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Optimization

• Given function f : lRn
−→ lR, and set S ⊆ lRn, find x∗ ∈ S such that

f (x∗) ≤ f (x) for all x ∈ S

• x∗ is called minimizer or minimum of f

• It suffices to consider only minimization because maximum of f is minimum
of −f

• Objective function, f, is usually differentiable, and may be linear or non-
linear

• Constraint set S is defined by system of equations and inequalities, which
may be be linear or nonlinear

• Points x ∈ S are called feasible points

• If S = lRn, problem is unconstrained



Optimization Problems

• General continuous optimization problem:

min f (x) subject to g(x) = 0 and h(x) ≤ 0

where f : lRn
−→ lR, g : lRn

−→ lRm, h : lRn
−→ lRp

−→ −→ −→

• Linear programming: f , g, h are all linear

• Nonlinear programming: at least one of f , g, h is nonlinear



Examples: Optimization Problems

• Minimize weight of structure subject to constraint on its strength, or max-
imize its strength subject to constraint on its weight

• Minimize cost of diet subject to nutritional constraints

• Minimize surface area of cylinder subject to constraint on its volume:

min
x1,x2

f (x1, x2) = 2πx1(x1 + x2)

subject to g(x1, x2) = πx2
1
x2 − V = 0

where x1 is the cylinder radius, x2 is the height, and V is the required
volume



Local vs Global Optimization

• x∗ ∈ S is global minimum if f (x∗) ≤ f (x) for all x ∈ S

• x∗ ∈ S is local minimum if f (x∗) ≤ f (x) for all feasible x in some
neighborhood of x∗



Global Optimization

• Finding or, even verifying, global minimum is difficult in general

• Most optimization methods are designed to find local minimum, which may

or may not be global minimum

• If global minimum is desired, one can try several widely separated starting

points and see if all produce same result



Existence of Minimum

• If f is continuous on closed and bounded set S ✓ lRn, then f has global
minimum on S

• If S is not closed or is unbounded, then f may have no local or global min-
imum on S

• Continuous function f on unbounded set S ✓ lRn is coercive if

lim
kxk�!1

f (x) = +1

i.e., f (x) must be large when kxk is large

k k

• If f is coercive on closed, unbounded set S ✓ lRn, then f has a global
minimum on S



An Example of a Coercive Function

Level Sets (contours, isosurfaces)

Goes to 1 as kxk �! 1.

demo: coerce.m



Gradient of f (x)

• f (x) is a scalar function of an n-dimensional vector input.

f (x) = f (x1, x2, . . . , xn)

x = x1i + x2j + x3k (say, for n=3).

• Its gradient has n components,

rf (x) =
∂f

∂x1
i +

∂f

∂x2
j +

∂f

∂x3
k.

• The vector, rf , is in the domain of f (x)—for each direction,
(i, j, k), there is one component of rf .

• It is linear in f : r(2f ) = 2rf , so its units are

[f ]

[x]
=

units of f

units of x



Iso-Contours and Gradients

q  Gradient points away from minimum.

q -Gradient points towards the minimum.

q  Gradient direction is the direction of steepest ascent at point (x,y)

Level Sets 

(contours, 

isosurfaces)

Gradient field

demo: grad.m



Level Sets

• Level set for function f : S ⊆ lRn
−→ lR is set of all points in S for which

f has some given constant value

• For given γ ∈ lR, sublevel set is

Lγ = {x ∈ S : f (x) ≤ γ}

• If continuous function f on S ⊆ lRn has nonempty sublevel set that is closed
and bounded, then f has global minimum on S

• If S is unbounded, then f is coercive on S if, and only if, all of its sublevel
sets are bounded (No open contours…)

Level Set (isocontour)

(does not have to be coercive)

demo: level2.m



Uniqueness of Minimum

• Set S ⊆ lRn is convex if it contains a line segment between any two of its

points



Uniqueness of Minimum

• Set S ⊆ lRn is convex if it contains a line segment between any two of its

points

• Function f : S ⊆ lRn
−→ lR is convex on convex set S if its graph along

any line segment in S lies on or below chord connecting function values at

endpoints of segment



Uniqueness of Minimum

• Set S ⊆ lRn is convex if it contains a line segment between any two of its

points

• Function f : S ⊆ lRn
−→ lR is convex on convex set S if its graph along

any line segment in S lies on or below chord connecting function values at

endpoints of segment

• Any local minimum of convex function f on convex set S ⊆ lRn is global

minimum of f on S

• Any local minimum of strictly convex function f on convex set S ⊆ lRn is

unique global minimum of f on S



First-Order Optimality Condition

• For function of one variable, one can find extremum by differentiating func-
tion and setting derivative to zero

• Generalization to function of n variables is to find critical point, i.e., solu-
tion of nonlinear system

rf (x) = 0

where rf (x) is gradient vector of f , whose ith component is ∂f (x)/∂xi

• For continuously differentiable f : S ✓ lRn
�! lR, any interior point x⇤

of S at which f has a local minimum must be a critical point of f

• But not all critial points are minima: they can also be maxima or saddle
points



First-Order Optimality Condition

• Not all critial points are minima: they can also be maxima or saddle points

• Saddle points in higher dimensions are more common than zero-slope in-

flection points in 1D

Note the open contours….



• We use the solution techniques of Chapter 5 to solve this nonlinear system
of n equations (∂f/∂xi) in n unknowns, xj.

First-Order Optimality Condition

• For function of one variable, one can find extremum by differentiating func-
tion and setting derivative to zero

• Generalization to function of n variables is to find critical point, i.e., solu-
tion of nonlinear system

rf (x) = 0

where rf (x) is gradient vector of f , whose ith component is ∂f (x)/∂xi



• At critical point x∗, if Hf(x
∗) is

• positive definite, then x∗ is minimum of f

• negative definite, then x∗ is maximum of f

• indefinite , then x∗ is a saddle point of f

• singular, then various pathological situations are possible

Second-Order Optimality Condition

• For twice continuously differentiable f : S ⊆ lRn
−→ lR, we can distinguish

among critical points by considering the Hessian matrix, Hf(x) defined by

[Hf(x)]ij =
∂2f (x)

∂xi∂xj
=

∂2f (x)

∂xj∂xi

which is symmetric



Example: Classifying Critical Points

• f = 1 + (x� 1)2 + (x� 4)2

• f 0 = 4(x� 1)(x� 2.5)(x� 4)

• f 00 = 4[(x� 2.5)(x� 4)+ (x� 1)(x� 4)+ (x� 1)(x� 2.5)]

• Hessian is a 1⇥ 1 symmetric matrix

• At x = 1, f 00 = 18 (local minimumum)

• At x = 4, f 00 = 18 (local minimumum)

• At x = 2.5, f 00 = �9 (local maximum)

• Critical points (f 0(x) = 0), are x = 1, 2.5



Example: Classifying Critical Points

• Example 6.5 from the text:

f(x) = 2x3
1
+ 3x2

1
+ 12x1x2 + 3x2

2
� 6x2 + 6.

• Gradient:

rf(x) =

2

4

∂f
∂x1

∂f
∂x2

3

5 =

2

4

6x2
1
+ 6x1 + 12x2

12x1 + 6x2 � 6

3

5 .

4 5 4 5

• Hessian is symmetric:

Hf =

2

4

∂2f
∂x1∂x1

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x2∂x2

3

5 =

2

4

12x1 + 6 12

12 6

3

5 .



