and y0 as initial value

• Hence the term initial value problem, or IVP

• ODE governs evolution of system in time from its initial state y0 at time
t0 onward, and we seek function y(t) that describes state of system as a
function of time



Example: IVP

• Consider scalar ODE
y0 = y

• Family of solutions is given by y(t) = cet, where c is any real constant

• Imposing initial condition y(t0) = y0 singles out unique particular solution

• For this example, if t0 = 0, then c = y0, which means that solution is

y(t) = y0e
t



Example: IVP
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Figure 9.2: Some solutions for y
0
= y.



Stability of Solutions

Solution of ODE is

• Stable if solutions resulting from perturbations of initial value remain close

to original solution

• Asymptotically Stable if solutions resulting from perturbations con-

verge back to original solution

• Unstable if solutions resulting from perturbations diverge away from orig-

inal solution without bound



Example: Stable Solutions

• Family of solutions for ODE y
0 = 1
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Figure 9.1: Some solutions for y0
= 1/2.



Example: Asymptotically Stable Solutions

• Family of solutions for ODE y
0 = �y



Example: Unstable Solutions

• Family of solutions for ODE y
0 = y
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Figure 9.2: Some solutions for y
0
= y.



Example: Scalar Test ODE

• Consider scalar ODE y0 = λy, where λ is constant

• Solution is given by y(t) = y0e
λt, where t0 is initial time and y(0) = y0 is

initial value

• For real λ,

• λ > 0: all nonzero solutions grow exponentially, so every solution is
unstable

• λ < 0: all nonzero solutions decay exponentially, so every solution
asymptotically stable

• For complex λ,

• Re(λ) > 0: unstable

• Re(λ) < 0: asymptotically stable

• Re(λ) = 0: stable but not asymptotically stable



System of ODEs:  Solved Numerically

Given data at tk, find solution at tk+1.

One example,

dy

dt

�

�

�

�

tk

≈

yk+1 − yk

h(k)
≈ f(tk,yk)

Yields Euler’s method (a.k.a. Euler forward, “EF”):

yk+1 = yk + h(k)fk

= yk + hfk (constant step-size case)



Orbiting Particle Example

• Consider a particle with position x(t),

x =

 

x

y

!

• Particle motion prescribed as

ẋ = −y

ẏ = x

• Vector form,

ẋ =

 

ẋ

ẏ

!

=

"

0 −1

1 0

# 

x

y

!

.

• We’ll see shortly that the eigenvalues of this linear ODE system, ẋ = Ax,
govern the overall behavior of the solution.

• In this example, the eigenvalues are imaginary, which means that the
norm of the solution neither decays nor grows.



Euler Forward Example:  orbit.m



Example: Linear System of ODEs

• Linear homogeneous system of ODEs with constant coefficients has the form

y0 = Ay

where A is n⇥ n matrix and initial condition is y(0) = y0

• Suppose A is diagonalizable with eigenvalues λj and corresponding eigen-
vectors vj, j = 1, . . . , n

• Then V �1 exists, so can find ŷ = V�1y0 such that y0 =

nX

j=1

vjŷj
X

• Solution is

y(t) =

nX

j=1

ŷjvj e
λjt

• If Re(λj) > 0 for any j then solution is unstable



Example, continued

• Eigenvalues of A with positive real parts yield expontially growing solution
components

• Eigenvalues of A with negative real parts yield expontially decaying solu-
tion components

• Eigenvalues ofA with zero real parts (i.e., pure imaginary) yield oscillatory
solution components

• Solutions are stable if Re(λj) ≤ 0 for all j, and asymptotically stable if
Re(λj) < 0 for all j

• Solutions are unstable if Re(λj) > 0 for any j



Stability in the General Case

• For nonlinear system of ODEs, y0 = f(t,y), can generally only determine
local stability, by linearizing the Jacobian at time t to yield new system

z0 = Jf(t,y(t))z

where Jf is Jacobian of f with respect to y

• Eigenvalues of Jf determine local stability, which may not be valid globally



Eigenvalues and ODEs

dy

dt
= Ay + f(t)

Assume A = constant and there exist n eigenvectors vj such that

Avj = λjvj

AV = V Λ = (v1 v2 . . .vn)

2

6

6

4

λ1

. . .

