
CHAPTER 8: Numerical Integration & Differentiation

Outline

• Numerical Integration

– General form: Q =
P

wi fi ≈
R
f dx.

– Conditioning

– Newton-Cotes: (midpoint, trapezoidal, Simpson)

– Gauss quadrature & degree of quadrature rule

– Composite trapezoidal rule

– Richardson extrapolation

– Tensor-product integration

• Numerical Differentiation

– Conditioning

– Finite differences

– Derivative matrices

Numerical Differentiation Techniques

• Three common approaches for deriving formulas

• Taylor series

• Taylor series + Richardson extrapolation

• Differentiate Lagrange interpolants

• Readily programmed, see, e.g., Fornberg’s spectral methods text.

Using Taylor Series to Derive Difference Formulas

Taylor Series:

(1) fj+1 = fj + hf 0

j +
h2

2
f 00

j +
h3

3!
f 000

j +
h4

4!
f (4)(ξ+)

(2) fj = fj

(3) fj�1 = fj � hf 0

j +
h2

2
f 00

j �
h3

3!
f 000

j +
h4

4!
f (4)(ξ�)

Approximation of f 0

j := f 0(xj):

1

h
[(1)� (2)] :

fj+1 � fj

h
= f 0

j +
h

2
f 00

j + h.o.t.

or

1

2h
[(1)� (3)] :

fj+1 � fj�1

2h
= f 0

j +
h2

3!
f 000

j + h.o.t.

Richardson Extrapolation

δh :
fj+1 � fj

h
= f 0

j + c1h + c2h
2
+ c3h

3
+ · · ·

δ2h :
fj+2 � fj

2h
= f 0

j + c12h + c24h
2
+ c38h

3
+ · · ·

2δh � δ2h =
4fj+1 � 4fj

2h
�

fj+2 � fj

2h

=
�3fj + 4fj+1 � fj+2

2h

= f 0

j + c̃2h
2
+ c̃3h

3
+ · · ·

• Formula is improved from O(h) to O(h2)

• Formula for computing derivative at xj

Stop Here

�
�
�

• As before, to evaluate derivative at xj, use the Taylor series expansion about xj:

(1) fj+1 = fj + hf 0

j +
h2

2
f 00

j +
h3

3!
f 000

j +
h4

4!
f
(4)
j +

h5

5!
f
(5)
j +

h6

6!
f (6)(ξ+)

(2) fj = fj

(3) fj�1 = fj � hf 0

j +
h2

2
f 00

j �
h3

3!
f 000

j +
h4

4!
f
(4)
j �

h5

5!
f
(5)
j +

h6

6!
f (6)(ξ�)

⇣ ⌘

• Subtract 2⇥ (2) and divide by h2:

fj�1 � 2fj + fj+1

h2
= f 00

j +
h2

12
f
(4)
j + O(h4)

| {z }

truncation error: O(h2)

• If we add (1) & (3), we have:

⇣ ⌘

•

fj�1 + fj+1 = 2fj + h2f 00

j +
h4

12
f
(4)
j +

h6

6!

⇣

f (6)(ξ�) + f (6)(ξ+)
⌘

| {z }

• This is the central difference formula for f 00

j with uniform spacing, xj = x0 + j · h
• ·

• If the spacing is nonuniform, accuracy is only O(h). (WHY?)

• Suppose we wish to estimate
d2f

dx2

�
�
�
�
xj

using function values fj±1 := f (xj ± h)

Finite Difference Example
�

noncentral.m

Richardson Example

• To get a higher order (e.g., O(h4)) approximation to f 00

j , we can derive a
formula with a “5-point” stencil involving fj�2, fj�1, fj, fj+1, and fj+2� �

• A cleaner approach for the uniform grid case is to once again apply Richard-
son extrapolation.