Example: Classifying Critical Points

• Critical points, solutions to rf(x) = 0 are

x⇤ =



1
�1

�

and x⇤ =



2
�3

�

• At first critical point, x⇤ = [1,�1]T ,

Hf(1,�1) =



18 12
12 6

�

,

is indefinite (both positive and negative eigenvalues), so [1,�1]T is
a saddle point.

• At second critical point, x⇤ = [2,�3]T ,

Hf(2,�3) =



30 12
12 6

�

,

does have positive eigenvalues, so [2,�3]T is a local minimum.



Example 6.5 from text

f(x) = 2x3
1
+ 3x2

1
+ 12x1x2 + 3x2

2
� 6x2 + 6.



Example 6.5 from text

f(x) = 2x3
1
+ 3x2

1
+ 12x1x2 + 3x2

2
� 6x2 + 6.

�

• First critical point, x⇤ = [1,�1]T , is a saddle point. Hessian not SPD.



Example 6.5 from text

f(x) = 2x3
1
+ 3x2

1
+ 12x1x2 + 3x2

2
� 6x2 + 6.

�

• First critical point, x⇤ = [1,�1]T , is a saddle point. Hessian not SPD.



Example 6.5 from text

f(x) = 2x3
1
+ 3x2

1
+ 12x1x2 + 3x2

2
� 6x2 + 6.

• Second critical point, x⇤ = [2,�3]T , is a local minimum. Hessian is SPD.



Second-Order Optimality Condition

• For twice continuously differentiable f : S ⊆ lRn
−→ lR, we can distinguish

among critical points by considering the Hessian matrix, Hf(x) defined by

[Hf(x)]ij =
∂2f (x)

∂xi∂xj

which is symmetric

• At critical point x∗, if Hf(x
∗) is

• positive definite, then x∗ is minimum of f

• negative definite, then x∗ is maximum of f

• indefinite , then x∗ is a saddle point of f

• singular, then various pathological situations are possible



Example of Singular Hessian in 1D

• Consider,

f(x) = (x� 1)4

rf =
∂f

∂xi
=

∂f

∂x
= 4(x� 1)3 = 0 when x = x⇤ = 1.

Hij =
∂2f

∂xixj
=

∂2f

∂x2
= 12(x� 1)2 = 0.

Here, the Hessian is singular at x = x⇤ and x⇤ is a minimizer of f .

• However, if

f(x) = (x� 1)3

rf =
∂f

∂xi
=

∂f

∂x
= 3(x� 1)2 = 0 when x = x⇤ = 1.

Hij =
∂2f

∂xixj
=

∂2f

∂x2
= 6(x� 1) = 0.

Here, the Hessian is singular at x = x⇤ and x⇤ is a not a minimizer
of f .



Minimum



Sensitivity and Conditioning of 

Optimization Problems



Sensitivity and Conditioning

• Function minimization and equation solving are closely related problems,
but their sensitivities differ

• In one dimension, absolute condition number of root x⇤ of equation f (x) = 0
is 1/|f 0(x⇤)|, so if |f (x̂)|  ✏, then |x̂� x⇤| may be as large as ✏/f 0(x⇤)

• The smaller the slope, the larger the uncertainty.



p

• Thus, based on function values alone, minima can be computed to only
about half precision

Sensitivity and Conditioning

• For minimizing f , Taylor series expansion about x⇤

f (x̂) = f (x⇤ + h)

= f (x⇤) + f 0(x⇤)h +
1

2
f 00(x⇤)h2 +O(h3)

⇠ f (x⇤) +
1

2
f 00(x⇤)h2

shows that if |f (x̂)� f (x⇤)|  ✏, then uncertainty in minimum, |x̂� x⇤|,

may be as large as
p

2✏/f 00(x⇤) � O(✏)



Consider f=1-cos(x)



Consider f=1-cos(x)



Consider f=1-cos(x)

q As you zoom in, f(x)à0 quadratically, but xàx* only linearly

q So, if |f(x)-f(x*)| ~ e, then  || x – x* || = O( e1/2 ) >> O( e ) 

O(e1/2)

e



Sensitivity of Minimization

Terminate search when

|f(x⇤ +∆x) � f(x⇤)|  ✏.

Taylor series:

f(x⇤ +∆x) = f(x⇤) + ∆xf 0(x⇤) +
∆x2

2
f 00(x⇤) + O(∆x3)

∆x2

2
⇡ f(x⇤ +∆x)� f(x⇤)

f 00(x⇤)

|∆x| ⇡

s

2✏

|f 00(x⇤)|

• So, if ✏ ⇡ ✏M , can expect accuracy to approximately
p
✏M .

• Question: Is a small f 00 good? Or bad?



Example:  Minimize Cost over Some Design Parameter, x

Cost

Design Parameter



Example:  Minimize Cost over Some Design Parameter, x

Cost

Design Parameter

q While having f’’(x*) makes it difficult to find the optimal x*, it in fact 

is a happy circumstance because it gives you liberty to add 

additional constraints at no cost.

q So, often, having a broad minimum is good.



Methods for One-Dimensional Problems

q Demonstrate 

q Basic techniques

q Bracketing

q Convergence rates

q Useful for line search in multi-dimensional problems



Unimodality

• For minimizing function of one variable, we need “bracket” for solution anal-
ogous to sign change for nonlinear equation

• Real-valued function f is unimodal on interval [a, b] if there is a unique
x∗ ∈ [a, b] such that f (x∗) is minimum of f on [a, b], and f is strictly de-
creasing for x ≤ x∗, strictly increasing for x∗ ≤ x



Unimodality

• For minimizing function of one variable, we need “bracket” for solution anal-
ogous to sign change for nonlinear equation

• Real-valued function f is unimodal on interval [a, b] if there is a unique
x∗ ∈ [a, b] such that f (x∗) is minimum of f on [a, b], and f is strictly de-
creasing for x ≤ x∗, strictly increasing for x∗ ≤ x

≤ ≤

• Unimodality enables discarding portions of interval based on sample func-
tion values, analogous to interval bisection for root finding



Golden Section Search

f1     >    f2



Golden Section Search

f1     >    f2

Discard



Golden Section Search

a                 x1         New x2

f1     >    f2



Golden Section Search

• Suppose f is unimodal on [a, b] and let x1 and x2 be two points within [a, b],
with x1 < x2

• Evaluating and comparing f (x1) and f (x2), we can discard either [a, x1) or
(x2, b], with minimum known to lie in remaining subinterval

• To repeat process, need to compute only one new function evaluation

• To reduce length of interval by fixed fraction at each iteration, each new
pair of points much have same relationship with respect to new interval
that previous pair had with respect to previous interval



Golden Section Search, continued

• To accomplish this, choose relative positions of two points as τ and 1 − τ ,
where τ 2 = 1− τ , so τ = (

√
5− 1)/2 ≈ 0.618 and 1− τ ≈ 0.382

• Whichever subinterval is retained, its length will be τ relative to the previ-
ous interval, and interior point will be at position either τ or 1− τ relative
to new interval

• To continue iteration, we need to compute only one new function value at
complementary point

• This choice of sample points is called golden section search

• Golden section search is safe but convergence rate is only linear, with con-
stant C ≈ 0.618

• Also, golden section nominally requires unimodality, but will in fact find a
local minimum in most cases



Golden Section Search, continued

• On [0,1], choose τ such that ratio

1− τ

1
=

τ − (1− τ )

τ

• Yields τ =

√
5− 1

2
≈ .618

• If the initial points are x0, . . . , x3, this choice allows us to add a point x4
such that sample points on [x1 : x3] have the same relative spacing as the
original points



Golden Section Search, continued

Algorithm 6.1 Golden Section Search

τ = (
√
5− 1)/2

x1 = a+ (1− τ)(b− a)
f1 = f(x1)
x2 = a+ τ(b− a)
f2 = f(x2)
while ((b− a) > tol) do

if (f1 > f2) then
a = x1

x1 = x2

f1 = f2
x2 = a+ τ(b− a)
f2 = f(x2)

else

b = x2

x2 = x1

f2 = f1
x1 = a+ (1− τ)(b− a)
f1 = f(x1)

end

end
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.
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.