λn

3

7

7

5

Then, there exists a set of coefficients ŷj(t) such that

y =
n

X

j=1

vj ŷj ⇐⇒ y = V ŷ ⇐⇒ ŷ = V −1y

Ay =
n

X

j=1

Avj ŷj =
n

X

j=1

λjvj ŷj =
n

X

j=1

vjλj ŷj = V Λŷ.



Eigenvalues and ODEs

Inserting the expansion y = V ŷ into our ODE...

dy

dt
= Ay + f

d

dt
V ŷ = AV ŷ + V f̂

= V Λŷ + V f̂

Multiply through by V −1:

dŷ

dt
= Λŷ + f̂



d

dt





ŷ1
...

ŷn



 =









λ1

. . .

λn













ŷ1
...

ŷn



 +







f̂1
...

f̂n







=





λ1ŷ1
...

λnŷn



 +







f̂1
...

f̂n







dŷi

dt
= λiŷi + f̂i, i = 1, . . . , n

– We now have n decoupled systems.

– Numerically, we solve these as the coupled system ẏ = Ay + f .

– The behavior, however, is the same as this decoupled system,

which is easier to understand.

– In particular, stability is governed by the maximum real part of the λis.

Eigenvalues and ODEs

Computable



Stability of Numerical Method

• Numerical method is stable if small perturbations do not cause resulting
numerical solutions to diverge from each other without bound

• Such divergence could be caused by numerical stability of the ODE itself or
by the numerical method (even if the ODE is stable)



Determining Stability and Accuracy

• Simple approach to determining stability and accuracy is to consider the
model problem

y0 = λy

where λ is a constant (possibly complex)

• Exact solution is

y(t) = y0e
λt

with IC y0 = y(0)

• Determine stability of numerical method by characterizing growth of nu-
merical solution

• Determine accuracy of numerical method by comparing numerical solution
to exact solution



Example: Euler Forward

• Applying Euler forward to y0 = λy, we have

yk+1 = yk + hfk = yk + hλyk = (1 + hλ)yk

• If Re(λ) < 0, then exact solution y0e
λt decays to zero as t increases, which

is also the case if

|GEF (hλ)| := |1 + hλ| < 1

where GEF (hλ)| := 1 + hλ denotes the growth factor for Euler forward

• |GEF | is a measure of the growth (or decay) of the Euler forward method
for the model problem on each step

• We also have the analytical growth factor, G̃ = ehλ, which reflects the
growth/decay of the analytical solution after a single step of size h

• Note that |GEF (hλ)| < 1 for any hλ in the unit circle of the complex plane
that is centered at (�1, 0)



Stability Region for Euler’s Method

|                 |

-2              -1

Stable

Unstable

Region where

|1 + λh| < 1.



MATLAB EXAMPLE:   Euler for y’ = ly   (ef1.m)

Stable

Unstable



Growth Factor, continued

• If λ is real, then hλ must lie in the interval (-2,0), so for λ < 0 we must
have

h ≤ −
2

λ

for Euler forward to be stable

• Growth factor GEF = 1 + hλ agrees with series expansion for G̃

G̃ = e
hλ = 1 + hλ +

(hλ)2

2
+

(hλ)3

6
+ · · ·

through terms of first order in h, so Euler forward is first-order accurate



Stability Region for Euler’s Method

|                 |

-2              -1

Stable

Unstable

Why complex plane?



Recall: Orbit Example

d

dt

 

x

y

!

=

"

0 −1

1 0

#  

x

y

!

= Ay.

dy

dt
= Ay

�

�

�
A − λI

�

�

�
=

�

�

�

�

�

−λ −1

1 −λ

�

�

�

�

�

= λ
2
+ 1 = 0

λ = ±i

• Even though ODE involves only reals, the behavior can be 

governed by complex eigenvalues.