• Define

δ
2
hfj

δx2
:=

fj�1 � 2fj + fj+1

h2
= f 00

j + c2h
2 + O(h4),

where c2 is a constant independent of h (per preceding slide)

• With this definition, the formula for “2h” is

δ
2
2hfj

δx2
:=

fj�2 � 2fj + fj+2

(2h)2
= f 00

j + c2(2h)
2 + O(h4),

• To annihilate the O(h2) term we take 4⇥ the first equation minus 1⇥ the
second to yield

4
δ
2
hfj

δx2
�

δ
2
2hfj

δx2
:= 3f 00

j + O(h4)

• Dividing by 3 gives the desired O(h4) formula

4

3

δ
2
hfj

δx2
�

1

3

δ
2
2hfj

δx2
:= f 00

j + O(h4)

Richardson Example, continued

• Notice that if we had a noncentered FD formula for f 00

j then the leading

order error term in
δ
2

2hfj

δx2
would be O(h) and not O(h2).

• Consequently, the Richardson extrapolation weights would not be 4

3
and�1

3
,

they should instead be 2 and �1

• If we use the wrong weights the convergence in this case is only O(h)

• If we use, however, 2 and �1, we can at least recover O(h2) accuracy.

rich_central.m

|{z}
| {z }

• This formula will be exact whenever f 2 lPk+p�1 because f
(k+p) ⌘ 0

• 2 � ⌘

• For example, on a uniform grid,

δ
2
hfj

δx2
= f 00

j +
h2

12
f
(4)
j + O(h4) = f 00

j 8f 2 lP3

• On a nonuniform grid,

δ
2
hfj

δx2
= f 00

j + c1hf
000

j + O(h2) = f 00

j 8f 2 lP28 2

• Consequence is that we can derive FD formulas by differentiating the unique
polynomial interpolant that pass through the relevant (xj+k, fj+k) pairs,
which is particularly useful in the nonuniform case

Finite Difference Properties

• Assuming that f is k + p times differentiable in the neighborhood of xj,
then

dkfj

dxk
=

δ
kfj

δxk
|{z}

FD approx.

+ O(hp)
| {z }

truncation error

=
δ
kfj

δxk
+ cph

p dk+pfj

dxp
+ O(hp+1)

Differentiation via Lagrange Polynomials

• Recall the polynomial interpolation matrix

Jij = lj(x̃i)

where the Lagrange cardinal functions satisfy lj(xk) = δjk for nodal points
xk, k = 1, . . . , n

• The (n� 1)th-order polynomial approximation to f (x̃i) is given by

p̃ = Jf

• We can also define the derivative matrix,

Dij = l0j(x̃i)

which would yield p0(x̃i) as an approximation to f 0(x̃i):

p̃0 = Df

• It is generally easier, however, to define a derivative matrix D̂, based on the
nodes xj rather than the (arbitrary) target interpolation points x̃i

• One can then (exactly) interpolate the approximation to f 0(x̃i), which is a
polynomial of degree n� 2 using J.

�

• Thus, the arbitrary interpolation matrix is D = JD̂

Derivative Matrices via Lagrange Interpolants

• Consider

p(x) =
n

X

j=1

lj(x)fj

p0(x) =
n

X

j=1

dlj

dx
fj

X

p0(xi) =
n

X

j=1

dlj

dx

�

�

�

�

xi

fj =
n

X

j=1

dijfj =⇒ p0 = D̂f .
�

�

�

• Recall Lagrange cardinal polynomial,

lj(x) = αj(x− x1)(x− x2) · · · (x− xj�1)(x− xj+1) · · · (x− xn),

with

αj := [(xj − x1)(xj − x2) · · · (xj − xj�1)(xj − xj+1) · · · (xj − xn)]
�1

.

Derivative Matrices via Lagrange Interpolants

�

�

�

• Recall Lagrange cardinal polynomial,

lj(x) = αj(x− x1)(x− x2) · · · (x− xj�1)(x− xj+1) · · · (x− xn),

with

αj := [(xj − x1)(xj − x2) · · · (xj − xj�1)(xj − xj+1) · · · (xj − xn)]
�1

.

• Define the linear functions gi(x) := (x− xi), such that

lj(x) = αj [g1 g2 · · · gj�1 gj+1 · · · gn] .

Note that g0i ≡ 1 and gi(xi) ≡ 0.

• Differentiate lj(x) term-by-term:

dlj

dx
= αj [g

0

1 g2 · · · gj�1 gj+1 · · · gn

+ g1 g
0

2 · · · gj�1 gj+1 · · · gn

...