.

.

.

.

.

a x1 x2 b

•
•

................................................................................................................................................................................................................................................................................| | | |
a x1 x2 b

↓ ↓

........................................................................................................................................................................| | | |
a x1 x2 b

1−τ

↑ ↑

........................................................................................................................................................................| | | |
a x1 x2 b

τ



Example: Golden Section Search

• Use golden section search to minimize f (x) = 0.5−xe−x2
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•

•

Figure 6.6: First iteration of golden section search for example problem.

demo_golden.m



Example: Golden Section Search

• Use golden section search to minimize f (x) = 0.5−xe−x2

k x1 f1 x2 f2
1 0.472 0.122 0.764 0.074
2 0.764 0.074 0.944 0.113
3 0.652 0.074 0.764 0.074
4 0.584 0.085 0.652 0.074
5 0.652 0.074 0.695 0.071
6 0.695 0.071 0.721 0.071
7 0.679 0.072 0.695 0.071
8 0.695 0.071 0.705 0.071
9 0.705 0.071 0.711 0.071

demo_golden.m



Successive Parabolic Interpolation

• Fit quadratic polynomial to three function values

• Take minimum of quadratic function to be new approximation to minimum

of function

• New point replaces oldest of three previous points and process is repeated

until convergence

• Convergence rate of successive parabolic interpolation is superlinear with

r ≈ 1.324

..................................................................................................................................................................................................................................................................................................................................................................................................................................................
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u wv v + p

q

Figure 6.7: Successive parabolic iteration for minimizing a function.



Example: Successive Parabolic Interpolation

• Use successive parabolic interpolation to minimize f (x) = 0.5−xe−x2

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..................................................................................................................
.....
....
...
...
...
...
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......

........

........

........

........

........

........
........
.....................

...
...
...
..
...
...
..

..
..
..
..

..
..
..
..

..
..
..
..

..
..
..
..

..
..
..
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

•

•

•

x0 x1x2 x3

Figure 6.8: First iteration of successive parabolic iteration for example problem.



Matlab: Successive Parabolic Interpolation – Replace Oldest

demo_para.m



Matlab: Successive Parabolic Interpolation – Replace Oldest



Example: Successive Parabolic Interpolation

• Use successive parabolic interpolation to minimize f (x) = 0.5−xe−x2

k xk fk |∆xk|/|xk| |∆fk|/|fk|
0 1.5000e + 00 3.4190e− 01 − −

1 1.0262e + 00 1.4200e− 01 4.6171e− 01 1.4078e + 00
2 1.0270e + 00 1.4230e− 01 7.6100e− 04 2.1207e− 03
3 7.5682e− 01 7.3186e− 02 3.5697e− 01 9.4439e− 01
4 6.2748e− 01 7.6743e− 02 2.0613e− 01 4.6352e− 02
5 7.1154e− 01 7.1135e− 02 1.1814e− 01 7.8837e− 02
6 7.0803e− 01 7.1119e− 02 4.9566e− 03 2.2605e− 04
7 7.0720e− 01 7.1118e− 02 1.1780e− 03 1.0140e− 05
8 7.0711e− 01 7.1118e− 02 1.2640e− 04 9.4006e− 08
9 7.0711e− 01 7.1118e− 02 1.5041e− 06 1.4127e− 11
10 7.0711e− 01 7.1118e− 02 2.6763e− 08 5.4638e− 15

 Superlinear

− − − −

• Successive Parabolic Interpolation is Newton’s Method applied to a quadratic
model of the data, r = 1.324

• We turn to Newton’s method next, r = 2



Newton’s Method

• Another local quadratic approximation is truncated Taylor series

f (x + h) ⇡ f (x) + f 0(x)h +
f 00(x)

2
h2

• By differentiation, minimum of quadratic function given by h = �f 0(x)/f 00(x)

• Suggests iteration scheme

xk+1 = xk � f 0(xk)/f
00(xk)

�

• No surprise, Newton’s method for minimization is equivalent to Newton’s
method for root finding applied to f 0(x)

• Newton’s method for finding minimum normally has quadratic convergence
rate, but must be started close enough to solution to converge



Example: Newton’s Method

• Use Newton’s method to minimize f (x) = 0.5� xe�x2

• First and second derivatives are

f 0(x) = (2x2 � 1)e�x2

f 00(x) = 2x(3� 2x2)e�x2

• Newton iteration for zero of f 0 is given by

xk+1 = xk � (2x2k � 1)/(2xk(3� 2x2k))
� � �

• Using starting guess x0 = 1, we obtain

k xk fk
0 1.000 0.132
1 0.500 0.111
2 0.700 0.071
3 0.707 0.071
4 0.707 0.071



Matlab Example:   newton1d.m



Safeguarded Methods

• As with nonlinear equations in one dimension, slow-but-sure and fast-but-

risky optimization methods can be combined to provide both robustness

and efficiency

• Most library routines for one-dimensional optimization are based on this

hybrid approach

• Popular combination is golden section search and successive parabolic in-

terpolation, for which no derivatives are required



Matlab: Successive Parabolic Interpolation: Naive Bracketing



Convergence Behavior

q Question 1:   What type of convergence is this? 

q Question 2:  What does this plot say about conditioning of



Methods for Multidimensional Problems



Methods for Multidimensional Problems

• Steepest Descent

• Newton’s Method

• Quasi-Newton Methods

• Secant-Updating Methods

• BFGS

• Conjugate Gradient Iteration

• Truncated Newton Methods



Practical Considerations: Multidimensional Problems

• Most of these methods require line searches, which should be robust

• A common approach (e.g., Numerical Recipes) is to first bracket the min-
imum using successively larger sample spacings until one has three points
a < b < c with f (b) < min(f (a), f (c))

• Note that you may need to convert your search problem to operate on a
single scalar variable, say α, such that

fs(α) = f (x + αs)

where x is typically your current iterate and s is the chosen search direction.

• Then a combination of golden section and successive parabolic interpolation
can be used to isolate the minimum for α where, presumably one of the end
points a or b is zero, corresponding to α = 0

• Numerical Recipes has mnbrak and brent to perform the bracketing and
the safegaurded line search.

• These utilities can be found in almost every language (or converted by
chatgpt)



Steepest Descent Method

• Let f : lRn
�! lR be real-valued function of n real variables

• At any point x where gradient vector is nonzero, the negative gradient,
�rf (x), points downhill toward lower values of f

• In fact, �rf (x) is locally the direction of steepest descent: f descreases
more rapidly along direction of negative gradient than along any other

• Steepest descent method: starting from initial guess x0, successive approx-
imate solutions given by

xk+1 = xk � αkrf (xk)

where αk is line search parameter that determines how far to go in given
direction



Gradient of f (x)

• f (x) is a scalar function of an n-dimensional vector input.

f (x) = f (x1, x2, . . . , xn)

x = x1i + x2j + x3k (say, for n=3).

• Its gradient has n components,

rf (x) =
∂f

∂x1
i +

∂f

∂x2
j +

∂f

∂x3
k.

• The vector, rf , is in the domain of f (x)—for each direction,
(i, j, k), there is one component of rf .