Euler Forward Example:  orbit.m



Stopped Here



Quick ODE Review

• Introduced Euler-forward

• Explored behavior for linear homogeneous system, y0 = Ay + IC

• Behavior governed by eigenvalues of A (or, Jf for nonlinear systems)

– If Re(λj)  0 for j = 1, . . . , n - stable

– If Re(λj) < 0 for j = 1, . . . , n - asymptotically stable

– If Re(λj) > 0 for any j - unstable

• Therefore, we consider model problem, y0 = λy + IC
•

• Advancing a single step with Euler forward and the analytic solution yields

EF: yk+1 = yk + hλyk = (1 + hλ) yk = GEF yk

Exact: yk+1 = yk e
hλ = G̃ yk



Review, continued

• Growth factors:

G̃ = 1 + hλ +
(hλ)2

2!
+

(hλ)3

3!
+ · · · = ehλ

GEF = 1 + hλ

• GEF agrees with analytical G̃ for first two terms, but on each step, incurs
a local truncation error (LTE) of O(h2).

• So, LTE=O(h2) −→ global truncation error (GTE) is O(h)

• Euler forward is first-order accurate in time −→ error at final fixed time,
nh = T , (not dependent on h) is O(h)

• Note that for any λ with Re(λ) < 0, |G̃| < 1, so ODE is stable

• EF is only conditionally stable, meaning that if Re(λ) < 0, then GEF will
be stable if

|1 + hλ| < 1,

which corresponds to the requirement that hλ be in the unit-radius circle
centered at (−1, 0) in the complex hλ-plane



Stability Region for Euler’s Method

|                 |

-2              -1

Stable
Unstable

Region where

|1 + λh| < 1.

Neutral stability curve



Next Up:

• Shortcomings of EF

– Accuracy

– Stability

• Adaptive timestepping



Shortcomings of EF: Accuracy and Stability

• Formally, the limited accuracy and stability of EF can be resolved by using

smaller stepsize, h

• However, if final time T is relatively large or if the accuracy tolerance re-

quirements are tight, using small steps may not be practical

• Also some systems can be arbitrarily stiff, which means that stability dic-

tates the use of a small timestep is required because of one or more fast but

unimportant timescales in the problem

• Recall, all eigenvalues must be in the stability region to avoid blow-up

• Related to accuracy is the question of adaptive timestepping, which we’ll

touch upon at the end of this section



Stability of ODE Timesteppers

• When is stability important or, more to the point, when is lack of stability
problematic?

• Very often you need relatively small timesteps for accuracy

• If that timestep size is close to the value required for stability, then there
is no particular need to abandon an explicit (i.e., conditionally stable)
timestepper in favor of an implicit one.

• However, if you have system with disparate time scales, where you are
interested in the slow (e.g., long) time scale, but stability is constrained by
a short time scale, then implicit methods can offer significant advantages.

• ODE systems with disparate timescales are referred to as stiff



et u = sin t

y, v(t) a

Examples of Stiff Systems

• Consider the equation for a particle in a fluid-field box that is being moved
back and forth.

• Let u = sin t be the velocity of the box+fluid.



Examples of Stiff Systems

• Consider the equation for a particle in a fluid-field box that is being moved
back and forth.

• Let u = sin t be the velocity of the box+fluid.

• A simple model for the force on the particle is the difference between its
velocity, v(t), and the fluid velocity

• Newton’s 2nd law says that the acceleration of the particle times its mass
is proportional to the applied force

m
dv

dt
= c · (u− v) = −cv + c sin(t)

• Note that if m = 0 we must have v = u, that is the particle velocity equals
that of the surrounding fluid.