+ g1 g2 · · · gj�1 gj+1 · · · g0n] .

Derivative Matrices, continued

• If we now evaluate this expression at x = xi 6= xj, then every row drops out
except for the ith one:

dlj

dx

�

�

�

�

xi

= αj [g1 g2 · · · gi�1 g
0

i gi+1 · · · gj�1 gj+1 · · · gn]

= αj [g1 g2 · · · gi�1 · 1 · gi+1 · · · gj�1 gj+1 · · · gn]

=
αj [g1 g2 · · · gi�1 · 1 · gi+1 · · · gj�1 gj gj+1 · · · gn]

gj

=
αj

⇥

α
�1

i

⇤

gj

=
αj

αi gj

=
αj

αi (xi � xj)
=: Dij

• Here, because we are evaluating the functions at xi, we have gi = 0
(which is not present), and gj(xi) = xi � xj.

deriv_conv.m

• So, for each row i, we have

nX

j=1

Dij = 0 =) Dii = �
X

j 6=i

Dij.

• In summary:

αj := [(xj � x1)(xj � x2) · · · (xj � xj�1)(xj � xj+1) · · · (xj � xn)]
�1

Dij =
αj

αi (xi � xj)
, i 6= j,

Dii = �
X

i 6=j

Dij.

• As usual, this approach is stable for large n only if the xis are

Chebyshev, Gauss-Legendre, or other similar set of points.

Derivative Matrices, continued

• To find Dii, we use the fact that Dp = 0 if p = [1 1 . . . 1]T because the
derivative of p(x) := 1 is identically zero.

Example: ODE-IVP

• We can use approximations to df

dt
to solve (numerically) the following ordi-

nary differential equation (ODE), which is an initial value problem (IVP)
for an unknown function f (t),

df

dt
= λf (t),

with initial condition f (t = 0) = f0

• For λ = −2 and f0 = 1, the solution is f (t) = e−2t, so the solution at t = 1
is f (1) = e−2.

• Here, we will use kth-order backward difference formulas, BDFk, to ap-
proximate df

dt
:

BDF1:
fj−fj−1

h
= λfj + O(h)

BDF2:
3fj−4fj−1+fj−2

2h
= λfj + O(h2)

BDF3:
11fj−18fj−1+9fj−2−2fj−3

6h
= λfj + O(h3)

kth-order Backward Difference Formula

• BDFk combines k known values from prior timesteps with the unknown

value fj to approximate the derivative at the new step (tj).

• This approximation is then equated to the rhs of the ODE

• These schemes are implicit because the unknown appears on the rhs

ODE-IVP Example, continued

• Upon rearranging and dropping the O(h) error term, BDF1 leads to the
update formula

(1− λh)fj = fj−1

• For BDF1, we can start with f0 and compute f1, f2, and so on.
−

• For BDF2, we have

(
3

2
− λh)fj =

4

2
fj−1 −

1

2
fj−2

•

• For BDF2, we also need f
−1 to get started, which we typically do not have.

•
−

• As a substitute, we can perform one step of BDF1 to get f1 and then use
f1 and f0 to move forward.

• And for BDF3,

(
11

6
− λh)fj =

18

6
fj−1 −

9

6
fj−2 +

2

6
fj−3

• For BDF3 we need to similarly bootstrap with one step of BDF1 followed
by one step of BDF2.

ODE-IVP Example, continued

• BDF3 shows only O(h2) error.

r. WHY?

• Error on first step is already O(h2)!
ode_ivp.m

Example: BVP-ODE

• Here, we consider a boundary value problem (BVP), which has a single
independent variable, x, and thus is also characterized as an ODE

• We’ll take the example of an unknown function ũ(x) for x ∈ [0, 1] with
prescribed boundary values ũ(0) = 0 and ũ(1) = 0.