• It is linear in f : r(2f ) = 2rf , so its units are

[f ]

[x]
=

units of f

units of x



Iso-Contours and Gradients

q  Gradient points away from minimum.

q -Gradient points towards the minimum.

q  Gradient direction is the direction of steepest ascent at point (x,y)

Level Sets 

(contours, 

isosurfaces)

Gradient field

demo: grad.m



Steepest Descent, continued

• Given descent direction, such as negative gradient, determine appropriate
αk at each iteration by solving one-dimensional minimization problem,

αk = argmin
α

f (xk � αrf (xk)),

which can be solved by the one-dimensional methods introduced earlier

• Steepest descent is very reliable: it can always make progress when gradient
is nonzero

• But method is “too local” in its view of the function’s behavior and can
cause successive iterates to zigzag back and forth with little progress toward

• Convergence rate is generally linear, with constant factor that can be arbi-
trarily close to 1



Example: Steepest Descent

• Use steepest descent to minimize

f (x) = 0.5x2
1
+ 2.5x2

2

• Gradient is rf (x) =



x1
5x2

�

• Taking x0 =



5
1

�

, we have rf (x0) =



5
5

�

• Performing search along negative gradient direction,

min
x0

f (x0 � α0rf (x0))

exact minimum along line is given by α0 = 1/3, so

next approximation is x1 =



3.333
�0.667

�



Example: Steepest Descent

• Use steepest descent to minimize f (x) = 0.5x2
1
+ 2.5x2

2

• Notice that, for this example, the x2 value is oscillating about 0—the solu-
tion is zigzagging as x1 −→ 0.

• It’s not unreasonable to expect more rapid convergence if we occasionally
take a half step (at least for 2D cases)

• steep1.m and steep2.m demos

k x1 x2 f (xk)
∂f

∂x1

∂f

∂x2

0 5.0000 1.0000 15.0000 5.0000 5.0000
1 3.3333 −0.6667 6.6667 3.3333 −3.3333
2 2.2222 0.4444 2.9630 2.2222 2.2222
3 1.4815 −0.2963 1.3169 1.4815 −1.4815
4 0.9877 0.1975 0.5853 0.9877 0.9877
5 0.6584 −0.1317 0.2601 0.6584 −0.6584
6 0.4390 0.0878 0.1156 0.4390 0.4390
7 0.2926 −0.0585 0.0514 0.2926 −0.2926
8 0.1951 0.0390 0.0228 0.1951 0.1951



Example: Steepest Descent

• Use steepest descent to minimize f (x) = 0.5x2
1
+ 2.5x2

2



Newton’s Method

• Broader view can be obtained by local quadratic approximation,
which is equivalent to Newton’s method

• In multidimensional optimization, seek zero of gradient, so
Newton Iteration has the form

xk+1 = xk �H
�1

f (xk)rf (xk)

where Hf(x) is the Hessian matrix of second partial derivatives
of f ,

[Hf(x)]ij =
∂2f (x)

∂xi∂xj



Newton’s Method, continued

• Do not explicitly invert Hessian matrix, but instead solve linear system

Hf(xk)sk = �rf (xk)

for Newton step sk and take as next iterate

xk+1 = xk + sk

• Convergence rate of Newton’s method for minimization is normally quadratic

• As usual, Newton’s method is unreliable unless started close enough to
solution to converge



Example: Newton’s Method

• Use Newton’s method to minimize f (x) = 0.5x2
1
+ 2.5x2

2

• Gradient and Hessian are

rf (x) =



x1
5x2

�

and Hf(x) =



1 0
0 5

�

 �  �

 �  �

• Taking x0 =



5
1

�

, we have rf (x0) =



5
5

�

 �  �

• Linear system for Newton step is



1 0
0 5

�

s0 = �



5
5

�

, so

x1 = x0 + s0 =



5
1

�

+



�5
�1

�

=



0
0

�

which is exact solution, as expected for quadratic function

• Generally, Hessian will not be constant, and deviation from “exact” step
will be governed by the amount of variance between Hf(xk) and Hf(x

⇤)



Newton’s Method, continued

• In principle, line search parameter is unnecessary with Newton’s method
because quadratic model determines the direction and length of next step

• When started far from the solution, however, it may still be advisable to
perform line search along direction of Newton step sk to make method more
robust (damped Newton)

• Once iterates are near the solution then αk = 1 should suffice for quadratice
convergence



Newton’s Method, continued

• If objective function f has continuous second partial-derivatives then Hes-
sian matrix Hf is symmetric and, near x⇤, is positive definite

• Thus, using Cholesky, linear system for step to next iterate can be solved
in about half the work required for LU factorization

• Far from minimum, Hf(xk) may not be positive definite, so Newton step
sk may not be a descent direction for f , i.e., we may not have

rf (xk)
Tsk < 0

r

• In this case, alternative descent direction can be computed, such as�rf (xk),
and then perform line search



Quasi-Newton Methods

• Newton’s method costs O(n3) arithmetic and O(n2) scalar function evalu-
ations per iteration for dense problem

• Many variants of Newton’s method improve reliability and reduce overhead

• Quasi-Newton methods have form

xk+1 = xk � αkB
�1

k rf (xk)

where αk is line search parameter and Bk is approximation to Hessian

• Many quasi-Newton methods are

• more robust than Newton’s method,

• are superlinearly convergent, and

• have lower overhead per iteration,

which more than offsets their slower convergence rate



Secant Updating Methods

• Could use Broyden’s method to seek zero of gradient, but this would not

preserve the symmetry of the Hessian matrix

• Several secant updating formulas have been developed for minimization that

not only preserve symmetry in approximate Hessian but also preserve pos-

itive definiteness

• Symmetry reduces amount of work required by about half while positive

definiteness guarantees that quasi-Newton step will be a descent direction



BFGS Method

One of the most effective secant updating methods for minimization is BFGS

(Broyden–Fletcher–Goldfarb–Shanno)

x = initial guess

xk+1 = xk + αksk
Replace with 

line search

x0 = initial guess

B0 = initial Hessian approximation

for k = 0, 1, 2, . . .

Solve Bksk = �rf (xk) for sk
xk+1 = xk + sk

yk = rf (xk+1) � rf (xk)

Bk+1 = Bk + (yky
T
k )/(y

T
k sk)� (Bksks

T
kBk)/(s

T
kBksk)

end



BFGS Method, continued

• In practice, factorization of Bk is updated rather than Bk itself, so linear
system for sk can be solved at cost of O(n2) rather than O(n3)

• Unlike Newton’s method for minimization, no second derivatives are re-
quired

• Can start with B0 = I, so initial step is along negative gradient

• Second derivative information is gradually built up in Bk over successive
iterations

• BFGS normally has superlinear convergence rate, even though approximate
Hessian does not necessarily converge to true Hessian

• Line search can be used to enhance effectiveness (especially if using B0 = I

on step 1)



Example: BFGS Method

• Use BFGS to minimize f (x) = 0.5x2
1
+ 2.5x2

2

 �

•

• Gradient is rf (x) =



x1
5x2

�

• Taking x0 = [5 1]T and B0 = I, initial step is negative gradient, so

x1 = x0 + s0 =



5
1

�

�



5
5

�

=



0
�4

�

 �  � 

�

�

• Updating approximate Hessian using BFGS formula yields

B1 =



0.667 0.333
0.333 0.667

�

 �

• Then new step is computed and process is repeated



Example: BFGS

• Use BFGS to minimize f (x) = 0.5x2
1
+ 2.5x2

2

k x1 x2 f (xk)
∂f

∂x1

∂f

∂x2

0 5.0000 1.0000 15.0000 5.0000 5.0000
1 0.0000 −4.0000 40.0000 0.0000 −20.0000
2 −2.2222 0.4444 2.9630 −2.2222 2.2222
3 0.8163 0.0816 0.3499 0.8163 0.4082
4 −0.0092 −0.0153 0.0006 −0.0092 −0.0767
5 −0.0005 0.0009 0.0000 −0.0005 0.0046