• In this case, the relavent time scale is ≈ 2π, which is the period of motion
of the box

• In fact, as m −→ 0, this is the behavior that is observed,



Stiff ODE Example, continued

• For m 6= 0, however, we have the solution (from chatgpt)

v(t) =
s(s sin(t)� cos(t))

s2 + 1
+
a(s2 + 1) + s

s2 + 1
e�st

where a is the initial condition and s = c/m is termed the Stokes number

• For small mass (e.g., dust in the air) , we can have s = c/m � 1, which
means that the particle velocity matches that of the surrounding fluid in a
very short time

• This is an example of a stiff system: we have a slow (long) time scale, which
is the period of motion, and a fast (short) timescale, which is the required
for the discrepancy between v and u to decay

• Stability of Euler forward dictates that |hs| < 2, which means ∆t ⌧ 1 in
the current context, even though the interesting time scale is ⇡ 2π⇡

• Let’s look at an example stiff_sin.m



Sloshing Particle Example, continued

• First, notice the exponential dependency on the Stokes number, s,

v(t) =
s(s sin(t)� cos(t))

s2 + 1
+
a(s2 + 1) + s

s2 + 1
e�st

• As s increases, the transient time diminishes, and the solution rapidly locks
onto the sinusoidal driving velocity, sin(t)

• Thus, for relatively long-time behavior (e.g., out to T = 10), we don’t need
to track the short transient near t = 0

• For stability reasons, however, EF forces us to take a small timestep,
h < 2/s, when s � 1.

• Thus, the stability limitations are more severe than the long-time accuracy
requiements–this is an examples of stiffness, i.e., disparate time scales

• If we are interested in the short-time behavior, we need a small timestep
for both accuracy and stability – such a system (or problem) is not stiff





Rationale for Implicit Methods

• The preceding example was a linear, scalar, inhomogeneous ODE, there
the inhomogeneity, u(t) = sin(2πt/τ ) set one time scale (the period, τ ) and
the eigenvalue, s, set the other, which was stepsize-limiting when s � τ

�1

• In this example, s was the governing eigenvalue and we understand the
limitations on h imposed by the requirement that hs = hλ be within the
stability region in the hλ-plane

• Stability limitations can be bypassed by using implicit methods, in which
we evaluate part or all of the rhs of the ODE at time tk+1, rather than tk,
as was done with EF



Euler Backward (EB)

• The simplest implicit scheme, known as Euler Backward (EB) timestep-
ping, is

yk+1 − yk

∆t
= f(tk+1,yk+1) + O(∆t)

∆t

• Rearranging, setting h = ∆t and dropping the error term, we have the
implicit system,

yk+1 − h f(tk+1,yk+1) = yk

which will require a nonlinear system solve if f is nonlinear in yk+1

• If f is linear of the form f(t,y) = A(t)y + g(t), we still require a system

solve involving the matrix I− hA, which is generally more expensive than
the simple matrix-vector product, Ayk, required of an explicit method such
as EF



Properties of Euler Backward

• To understand EB, we once again consider the model problem y0 = f with

f = λy

• For EB, we have

yk+1 � hλ yk+1 = yk

yk+1 =
1

1� hλ
yk =

✓

1

1� hλ

◆k+1

y0

�

✓

�

◆

which will be stable if

|GEB| :=

�

�

�

�

1

1 + hλ

�

�

�

�

 1

where GEB is the growth factor associated with Euler backward



• The neutral stability curve, |GEB| ≡ 1, is the unit-radius circle centered at
(1, 0) in the complex hλ plane

• Any point outside the circle will have |GEB| < 1 and EB will be stable for
these cases

• In particular, EB will be stable for any Re(λ) ≤ 0, so we say that EB is
unconditionally stable



Stability Region for Backward Euler Method

|                 |

                   1

Unstable

Stable



Recall: Orbit Example

d

dt

 

x

y

!

=

"

0 −1

1 0

#  

x

y

!

= Ay.

dy

dt
= Ay

�

�

�
A − λI

�

�

�
=

�

�

�

�

�

−λ −1

1 −λ

�

�

�

�

�

= λ
2
+ 1 = 0

λ = ±i

• Even though ODE involves only reals, the behavior can be 

governed by complex eigenvalues.