• Let u(x) satisfy

−
d2ũ

dx2
= f (x), ũ(0) = ũ(1) = 0

BVP-ODE Example, continued

• We will approximate ũ(x) by a Lagrange polynomial interpolant with un-
known basis coefficents, uj, j = 0, . . . , N

ũ(x) ⇡ u(x) :=

NX

j=0

lj(x)uj

• In this collocation approach, we set �u00i = fi, i = 1, . . . , N � 1 and
u0 = uN = 0

• Discounting the boundary conditions, we haveN�1 unknowns, u1, . . . , uN�1,
and (n� 1) equations associated with fi, i = 1, . . . , N � 1.

• Because u(x) 2 lPN , we can compute its second derivative exactly with
the derivative matrix described earlier.

• Define D̄ij = lj(xi) to be the (N + 1) ⇥ (N + 1) derivative matrix that is
evaluated at all nodes, including x0 and xN .

• If ū = [u0 u1 · · · uN]
T is the vector of basis coeffients representing an

Nth-order polynomial, then the vector

ū
00 = D̄

2
ū

is the vector of basis coeffients representing the second derivative of u

• Unfortunately, D̄
2
is not invertible. (WHY?)

• ANS: D̄1 = 0

• Fortunately, we only need rows 1 to N − 1 of D̄
2
because the differential

equation applies only at those rows.

• Moreover, because u0 = uN = 0, we do not need column 0 nor column N

of D̄
2

• Let D2,ij := D̄
2

ij define the matrix comprising rows i = 1 : N − 1 and

columns j = 1 : N − 1 of D̄
2
, and let u = [u1 · · · uN−1]

T be the vector of
interior basis coeffients

• If f = [f1 · · · fN−1]
T is the rhs data, then the collocation system for our

2-point BVP is

−D2u = f

• Note that D2 is not the square of (say) D. It is the interior of the square
of D̄

bvp_ode.m, bvp_ode2.m

BVP-ODE Example, continued

bvp_ode.m, bvp_ode2.m

Numerical Quadrature

Numerical Quadrature

Numerical Quadrature

• Quadrature is the term used for approximating definite integrals of the form

I =

Z b

a

f (x) dx

• A quadrature rule is a weighted sum of a finite number of sample values of
integrand function

Numerical Quadrature

• Quadrature is the term used for approximating definite integrals of the form

I =

Z b

a

f (x) dx

• A quadrature rule is a weighted sum of a finite number of sample values of
integrand function

•

• Computational work is measured by number of evaluations of integrand
function

• To obtain desired accuracy at low cost,

• How should sample points be chosen?

• How should weights be chosen?

Quadrature Rules

• An n-point quadrature rule has the form

Qn(f) =

nX

i=1

wif (xi)
X

• Sorted points xi are called nodes or quadrature points

• Multipliers wi are called weights

• Quadrature rule is

• open if a < x1 and xn < b

• closed if a = x1 and xn = b

Quadrature Rules, continued

• Quadrature rules are based on polynomial interpolation

• Integrand function f is sampled at finite set of points

• Polynomial interpolating those points is determined

• Integral of interpolant is taken as estimate for integral of original function

• In practice, interpolating polynomial is not determined explicitly, but is
used to determine weights corresponding to nodes

• If Lagrange interpolation is used, then the weights are

wi =

Z b

a

li(x) dx, i = 1, . . . , n

Quadrature Overview

• Choose nodes xj, and weights, wj, to approximate
R b

a
f(x) dx.

Quadrature Overview

I(f) :=

Z
b

a

f(t) dt ≈

nX
i=1

wi fi, =: Qn(f) fi := f(ti)

• Idea is to minimize the number of function evaluations.

• Small n is good.

• Several strategies:

– global rules

– composite rules

– composite rules + extrapolation

– adaptive rules

Global (Interpolatory) Quadrature Rules

• Generally, approximate f(t) by polynomial interpolant, p(t).

f(t) ≈ p(t) =
n
X

i=1

li(t) fi

I(f) =

Z

b

a

f(t) dt ≈

Z

b

a

p(t) dt =: Qn(f)

Qn(f) =

Z

b

a

n
X

i=1

li(t) fi

!

dt =
n
X

i=1

✓
Z

b

a

li(t) dt

◆

fi =
n
X

i=1

wi fi.

wi =

Z b

a

li(t) dt

• We will see two types of global (interpolatory) rules:

– Newton-Cotes — interpolatory on uniformly spaced nodes.