• Increase in function value can be avoided by using line search, which gener-

ally enhances convergence

• For quadratic objective function, BFGS with exact line search finds exact

solution in at most n iterations



Example: BFGS

• Use BFGS to minimize f (x) = 0.5x2
1
+ 2.5x2

2

• bfgs1.m



Example: BFGS

• Use BFGS to minimize f (x) = 0.5x2
1
+ 2.5x2

2

• bfgs1.m

without line search



Example: BFGS

• Use BFGS to minimize f (x) = 0.5x2
1
+ 2.5x2

2

• bfgs1.m

with line search



Conjugate Gradient Method

• Another method that does not require explicit second derivatives and does
not even store approximation to the Hessian matrix is conjugate gradient

(CG) method

• CG generates sequence of conjugate search directions, implicitly accumulat-
ing information about the Hessian matrix

• For quadratic objective function, CG with exact line search is theoretically
exact after at most n iterations

• CG is effective for general unconstrained minimization



Conjugate Gradient Method, continued

x0 = initial guess

g0 = rf (x0)

s0 = �g0

for k = 0, 1, 2, . . .

Choose αk to minimizef (xk + αksk)

xk+1 = xk + αksk

gk+1 = rf (xk+1)

βk+1 = (gT
k+1gk+1)/(g

T
k gk)

sk+1 = �gk+1 + βk+1sk

end

• Alternative formula for βk+1 is

βk+1 = ((gk+1 � gk)
Tgk+1)/(g

T
k gk) Try this ?



Example: Conjugate Gradient Method

• Use CG method to minimize f (x) = 0.5x2
1
+ 2.5x2

2

 �

•

• Gradient is rf (x) =



x1
5x2

�

• Taking x0 = [5 1]T and B0 = I, initial search direction is negative gradient

s0 = �g0 = �rf (x0) = �



5
5

�

 �

• Exact minimum along line is given by α0 = 1/3, so next approximation is
x1 = [3.333 � 0.667]T , and we compute new gradient

g1 = rf (x1) =



3.333
�3.333

�



CG Example, continued

• So far, there is no difference from steepest descent method

• At this point, however, rather than search along new negative gradient, we
compute instead

β1 = (gT
1
g1)/(g

T
0
g0) = 0.444

which gives as the next (conjugate) search direction

s1 = −g1 + β1s0 =



3.333
−3.333

�

− 0.444



5
5

�

=



−5.556
1.111

�

• Minimum along this direction is given by α1 = 0.6, which gives exact solu-
tion at origin, as expected for quadratic function

• cg1.m demo



Example: Conjugate Gradients

• Use CG to minimize f (x) = 0.5x2
1
+ 2.5x2

2

k x1 x2 f (xk)
∂f

∂x1

∂f

∂x2

0 5.0000 1.0000 15.0000 5.0000 5.0000
1 3.3333 −0.6667 6.6667 3.3333 −3.3333
2 −0.0000 0.0000 0.0000 −0.0000 0.0000

− −

• Here, we see that CG converges in 2 iterations, which we would expect for
this quadratic form in two dimensions

• steep2.m compares CG to steepest descent for the Rosenbrock equation



Example: CG vs Steepest Descent

• CG and steepest descent differ only by about one line of code

• Their convergence rates, however, are dramatically different

• Moreover, for quadratic objective functions in n dimensions, CG will theo-
retically converge in at mostm ≤ n iterations, wherem=number of distinct
eigenvalues in the (constant) Hessian matrix



Example: CG vs Steepest Descent

• CG and steepest descent differ only by about one line of code

• Their convergence rates, however, are dramatically different

• Moreover, for quadratic objective functions in n dimensions, CG will theo-
retically converge in at mostm ≤ n iterations, wherem=number of distinct
eigenvalues in the (constant) Hessian matrix



Conjugate Gradient Iteration for Optimization

• Consider the objective function

f(x) =
1

2
xTHx = xTb + c

=
1

2
(x� x⇤)TH(x� x⇤) + c̃.

• Let’s take the case H=constant, which is essentially the case for x ⇡ x⇤

as it represents the first two terms in the Taylor series about x⇤.

• The gradient is

rf = Hx � b,

and the minimizer is the point x⇤ such that rf(x⇤) = 0,

=) Hx⇤ = b.

)

• Near the minimizer, need to solve a linear system.



Update Algorithm

• For steepest descents, Newton’s method, CG, etc., the update algorithm
is of the form:

xk+1 = xk + αk sk

= x0 + α0 s0 + α1 s1 + · · · + αk sk.

· · ·

• If x0 = 0,

xk+1 = [s0 s1 · · · sk]
| {z }

Sk

0

B
B
B
@

α0

α1

...
αk

1

C
C
C
A

| {z }

ak

= Sk ak.

• That is, xk+1 is a linear combination of the preceeding k + 1 search
directions sj.



• Main Idea: Find ak = [α0 α1 · · · αk]
T
such that

Sk ak ⇡ x⇤.

• Use linear least squares, with a computable inner product.

• Since we only know rf = Hx � b = Hx � Hx⇤ = H(x � x⇤), rather
than x⇤ itself, it makes sense to use the H inner product:

• Actually, we won’t even need to know H or b!

• For the moment, we proceed as if we do know them.



Linear Least Squares in H Inner-Product.

• In theH-norm, the closest element in our search space (=span{s0 · · · sk})
is given by the vector Skak satisfying,

min
ak

[Skak � x⇤]H =) sTi H (Skak � x⇤) = 0, i = 0, . . . , k.

sTi HSkak = sTi Hx⇤ = sTi b

�

ST
kHSk

�

ak = ST
kb.

• If sTi Hsj = 0 for i 6= j, then ST
kHSk is diagonal:

�

ST
kHSk

�

ak =

2

6

6

6

4

sT
0
Hs0

. . .

sTkHsk

3

7

7

7

5

0

B

B

B

@

α0

α1

...
αk

1

C

C

C

A

=

0

B

B

B

@

sT
0
b

sT
1
b
...

sTkb

1

C

C

C

A

.



• Solving for αk becomes trivial:

αk =
s
T

k
b

sT
k
Hsk

.

– Note that, for optimization problems, we don’t know H nor b.

– We can find αk, however, through a line search in the direction sk.

• The main point is that each update step yields the best fit in Sk,

independent of the previous steps,

xk+1 = α0s0 + α1s1 + · · · + αk−1sk−1 + αksk

= xk + αksk.

• Thus, we have a short-term recurrence to go from xk to xk+1 that yields

the optimal solution.

• The only requirement for optimality is: sk ⊥H Sk−1.



• The only requirement for optimality is: sk ⊥H Sk−1.

• Thus, set:

sk+1 = −

 

gk+1 −

k
X

j=1

γjsj

!

with

γj =
sTj Hgk+1

sTj Hsj
= 0.

• For constant SPD H, γj = 0 for j < k because the gradient is H ×

the error: gk+1 = Hek+1 and the error is orthogonal to the search space
because of the best fit property, ek+1 ⊥H HSj, j < k

⊥

• So, we also have a short-term recurrence for sk+1:

sk+1 = −gk+1 + βk+1sk,

with (after some manipulation...)