Orbit Example:  orbit_ef_eb.m

• Recall our EF orbit example

• Imaginary eigenvalues outside 

     the stability region

• What happened to radius vs time?

• What would we expect for Euler-Backward??

      - Where are the hl values with respect to the EB    

  neutral stability curve?



•

• Although we derived EF and EB from forward/backward differences, we
can also view them as integration-based rules using 0th-order (i.e., con-
stant) polynomial approximations to f .

• We can see that the LTE is O(∆t2) in either case, which means that these
methods are first-order (i.e., GTE=O(∆t))

Higher-Order Timesteppers

• EB, while stable, still suffers from O(h) accuracy

• More rapidly convergent schemes can considerably reduce costs

• Yields “rectangle rule” with f (tk, yk) for EF and f (tk+1, yk+1) for EB



Trapezoidal Rule

• One can improve the accuracy by using the trapezoidal rule, which clearly
has an LTE of O(∆t3), meaning that trapezoidal rule is O(∆t2) accurate
(i.e., second-order accurate)

• The trapezoidal update reads

yk+1 =
1

2
(f(tk,yk) + f(tk+1,yk+1))

which is the average of EB and EF



Trapezoidal Rule, continued

• The trapezoidal rule is implicit, so cost is same as EB, but accuracy is much
improved

• If f = Ay + g(t) is linear we can write the update as

(I�
h

2
A)yk+1 = (I +

h

2
A)yk +

1

2
(gk + gk+1)

which entails solving a system of the form Hy = (I� h
2
A)y = ĝ at every

step, as opposed to the EB update of the form Hy = (I� hA)y = ĝ



Trapezoidal Rule, continued

• From the preceding update, we can see that the Trapezoidal rule for the
model problem, y0 = λy yields

yk+1 =
1 + 1

2
hλ

1� 1

2
hλ

yk

= GT yk
with

GT =
1 + 1

2
hλ

1� 1

2
hλ

�

• The growth factor has modulus ⌘ 1 whenever Re(λ) = 0, which is consis-
tent with the analytical growth factor , G̃ = ehλ

• Trapezoidal rule seems perfect, but has one major flaw in that it is not
L-stable, which we discuss shortly



Stability Regions:  | G | < 1

• Euler Forward

• Euler Backward

• Trapezoidal Rule



Growth Factors

• Growth factor G is the multiplier of the solution to the homogeneous
problem y0 = λy that you observe after one timestep of size ∆t.

• They are one of the fundamental properties of a method (or timestepper)
for numerical solution of ODEs.

• For small λ∆t they should approximate the analytical solution, eλ∆t:

yk+1 = eλ∆t yk = G̃ yk.

• For stability, they must have |G|  1.

• We look at some examples of growth factors in the next couple of slides.



Growth Factors

Exact: G̃ = eλ∆t = 1 + λ∆t +
(λ∆t)2

2
+

(λ∆t)3

3!
+

(λ∆t)4

4!
+ · · ·

EF: G = 1 + λ∆t

EB: G =
1

1 � λ∆t
= 1 + λ∆t + (λ∆t)2 + (λ∆t)3 + · · ·

Trap: G =
(1 + 1

2
λ∆t)

(1 �
1

2
λ∆t)

= 1 + λ∆t +
(λ∆t)2

2
+

(λ∆t)3

4
+ · · ·

• For a pth-order method (i.e., GTE is O(∆tp)),G(λ∆t) will agree with G̃(λ∆t)
up through the power (λ∆t)p.

• G(λ∆t) and G̃(λ∆t) will differ in the coefficient in front of (λ∆t)p+1, which
indicates that the local truncation error (LTE) is (λ∆t)p+1.

• EF and EB agree up to the linear terms, implying that they are of order
p = 1, while Trap agrees to the (λ∆t2) term, implying it is of order p = 2.