– Gauss rules — interpolatory on optimally chosen point sets.

Method of Undetermined Coefficients

• Alternative derivation of quadrature rule uses method of undetermined co-

efficients

• To derive n-point rule on [a, b] take nodes x1, . . . , xn as given and consider
weights w1, . . . , wn as coefficients to be determined

• Force quadrature rule to be exact for first n polynomial basis functions (e.g.,
xj, j = 0, . . . , n− 1)

−

• By linearity, rule will be exact for all f ∈ lPn−1

• Thus, we obtain system of moment equations that determines weights for
quadrature rule

Finding Weights: Method of Undetermined Coefficients

Example 1: Find wi for [a, b] = [1, 2], n = 3.

• First approach: f = 1, t, t2.

I(1) =
3

X

i=1

wi · 1 = 1

I(t) =
3

X

i=1

wi · ti =
1

2
t2
�

�

�

�

2

1

I(t2) =
3

X

i=1

wi · t
2

i
=

1

3
t3
�

�

�

�

2

1

Results in 3× 3 matrix for the wis.

Find wi for [a, b] = [1, 2], n = 3, with t1 = 1, t2 = 3/2, and t3 = 2

Finding Weights: Method of Undetermined Coefficients
×

• Second approach: Choose f so that some of the coefficients multiplying
the wis vanish.

I1 = w1(1−
3

2
)(1− 2) =

Z

2

1

(t−
3

2
)(t− 2) dt

I2 = w2(
3

2
− 1)(

3

2
− 2) =

Z

2

1

(t− 1)(t− 2) dt

I3 = w3(2− 1)(2−
3

2
) =

Z

2

1

(t− 1)(t−
3

2
) dt

Corresponds to the Lagrange interpolant approach with 3 basis functions
that span lP2(x):

h1(x) = (x−

3

2
)(x− 2)

h2(x) = (x− 1)(x− 2)

h3(x) = (x− 1)(x−

3

2
)

Method of Undetermined Coefficients

Example 2: Find wi for [a, b] = [0, 1], n = 3, but using fi = f(ti) = f(i),
with ti = -2, -1, and 0. (The ti’s are outside the interval (a, b).)

• Result should be exact for f(t) ∈ lP0, lP1, and lP2.

• Take f=1, f=t, and f=t2.

X
wi = 1 =

Z
1

0

1 dt

−2w−2 − w−1 =
1

2
=

Z
1

0

t dt

4w−2 + w−1 =
1

3
=

Z
1

0

t2 dt

• Find

w−2 =
5

12
w−1 = −

16

12
w0 =

23

12
.

• This example is useful for finding integration coefficients for explicit time-
stepping methods that will be seen in later chapters.

Method of Undetermined Coefficients

Method of Undetermined Coefficients

Method of Undetermined Coefficients

Method of Undetermined Coefficients

Example 2: Find wi for [a, b] = [0, 1], n = 3, but using fi = f(ti) = f(i),
with ti = -2, -1, and 0. (The ti’s are outside the interval (a, b).)

• Result should be exact for f(t) ∈ lP0, lP1, and lP2.

• Take f=1, f=t, and f=t2.

X
wi = 1 =

Z
1

0

1 dt

−2w−2 − w−1 =
1

2
=

Z
1

0

t dt

4w−2 + w−1 =
1

3
=

Z
1

0

t2 dt

• Find

w−2 =
5

12
w−1 = −

16

12
w0 =

23

12
.

• This example is useful for finding integration coefficients for explicit time-
stepping methods that will be seen in later chapters.

Scale weights by h if (uniform) interval width is h.

Accuracy of Quadrature Rules

• Quadrature rule is of degree d if it is exact for every polynomial of degree
d, but not exact for some polynomial of degree d + 1

• By construction, n-point interpolatory rule is of degree at least n� 1

• Rough error bound,

|I(f)�Qn(f)|
1

4
hn+1kf (n)k1,

where h = max{xi+1 � xi}, shows that Qn(f) �! I(f) as n �! 1,

provided f (n) remains well behaved

• Higher accuracy can be obtained by decreasing h

• If f (n) remains well behaved, can also increase n

Conditioning

• Absolute condition number of integration:

I(f) =

Z

b

a

f(t) dt

I(f̂) =

Z

b

a

f̂(t) dt

�

�

�
I(f)− I(f̂)

�

�

�
=

�

�

�

�

Z

b

a

(f − f̂) dt

�

�

�

�

≤ |b− a| ||f − f̂ ||∞

• Absolute condition number is |b− a|.