βk+1 =
gT
k+1

gk+1

gT
k gk

or βk+1 =
(gk+1 − gk)

Tgk+1

gT
k gk

.



Summary of CG for Optimization

• CG iteration produces projection of x⇤ onto span{s0 s1 . . . sk}

• For constant SPD Hessian, H, CG will be exact after m iterations, where
m  n is the number of distinct eigenvalues in H

• For nonconstant H(x), CG is not exact. However, as x �! x⇤, we have
H(x) �! H(x⇤), which is constant.

• Potentially important to restart orthogonalization process after n iterations,
otherwise STHS will be k ⇥ k with k > n, and therefore singular

• Method does not need H nor b. Only rf and line search along direction
sk are required



Example: Rosenbrock Function

• Compare steepest descent, CG, and BFGS for Rosenbrock [1960] function:

f (x) = (a− x)2 + b(y − x2)2, with a = 1, b = 100

• Minimum is at x∗ = [x∗, y∗]T = [a, a2]T

steep2.m

cg2.m

bfgs2.m



Example: Rosenbrock Function

• Compare steepest descent, CG, and BFGS for Rosenbrock [1960] function:
f (x) = (a− x)2 + b(y − x2)2, with a = 1, b = 100

• Minimum is at x∗ = [x∗, y∗]T = [a, a2]T

Steepest Descent Conjugate Gradients BFGS



Example: Rosenbrock Function

• Compare steepest descent, CG, and BFGS for Rosenbrock [1960] function:
f (x) = (a− x)2 + b(y − x2)2, with a = 1, b = 100

• Minimum is at x∗ = [x∗, y∗]T = [a, a2]T

• With x0 = [−1, 2], steepest descent has not converged after a 100 iterations

• Restarted CG-3 ( β = 0 if mod(k,3)=0 ) requires 27 iterations

• BFGS with line search requires 23 iterations



Practical Considerations: Rosenbrock Function

• Steepest descent can be improved by taking a damped step, αk =
1

2
αk,

every few iterations

• CG requires setting βk = 0 every few (≈ n + 1) iterations

• Could RP-CG outperform FR-CG (i.e., changing the formula for βk)?

• BFGS starting with B0 = I generally requires a line search.



Nonlinear Least Squares



Nonlinear Least Squares

• Given data (ti, bi), i = 1, . . . ,m, find vector x 2 lRn of parameters that
give “best fit” in least squares sense to model function f (t,x), where f is
nonlinear in x

• Example: find a decaying sinusoidal function that matches observed data.

f (t,x) = ae−bt sin(ωt − φ) + c

−

• Here, the vector of unknown parameters is x = [a, b, ω, φ, c]T



Nonlinear Least Squares

• Given data (ti, bi), i = 1, . . . ,m, find vector x 2 lRn of parameters that
give “best fit” in least squares sense to model function f (t,x), where f is
nonlinear in x

• Example: find a decaying sinusoidal function that matches observed data.

f (t,x) = ae−bt sin(ωt − φ) + c−

• Here, the vector of unknown parameters is x = [a, b, ω, φ, c]T

• Most often, we are interested in the decay rate, b, and the frequency, ω.
Why?

• Because these parameters are intrinsic to the physical system, whereas phase
(φ) , amplitude (a), and offset (c) are usually associated with the particular
trial

• Think of a guitar string: frequency and decay are functions of the string
and the guitar, amplitude and phase are related to how hard you pluck and
when you start



Nonlinear Least Squares

• Nonlinear least squares seek to minimize the square of the 2-norm of the
residual, or difference, between a user-defined model, y = f (t,x) 2 lRm

and observational data b 2 lRm.

• Like linear least squares, the quantity to be minimized is

φ(x) :=
1

2
ky � bk2

2

only here, instead of the linear form y = Ax, we have y = f (t,x) or, more
explicitly, yi = f (ti,x), where x is the vector of parameters that define f .

i i

(Note that, in this chapter, the text uses a different definition of y—here,
I try to retain the same usage of y as in Chapter 3.)

• This minimization problem fits within the framework of the multidimen-
sional optimization problems considered so far.

• However, because of the special nature of the objective function φ(x), more
efficient approaches such as Gauss-Newton and, particularly, Levenberg-
Marquardt, can be used.



Nonlinear Least Squares

• Given data (ti, bi), i = 1, . . . ,m, find vector x 2 lRn of parameters that
give “best fit” in least squares sense to model function f (t,x), where f is
nonlinear in x

• Define components of residual function

ri(x) = bi � f (ti,x), i = 1, . . . ,m

and seek to minimize 2-norm of r.

• Gradient vector is rφ(x) = JT (x)r(x) and Hessian matrix is

Hφ = JT (x)J(x) +

mX

i=1

ri(x)Hi(x)

where J(x) is Jacobian of r(x) and Hi(x) is Hessian of ri(x)

• Specifically, we want to minimize the objective function

φ(x) :=
1

2
rT (x)r(x)



X

• m Hessian matrices Hi are usually inconvenient and expensive to compute

• Moreover, in Hφ, each Hi is multiplied by residual component ri, which is
small at solution if model function is a good fit to the data

Nonlinear Least Squares, continued

• Linear system for Newton step is

Hφ(xk)sk =

 

JT (xk)J(xk) +

m
X

i=1

ri(xk)Hi(xk)

!

sk = −JT (xk)r(xk)



Gauss Newton Method

• These observations motivate Gauss-Newton method for nonlinear least squares,
in which second-order term involving His is dropped and linear system

J
T (xk)J(xk)sk = −J

T (xk)r(xk)

is solved for approximate Newton step, sk at each iteration

• This is a system of normal equations for linear least squares problem

J(xk)sk ≈ −r(xk)

which can be solved better by QR factorization

• Next approximate solution is then given by

xk+1 = xk + sk

and process is repeated until convergence



Nonlinear Least Squares

A bit of notation...

• Recall linear least squares problem: Find x such that

y = Ax ≈ b

for m× n matrix with m > n.
×

• The nonlinear least squares problem is almost the same: Find x such

that

y = A(x)x ≈ b.

• Here,A = A(x) is a function of the unknown parameters x = [x1 x2 . . . xn]
T .

•

• In many cases, cannot readily write residual evaluation as r = b−Ax.
• −

• Instead, seek parameters xj, j = 1, . . . , n that minimize the 2-norm of
the residual vector with components

ri(x) = bi − f(ti,x),

with f(t,x) a nonlinear function of x.

• Here, f(ti,x) is the model function which approximates the data



Example: Linear Least Squares

Model: f(t,x) = x1 sin 2πt + x2 sin 4πt.

• This problem is linear in the unknown model parameters, x1 and x2.

• (It is nonlinear in independent parameter, t, however.)

• In graph, the bi are given data as a function of ti.

• The linear least squares problem is

2

6

6

6

6

6

4

sin 2πt1 sin 4πt1

sin 2πt2 sin 4πt2
...

sin 2πtn sin 4πtn

3

7

7

7

7

7

5

✓

x1
x2

◆

≈

0

B

B

B

B

B

@

b1

b2

...

bn

1

C

C

C

C

C

A

.



Example: Nonlinear Least Squares

Model: f(t,x) = x1 sin x2πt + x3 sin x4πt.

• This problem is nonlinear in the unknown model parameters, x = [x1 x2 x3 x4]
T .

•

• The nonlinear least squares problem is:

Find [x1 x2 x3 x4] that minimizes ||r||, with

r := b − f(ti,x).