Growth Factors

Exact: G̃ = eλ∆t = 1 + λ∆t +
(λ∆t)2

2
+

(λ∆t)3

3!
+

(λ∆t)4

4!
+ · · ·

EF: G = 1 + λ∆t

EB: G =
1

1 � λ∆t
= 1 + λ∆t + (λ∆t)2 + (λ∆t)3 + · · ·

Trap: G =
(1 + 1

2
λ∆t)

(1 �
1

2
λ∆t)

= 1 + λ∆t +
(λ∆t)2

2
+

(λ∆t)3

4
+ · · ·

• Note that these Taylor series expansions are accurate for λ∆t �! 0, but not
for large λ∆t, where the behavior can be quite different from eλ∆t.

• The difference between G and G̃ in the large and small λ∆t limits are the
principal characterizations of a timestepper.

– Behavior for small λ∆t governs order of accuracy.

– Behavior for large λ∆t governs stability of the timestepper.



Growth Factors

• Q: What are the first 5 terms in the Taylor series for the growth
factor of a 4th-order Runge-Kutta scheme?

• A: Same as the first 5 terms in G̃.

G = 1 + λ∆t +
(λ∆t)2

2
+

(λ∆t)3

3!
+

(λ∆t)4

4!
+ c5(λ∆t)5 + · · · ,

with c5 6=
1

5!
.

• The scheme is 4th-order:

! GTE is O(∆t4)

! LTE is O(∆t5)

∴ Taylor series for G agrees with G̃ up to and including (∆t4) term,
but not (∆t5) term.



Growth Factors for Real l

lDt lDt lDt

G

• Each growth factor approximates  elDt  for lDt à 0

• For EF, |G| is not bounded by 1

• For Trapezoidal Rule, local (small¸Dt) approximation is O(Dt2), but              

|G| à -1 as lDt à -infinity.   [ Trapezoid method is not L-stable. ]

• BDF2 will give 2nd-order accuracy, stability, and |G|à0 as ¸lDt à -infinity.

G

G =
1

(1 − λ∆t)

elDt

−

G =
(1 + 1

2
λ∆t)

(1 −

1

2
λ∆t)

G = (1 + λ∆t)



Example: Orbit Problem

2

4

u

v

3

5 =

" dx
dt

dy

dt

#

| {z }
dy

dt

=

2

4

−x

y

3

5

| {z }

f(y)

=

"
0 −1

1 0

#2

4

x

y

3

5

| {z }

Ay

orbit_ef_eb.m



EF, EB, and Trap:   Orbit Example

| {z } | {z

dy

dt
= Ay :

EF:
yk+1 − yk

∆t
= Ayk

EB:
yk+1 − yk

∆t
= Ayk+1

Trap:
yk+1 − yk

∆t
=

1

2
[Ayk + Ayk+1]

Solve for yk+1 :

EF: yk+1 = [I + ∆tA]yk

EB: yk+1 = [I − ∆tA]−1
yk

Trap: yk+1 =



I −

∆t

2
A

�
−1 

I +
∆t

2
A

�

yk

Eigenvalues of A: λ = ±i



orbit_ef_eb.m



Alternative Timesteppers: du
dt

= f

• Higher order? O(∆tk), k = 2, 3, . . .

• Stepsize?
Large step generally preferable, but total cost is nsteps× work-per-step.

• Implicit?

• Explicit?

• Single-step (multistage)

• Multi-step
Requires bootstapping to get (un−j, fn−j), j = 1, . . . , k.

For all choices, we are very concerned with the stability region for the
method, as well as the asymptotic accuracy.





BDFk Formulas, GTE = O(hk)

BDF1: ∂u

∂t

∣

∣

∣

tn
=

un − un−1

∆t
+ O(∆t)

BDF2: ∂u

∂t

∣

∣

∣

tn
=

3un − 4un−1 + un−2

2∆t
+ O(∆t2)

BDF3: ∂u

∂t

∣

∣

∣

tn
=

11un − 18un−1 + 9un−2
− 2un−3

6∆t
+ O(∆t3).

n

• These methods are L-stable: |G| −→ 0 as hλ −→ −∞

• kth-order accurate

• Implicit•

• Unconditionally stable only for k < 3 (here, k := order of method)•

• Multi-step: require data from previous timesteps



Q: Which is stable?