Conditioning

• Absolute condition number of quadrature:

�

�

�
Qn(f)−Qn(f̂)

�

�

�
≤

�

�

�

�

�

n
X

i=1

wi

⇣

fi − f̂i

⌘

�

�

�

�

�

≤

n
X

i=1

|wi| max
i

�

�

�
fi − f̂i

�

�

�

≤

n
X

i=1

|wi| ||f − f̂ ||∞

C =
n

X

i=1

|wi|

• If Qn(f) is interpolatory, then
P

wi = (b− a) :

Qn(1) =
n

X

i=1

wi · 1 ≡

Z

b

a

1 dt = (b− a).

• If wi ≥ 0, then C = (b− a).

• Otherwise, C > (b− a) and can be arbitrarily large as n −→ ∞.

Stopped Here

Newton-Cotes Quadrature

Newton-Cotes quadrature rules use equally spaced nodes in [a, b]

• Midpoint rule M(f) := (b− a)f (m), m := (a + b)/2

• Trapezoidal rule T (f) :=
b− a

2
f (f (a) + f (b))

• Simpson’s rule S(f) :=
b− a

6
(f (a) + 4f (m) + f (b))

Example

f(x) = 2 − x2

I(f) =

Z

1

−1

f(x) dx = 2x −

x3

3

�

�

�

�

1

−1

= 3
1

3
.

M(f) = 2 · f(0) = 2 · 2 = 4. (|error|=2/3)

T (f) = 2 ·
f(−1) + f(1)

2
= 2. (|error|=4/3)

• Error for midpoint rule is generally ½ that of trapezoidal rule.

Quadrature Accuracy Example

• Recall the interpolatory-quadrature error bound,

|I(f)�Qn(f)|
1

4
hn+1 kf (n)k1

• Consider trapezoidal rule,
Z b

a

f (x) dx ⇡ h
f (a) + f (b)

2
,

with b = a + h

• Here, n = 2 as we are evaluating f (x) at two points, so we would
expect that the error is O(h3)

• Let’s take f = cos(x), for which |f 000| 1, and choose a = 2.

• The exact answer is I = sin(2 + h)� sin(2).

• demo trap

Error for Midpoint Rule

• Define m = a+b
2

• Midpoint rule is M(f) = (b� a) f (m) ⇡ I(f)

• Assuming sufficiently smooth (i.e., differentiable) f , Taylor series about m,

f (x) = f (m) + (x�m)f 0

m +
(x�m)2

2
f 00

m +
(x�m)3

3!
f 000

m + · · ·

• Integrate from a to b,

I(f) = (b� a)f (m) + 0 · f 0

m +
h3

12
f 00

m + 0 +
h5

1920
f (4)
m + 0 + O(h7)

= M +
h3

12
f 00

m

| {z }

E(f)

+
h5

1920
f (4)
m

| {z }

F (f)

+O(h7)
| {z } | {z }

• The leading-order error for the midpoint rule, E(f), is O(h3)

Error for Trapezoidal Rule

• Here, we need the Taylor series expansions for fa := f (a) and fb := f (b):

f (x) = f (m) + (x�m)f 0

m +
(x�m)2

2
f 00

m +
(x�m)3

3!
f 000

m + · · ·

fa = fm �
h

2
f 0

m +
h2

8
f 00

m �
h3

8 · 3!
f 000

m +
h4

16 · 4!
f (4)
m + · · ·

fb = fm +
h

2
f 0

m +
h2

8
f 00

m +
h3

8 · 3!
f 000

m +
h4

16 · 4!
f (4)
m + · · ·

• Apply to trapezoidal rule, T (f):