      

             

Nonlinear Least Squares

• ri = bi � f(ti,x) (x are the unknowns.)

Example: f(t,x) = x1e
x2t.

• Minimization problem:

φ(x) =
1

2
rTr =

1

2

m
X

i=1

r2i .
X

• Stationary point:

rφ(x) =
∂

∂xj
φ

=
∂

∂xj

"

1

2

m
X

i=1

r2i

#

=
m
X

i=1

ri
∂ri

∂xj
=

m
X

i=1

∂ri

∂xj
ri = JT (x)r(x),

with

Jij :=
∂ri

∂xj
.



• Hessian:

Hφ(x) =
∂

∂xk
rφ

=
∂

∂xk

 

m
X

i=1

∂ri

∂xj
ri

!

Hφ,jk =
m
X

i=1

∂ri

∂xj

∂ri

∂xk
+

m
X

i=1

ri

∂2
ri

∂xj∂xk

Hφ(x) = J
T (x)J(x) +

m
X

i=1

ri(x)Hi(x)
X

• Hφ is the sum of SPD matrices (near x⇤, at least), where the His
are the Hessians associated with each residual component, ri(x).

• The contributions of Hi are weighted by the residual component,
ri(x) �! 0 as x �! x

⇤.�! �!

• Since we typically spend most of the work near x⇤, it is convenient
to neglect the His when considering the Hessian of φ.



• Newton Step:

Hφsk = −JT

k
rk

xk+1 = xk + sk

• Search direction via approximate Hessian:
 

JT

k
Jk +

m
X

i=1

riHri

!

sk = −J(x)Trk

� �

X

≈

�

JT

k
Jk

�

sk = −J(x)Trk
� �

• Equivalent to normal equations, linear least squares:

Jksk ≈ −rk.

• Solve via (reduced) QR instead of Gaussian elimination:

Q1R1 = Jk

QT

1Q1R1sk = −QT

1 rk

sk = −R−1

1 QT

1 rk

xk+1 = xk + sk.

ignore



Gauss Newton Method, continued

• Gauss-Newton method replaces nonlinear least square (NLSQ) problem by
a sequence of linear least squares (LLSQ) problems whose solutions converge
to solution of original nonlinear problem

• If residual at solution is large, then second-order term omitted from Hessian
is not negligible and Gauss-Newton method may converge slowly or fail to
converge

• In such “large-residual” cases, it may be best to use general nonlinear min-
imization that takes into account the true full Hessian matrix



Levenberg-Marquardt

• Standard Gauss-Newton step is like Newton’s method applied

to truncated Hessian:
�

JT
kJk

�

sk = �J(x)Trk

• Suffers from not being robust.

• Steepest descent would be:

sk = �J(xk)
Trk = �rφ(xk)� �r

or, with a scale factor 1

µk
,

sk = �
1

µk

J(xk)
Trk () µksk = �J(xk)

Trk

• Levenberg-Marquardt is a combination of these two:
�

JT
kJk + µkI

�

sk = �J(x)Trk,

which, for large µk, corresponds to steepest descent.

• If µk �! 0 as the iteration proceeds, recover Gauss-Newton

and quadratic convergence.



Levenberg-Marquardt Method

• Levenberg-Marquardt method is another useful alternative when Gauss-
Newton approximation is inadequate, yields rank-deficient LLSQ problem,
or is too sensitive to initial guess x0

• In this method, linear system at each iteration is of form

(JT (xk)J(xk) + µkI)sk = −JT (xk)r(xk)

where µk is a scalar parameter chosen by some strategy

• Corresponding LLSQ is

"

J(xk)
√
µkI

#

sk ≈

"

−r(xk)

0

#

• Typically, one starts with a relatively large value of µk and then drives it to
zero as k increases

• With suitable strategy for choosing µk, this method can be very robust in
practice and it forms the basis for several effective software packages

• Note that large µk implies that the update is more like a steepest-descent
step than a Newton step





Example: Nonlinear Least Squares



levenberg.m

ß this is Gauss-Newton 

(commented out)

ß this is Levenberg- 

Marquardt



Constrained Optimality



Constrained Optimality

• If problem is constrained, only feasible directions are relevant

• Consider equality-constrained problem

min f (x) subject to g(x) = 0

where f : lRn
�! lR and g : lRn

�! lRm, with m  n

• Necessary condition for feasible point x⇤ to be solution is that negative
gradient of f lie in space spanned by constraint normal,

�rf (x⇤) = JT
g (x

⇤)λ

where Jg is Jacobian matrix of g and λ is vector of Lagrange multipliers

• This condition says that we cannot reduce objective function without vio-
lating the constraints



Constrained Optimality Example, g(x) a Scalar.

q Comment on:  “This condition says we cannot reduce objective 

function without violating constraints.”

q A key point is that, x*, sf is parallel to sg

q If there are multiple constraints, then sf in span{sgk} = Jg
T ¸

g(x) = 0

sg

-sf 



Constrained Optimality, continued

• Lagrangian function, L : lRn+m
�! lR, is defined by

L(x,λ) = f (x) + λ
Tg(x)

• Its gradient is given by

rL(x,λ) =

"

rf (x) + JT
g λ

g(x)

#

• Its Hessian is given by

rHL(x,λ) =

"

B(x,λ) JT
g (x)

Jg(x) O

#

where

B(x,λ) = Hf(x) +

m
X

i=1

λiHgi(x)

∂L

∂x
∂L

∂λ

Notice that Hessian will 

never be SPD because of 

0’s on the diagonal 

à critical point is a saddle 

point



Constrained Optimality, continued

• Lagrangian is designed so that the critical point satisfies necessary and
feasibility conditions for constrained minimization

rL(x,λ) =

"

rf (x) + JT
g λ

g(x)

#

= 0



Equality Constraints: Case g(x)=scalar.

min f(x) subject to g(x) = 0.

• Lagrangian

L(x,λ) := f(x) + λ g(x)

λ := Lagrange multiplier

rL =

 

∂L

∂xi

∂L

∂λ

!

=

 

rf + λrg

g

!

=

 

0

0

!

at critical point (x⇤,λ⇤).

• Note, rf(x⇤) 6= 0.

• Instead, rf(x⇤) = �λ
⇤rg(x⇤).

• The gradient of f at x⇤ is a multiple of the gradient of g.



Constrained Optimality Example, g(x) a Scalar.

q Comment on:  “This condition says we cannot reduce objective 

function without violating constraints.”

q A key point is that, x*, sf is parallel to sg

q If there are multiple constraints, then sf in span{sgk} = Jg
T l

g(x) = 0

sg

-sf 



Constrained Optimality Example, g(x) a Scalar.

q Here, we see the gradients of f and g at a point that is not x*.

q Clearly, we can make more progess in reducing f(x) by moving along 

the g(x)=0 contour until sf is parallel to sg.

g(x) = 0

sg

-sf 

x*



Example: Two Equality Constraints

min f(x) subject to g1(x) = 0 and g2(x) = 0.

• Lagrangian

L(x,λ) := f(x) + λ1 g1(x) + λ2 g2(x).