Which part is unstable?



Implicit Orbit Example



Explicit High-Order Methods

• High-order explicit methods are of interest for several reasons:

• Lower cost per step than implicit (but possibly many steps if system 

has disparate timescales, i.e., is stiff --- spring-mass example).

• More accuracy

• For k > 2, encompass part of the imaginary axis near zero, so stable 

for systems having purely imaginary eigenvalues, provided h is 

sufficiently small.

• We’ll look at three classes of high-order explicit methods:

• BDFk / Ext k

• kth-order Adams Bashforth

• Runge-Kutta methods

• Each has pros and cons…



Higher-Order Explicit Timesteppers:  BDFk/EXTk

• Idea: evaluate left-hand and right-hand sides at tk+1 to accuracy O(∆tk).

dy

dt

�

�

�

�

tk+1

= f(t, y)|
tk+1

• Can treat term on the right via kth-order extrapolation.

• For example, for k = 2,

3yk+1 − 4yk + yk−1

2∆t
+ O(∆t2) = 2fk − fk−1 + O(∆t2)

• Solve for yk+1 in terms of known quantities on the right:

yk+1 =
2

3



4yk − yk−1

2
+ ∆t(2fk − fk−1)

�

+ O(∆t3)

• Note that LTE is O(∆t3), GTE=O(∆t2).



BDFk-EXTk Example

3un − 4un−1 + un−2

2∆t
+O(∆t2) =

�

2gn−1
− gn−2 +O(∆t2)

�

+ f(un, tn),
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u
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u
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u
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u
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u
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g
n−1

g
n−2

g
n−3

−−− t −−−

g

• Use old known values of u(t), plus unknown un to estimate u0(tn)

• Use old known values of g(t, u) to esimate rhs, gn



• Here we see that the k=3 curve encompasses part of the imaginary axis near 

the origin of the lDt plane, which is important for stability of non-dissipative 

systems (i.e., those having imaginary eigenvalues).

Stable



Higher-Order Explicit Timesteppers: kth-order Adams-Bashforth

• Adams-Bashforth methods are a somewhat simpler alternative to BDFk/EXTk.

• Time advancement via integration:

yk+1 = yk +

Z

tk+1

tk

f(t,y) dt

• AB1:
Z

tk+1

tk

f(t,y) dt = hkfk + O(h2)

• AB2:
Z

tk+1

tk

f(t,y) dt = hkfk +
h2
k

2



fk − fk−1

hk−1

�

+ O(h3)

= h

✓

3

2
fk −

1

2
fk−1

◆

+ O(h3) (if h is constant)

• AB3:
Z

tk+1

tk

f(t,y) dt = h

✓

23

12
fk −

16

12
fk−1 +

5

12
fk−2

◆

+ O(h4) (if h is constant)

• LTE for ABm is O(hm+1). GTE for ABm is O(hm).



Stability of Various Timesteppers

• Derived from model problem

• Stability regions shown in the lDt plane  (stable inside the curves)

~ 0.72

• To make effective use of this plot, we need to know 

something about the eigenvalues l of the Jacobian.

• But first, How are these plots generated?



Determining the Neutral-Stability Curve



Matlab Code:  stab.m



Semi-Implicit Methods for Stiff ODEs

• Recall, for general system of ODES,

y0 = f(t,y),

growth factor for EB is spectral radius (max |λj|) of (I � hJ)�1

• Recall our basic timesteppers for model problem y0 = Jy:

– EF: yk+1 = (I + hJ)yk

– EB: (I � hJ)yk+1 = yk

– Trap: (I � h
2
J)yk+1 = (1 + h

2
J)yk

• We see that the trapezoidal rule is just a splitting of the Jacobian J .

