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KSP application: exponential time integration

By the end of this segment you will:

Know what a matrix exponential is and its relevance to solving differential equations
Know how to calculate the matrix exponential using eigendecomposition

Know how to approximate the matrix exponential using Krylov Subspace Projection
Know the cost and accuracy of KSP-based exponential time integration

Know how to implement KSP-based exponential time integration

Know some of the benefits and drawbacks of KSP-based exponential time-integration
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The matrix exponential

If A is an n x n then the matrix exponential

1 1
eA=1+cA+ =(cA)?+ (cA)d...

2!
Relevance to solving linear differential equations:

3!

or
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Evaluating the matrix exponential

® Due to catastrophic cancellation, computing the matrix exponential using series
expansion is generally a bad idea for more than a handful of terms.

® Many methods of numerically time advancing differential equations use only the first

few terms
Euler Forward: Y=yt AtAy; — Vi = 1+ AtA)Zj (1)
Euler Backward: Y =Yt At‘ijJrl Y= (r- AtA)XjH (2)
1 ~1
>y, = (- AtA) Ty (3)

e If A is diagonalizable, can use the eigendecomposition A = S~!AS
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Matrix exponential with eigendecomposition

FriateV4 (4)
— j’: =SAS 'y (5)
d(sd_tly) —As7ly (6)
%:I\ywnhﬂzs_lz 7
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Matrix exponential with eigendecomposition

We still have to compute the matrix exponential of e2t". |s this a problem?
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Cost of matrix exponentiation with
eigendecomposition

® Problem cost of computing all eigenvectors and eigenvalues scales as O(n?)
e 10'? operations if A is 10000 x 10000

® QQ: How can we reduce the cost?
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Reducing the cost with Krylov subspace projection

® Approximate Yii1 in the rank k < n Krylov subspace of matrix powers spanning
Ky — [X,- AtAy, (AtAYy, (AtAYy, ... (AtA)k_lxj]

® |et Ak = QkTAQk where the matrix Q, with the same span as K comes from
Arnoldi iteration

* Eigenvalues and eigenvectors of A (Ritz values/Ritz vectors) approximate the largest
eigenvalues and eigenvectors of A

8/13



Reducing the cost with Krylov subspace projection

y(t) = Se""s71y(0) (11)
— y(t) ~ Q,8e™51Q] y(0) (12)
=Y~ ngeAtﬁglekTXj (13)

where § = S( ) dA= /N\(Xj) are the time-step dependent eigenvalues and

eigenvectors of A = k(Xj)
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Activity: cost comparisons

On your own, determine the costs of the following methods. Then compare your answers
with a partner.

Euler Forward approach: Y1 =Y + AtAy;

Eigendecomposition approach: Vi = SeAmS_lxj

KSP approach: Vi ™ Qk§eAt7‘§‘1Qszj
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Convergence

The exponential integrator approximates

eBtAy — (1 + AtA 4+ = (AtA)

Y, LBy )y,

in the span of
y; AtAy, (AtA)ZXj (AtA)3Xj . (AtA)< Ty

In infinite precision, the first k — 1 terms of the series are represented exactly.

Leading order error term: c(At)% — O((At)¥) error for a single time step
For all time steps ns = Tr/At — G (ALK — O((At)k1)

Often achieved in practice, but total error also depends on the error Q, and the
accuracy of the Ritz values and Ritz vectors

This is only the temporal error. The spatial error depends on the spatial operator
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Motivation for use

® Fasy to formulate high-order time stepper without lengthy derivation
e High-order exponential time stepper is stable for relatively large time steps
® Compared to typical explicit methods like Euler Forward, can take larger time steps —
Fewer time steps
® Compared to typical implicit methods like Euler Backward, does not require solving an
n X n system of equations
® Drawbacks

® Can be more expensive per time step than typical explicit methods
® Requires storing basis for KSP
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Hands on

e Sign into Colab with your lllinois account and save notebook to Drive

Colab link: https://tiny.cc/rp1c001 -
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