• First-order conditions

rL =

"

∂L

∂xi

∂L

∂λk

#

=

2

6

4

∂f
∂xi

+
P

k λk
∂gk
∂xi

0 +

✓

g1
g2

◆

3

7

5

=

"

rf + JT
g λ

g

#

=

"

0

0

#



Constrained Optimality, continued

• Lagrangian is designed so that the critical point satisfies necessary and
feasibility conditions for constrained minimization

rL(x,λ) =

"

rf (x) + JT
g λ

g(x)

#

= 0

• Hessian of Lagrangian is symmetric, but not positive definite, so critical
point of L is saddle point rather than minimum or maximum

• Critical point (x⇤,λ⇤) of L is constrained minimum of f if B(x⇤,λ⇤) is pos-
itive definite on null space of Jg(x

⇤)

• If columns ofZ form basis for null space, then test projectedHessian, ZTBZ,
for positive definiteness

• Note: null space of Jg(x
⇤) is the set of vectors tangent to the constraint

surface



Solving Constrained Optimization Problems

• For equality-constrained optimization problem

min f (x) subject to g(x) = 0,

where f : lRn
�! lR and g : lRn

�! lRm, with m  n, we seek
critical point of Lagrangian

L(x,λ) = f (x) + λ
Tg(x)L

• Applying Newton’s method to nonlinear system

rL(x,λ) =

"

rf (x) + JT
g (x)λ

g(x)

#

we obtain linear system
"

B(x,λ) JT
g (x)

Jg(x) O

#"

s

δ

#

=

"

rf (x) + JT
g (x)λ

g(x)

#

for Newton step (s, δ) in (x,λ) at each iteration, where B is the
matrix introduced earlier involving the Hessians



Example: Constrained Optimization

• Consider quadratic objective function

min
x

f (x) = 0.5 x2
1
+ 2.5 x2

2

subject to

g(x) = x1 � x2 � 1 = 0� �

• Lagrangian function is given by

L(x,λ) = f (x) + λg(x) = 0.5 x2
1
+ 2.5 x2

2
+ λ(x1 � x2 � 1)

• Since

rf (x) =

"

x1

5x2

#

and Jg(x) = [1 � 1]

we have

rxL(x,λ) = rf (x) + JT
g λ =

"

x1

5x2

#

+ λ

"

1

�1

#



Example, continued

• System to be solved for critical point of Lagrangian is

x1 + λ = 0

5x2 − λ = 0

x1 − x2 = 1

which in this case is linear system




1 0 1

0 5 −1

1 −1 0









x1

x2

λ



 =





0

0

1







−

   

• Solving this system, we obtain

x1 = 0.833, x2 = −0.167, λ = −0.833
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Figure 6.5: Solution to constrained optimization problem. Feasible region is shaded.

Example from Text



Weighted Mean Example

• Suppose we have a set of data x̃ = [x̃1 · · · x̃n]
T and we want to find a

nearby set,
x = [x1 · · · xn]

T ⇡ x̃,

such that the weighted-average,

g(x) :=

Pn
i=1 wixiPn
i=1 wi

=
w

T
x

w
T
e

= 0.
P

• We will assume that wi > 0 and define the W -norm as

kxk2W = x
TWx,

where W =diag(wi) is an SPD matrix.

• For our approximation, we elect to minimize in the W -norm:

min
x s.t. g(x)=0

kx� x̃k2W



Weighted Mean Example

• The Lagrangian for this case is

L(x,λ) =
X

wi (xi − x̃i)
2 + λ

X

wixi

= (x− x̃)T W (x− x̃) + λw
T
x.

• The first-order condition on L leads to

JL =



2W w

w
T 0

�✓

x

λ

◆

−



2W 0
0 0

�✓

x̃

0

◆

= 0,

or


2W w

w
T 0

�✓

x

λ

◆

=



2W 0
0 0

�✓

x̃

0

◆

.

Constraint, g(x)=0



Weighted Mean Example



2W w

w
T 0

�✓

x

λ

◆

=



2W 0
0 0

�✓

x̃

0

◆

.

• Block Gaussian elimination for λ:


2W w

0 −S

�✓

x

λ

◆

=

✓

2W x̃

−w
T
x̃

◆✓

• Here, S is the (1 × 1) Schur-complement matrix,

S =
1

2
w

TW−1
w =

1

2

X

wi =
1

2
w

T
e.

with e = [1 1 · · · 1]T
· · ·

• Solve for λ:

λ = S
−1
w

T
x̃ = 2

w
T
x̃

wTe
= 2g(x̃)



Weighted Mean Example

• So, we have simply:

xi = x̃i − constant,

where the constant is the weighted average of the x̃is.

• While this is the expected result, it’s nice to be able to cast it into a
constained minimization problem because it allows us to assert that it is
the best possible result, in the given measure, subject to the constraints.

• Solve for x:
✓ ◆

•

x = (2W )−1

✓

2W x̃ − 2
w

T
x̃

w
T
e

w

◆

= x̃ −

w
T
x̃

w
T
e

W−1
w

= x̃ −

w
T
x̃

w
T
e

e

= x̃ − g(x̃)e.



Penalty Methods

• Merit function can be used to convert equality-constained problem into a
sequence of unconstrained problems

• If x∗

ρ is solution to

min
x

φρ(x) = f (x) +
1

2
ρg(x)Tg(x)

then under appropriate conditions,

lim
ρ−→∞

x∗

ρ = x∗

−→∞

• This enables use of unconstrained optimization methods, but problem be-
comes ill-conditioned for large ρ, so we solve a sequence of problems with
gradually increasing values of ρ

• Minimum of each problem is used as the starting point for the next problem

• With this approach, for large ρ, x will tend to be on the constraint surface
and will tend towards the minimum of objective function f , subject to the
constraint



Constrained Optimality Example, g(x) a Scalar.

q Here, we see the gradients of f and g at a point that is not x*.

q Clearly, we can make more progess in reducing f(x) by moving along 

the g(x)=0 contour until sf is parallel to sg.

g(x) = 0

sg

-sf 

x*



Barrier Methods

• Again, solutions of unconstrained problem approach x
∗ as µ −→ 0, but

problems are increasingly ill-conditioned, so solve sequence of problems with
decreasing µ

• Barrier functions are basis for interior point methods

• Recall optimization problem with inequality constraints,

min f (x) subject to h(x) ≤ 0

where f : lRn
−→ lR, h : lRn

−→ lRp

• For inequality-constained problems, alternative is barrier function, such as

φµ(x) = f (x) − µ

pX

i=1

1

hi(x)

or pX

X

i=1

or
φµ(x) = f (x) − µ

pX

i=1

log(−hi(x))



Barrier Functions for Inequality Constraints

q Solve modified unconstrained minimization problem, 

q Starting in the feasible region!

q As µà 0 it appears that the constraint is weaker.

q However, the constraint goes to infinity for any µ ¹ 0, so a small µ simply 

means the fence is steeper, which makes the minimization problem more 

challenging.

µ =1.0 µ =0.1 

feasible region, h<0 



1D Barrier Functions

barrier1d.m

q As µà 0 it appears that the constraint is weaker.

q The constraint goes to infinity for any µ ¹ 0, so a small µ simply means the 

fence is steeper, which makes the minimization problem more challenging.



Barrier Demo

cg2_barrier.m

q With barrier methods,  

simply augment the 

original (unconstrained) 

objective function, f(x), 

with the penalty function.

q Then, start in the feasible 

region.

q Careful that iteration 

doesn’t jump over the 

barrier—particularly 

Newton’s method.

q Careful line search…



Optimization Summary

• 1-D and n-D minimization, with and without constraints

• 1-D: bracketing and successive parabolic interpolation (no gradients needed)

• Sensitivity is greater than for root-finding (kx� x⇤k = O(
p
✏M))

• n-D: Newton and quasi-Newton (e.g., BFGS, CG)

– Typically require line search (i.e., 1-D minimization along s)

• Nonlinear least squares: Gauss-Newton and Levenberg-Marquardt

• Constrained optimization: Lagrangian and Lagrange multipliers, barrier
methods