• We can effect other splittings to get stable schemes that are easier to
solve than the fully-implicit systems (where J = J(yk+1), in general).



Semi-Implicit Methods for Stiff ODEs

• For stiff problems can split Jacobian into fast and slow parts

J = Jf + Js

(I − hJf)yk+1 = (I + hJs)yk

• Growth factor is spectral radius

ρ
⇥

(I − hJf)
−1(I + hJs)

⇤

• Often, Jf can be linear and diagonal or a linearization of the
nonlinear system operator.

• Js, treated explicitly, can be nonlinear, nonlocal, nonsymmetric, etc.

fast

part
slow

part



Semi-Implicit Methods for Stiff ODEs

• Method can be extended to high-order using BDFq/EXTq.

• For example, a 2nd-order BDF/EXT scheme would be:

dy

dt
=

3yk+1 − 4yk + yk−1

2h
+ O(h2)

= Jfyk+1 + (2qk − qk−1) + O(h2)

with qk−j := Js(tk−j,yk−j)yk−j.

• One can rearrange to solve for yk+1. The system is of the form
✓

3I +
2h

3
Jf

◆

yk+1 = g

• This scheme can be relatively stable and 2nd-order accurate.



A Note On Checking the Accuracy of Your Solution

• Grid Refinement Study – mandatory. 

• Otherwise, how do you know that your answer is correct?

• Grid refinement + convergence    

  à converged solution to numerical problem.

• It does not imply that your code is correct.  

• To do that, we typically solve a nearby problem for which we know 

the exact answer, if possible.

• Two scenarios:

• 1. We are checking code correctness.

• 2. We are checking grid resolution.

• If the code is well-tested, we typically only need to check #2      

(on a problem-to-problem basis).



Practical Aspects

• How to check the accuracy if you don’t know the answer??

• What do you know?

• If all is working (i.e., converging), with ỹ your exact answer and yh ⇡ ỹ your numerical
approximation of order p, then

lim
h−→0

kỹ � yhk = O(hp) = cph
p + h.o.t.

cp � a constant, independent of h

h.o.t. � higher-order terms ⌧ O(hp) (e.g.,O(hp+1)).



Practical Aspects

• Consider the case p = 2 (second-order scheme).

• Let h = finest scale.

• Compute results for yh, y2h, y4h, (. . . , maybe more).

(1) ỹ − yh = c4h
2 + h.o.t. (ỹ − not known!)

(2) ỹ − y2h = c4(2h)
2 + h.o.t. (c4 − not known!)

(3) ỹ − y4h = c4(4h)
2 + h.o.t.

• Subtract successive approximations:

(2)− (1) dh := yh − y2h = c43h
2 + h.o.t.

(3)− (2) d2h := y2h − y4h = c412h
2 + h.o.t.

• Take the ratio of the differences:

d2h

dh
= 4 + h.o.t.



• More generally, for pth-order method:

ỹ − yh = cph
p + h.o.t.

ỹ − y2h = cp(2h)
p + h.o.t.

ỹ − y4h = cp(4h)
p + h.o.t.

• Subtract successive approximations:

dh := yh − y2h = cp(2
p
− 1)hp + h.o.t.

d2h := y2h − y4h = cp(2
p
− 1)2php + h.o.t.

• Take the ratio of the differences:

d2h

dh
= 2p + h.o.t.

• So, must do at least 3 trials to verify that convergence is the expected rate, O(hp).

• This is the only result available.



• Note that we can further leverage this result, however.

• If the scheme is convergent, then h.o.t. ⌧ cph
p and

(1) ỹ � yh ⇡ cph
p

(2) ỹ � yh ⇡ cp(2h)
p

• Subtracting:

(2)� (1) dh := yh � y2h ⇡ cp(2
p
� 1)hp

=) cph
p
⇡

yh � y2h

2p � 1
=: eest.

• Improved estimate of ỹ:

ỹ ⇡ yh + eest.

• Estimate is conservative (O(hp)).

• Answer is better (O(hp+1)).