T (f) = h

✓

fa + fb

2

◆

= hfm +
h3

8
f 00

m +
h5

16 · 4!
f (4)
m +O(h7)

·

= M +
h3

8
f 00

m +
h5

16 · 4!
f (4)
m +O(h7)

·

= (I(f) � E � F + O(h7)) + 3E + 5F + O(h7)

= I(f) + 2E + 4F + · · ·

· · ·

• The leading-order error for the trapezoidal rule, �2E(f), is O(h3)

I(f) = T (f) � 2E � 4F + · · ·

Error, continued

• Can estimate the error by taking difference of midpoint and trapezoidal
rules

I(f) = M(f) + E + F + · · ·

I(f) = T (f) − 2E − 4F + · · ·

T (f) = I(f) + 2E + 4F + · · ·

M(f) = I(f) − E − F + · · ·

T −M = 0 + 3E + 5E ≈ 3E

E ≈

T − M

3

Simpson’s Rule

• Can use preceding results to annihilate the leading order E term (for which
we now have an estimate!)

sum = 2M(f) + T (f)

= 3I(f) + 2F + · · ·
· · ·

S(f) :=
2M(f) + T (f)

3
=

2

3
M(f) +

1

3
T

= I(f) =
2

3
F + · · ·

• Error Model: 3
· · ·

• Error Model:

model =
2

3

h5

1920
|f (4)

m |

Accuracy of Newton-Cotes Quadrature

• Since n-point Newton-Cotes rule is based on polynomial of degree n − 1,

we expect it to have degree n− 1

• Thus, we expect midpoint to have degree 0, trapezoid degree 1, and Simp-

son’s to have degree 2

• From Taylor series expansion, error for midpoint rule depends on second

and higher derivatives of integrand, which vanish for linear and constant

polynomials

• So midpoint rule integrates linear polynomials exactly and degree is 1

• Similarly, Simpson’s rule depends on 4th and higher derivatives, which van-

ish for all f ∈ lP3, so Simpson’s rule of degree 3

Accuracy of Newton-Cotes Quadrature

• In general, Newton-codes with odd number of points gains extra degree
beyond that of polynomial interpolant on which it is based because odd
functions (about the midpoint) contribute nothing to the integral or to the
quadrature

• n-point Newton-Cotes rule is of degree n− 1 if n is even but of degree n if
n is odd

a bm
| .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

a bm
| .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
...
...
...
...
...
...
...
...
...
....
....
....
....
.....
......
.......
...........
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
...
...
....
.....
..

.....
....
...
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 8.3: Cancellation of errors in midpoint (left) and Simpson (right) rules.

Drawbacks of Newton-Cotes Rules

• Newton-Cotes rules are simple and often effective, but they have drawbacks

• For large n, behavior can be erratic because of the usual instabilities of

high-order polynomial interpolation on uniform grids

• Moreover, for n ≥ 11, every Newton-Cotes rule has at least one negative

weight and
P

n

i=1
|wi| −→ ∞ as n −→ ∞, so Newton-Cotes rules become

arbitrarily ill-conditioned

• Finally, Newton-Cotes rules do not realize the highest degree possible with

n points

Newton-Cotes Formulae: What Could Go Wrong?

• Demo: newton_cotes.m

• Newton-Cotes formulae are interpolatory.

• For high n, Lagrange interpolants through uniform points are ill-

conditioned.

• In quadrature, this conditioning is manifest through negative

quadrature weights (bad).

Lagrange Polynomials: Good and Bad Point Distributions

N=4

N=7

 f2 f4

N=8

 Uniform Gauss-Lobatto-Legendre

• We can see that for N=8 one of the uniform weights is close to becoming negative.

Quadrature Rules: Stable and Unstable

• Left – Unstable; Center – stable & rapid; Right – stable & O(h2)

Newton-Cotes Gauss-Lobatto-Legendre Composite-Trapezoidal

Composite Rules

• Main Idea: Use your favorite rule on each panel and sum across

all panels.

• Particularly good if f(x) not differentiable at the knot points.

O(h2) x h

= O(h3)

h

Cumulative Error:

n x O(h3) =

(b-a)O(h2)

trap_v_gll_k

Composite Quadrature Rules

• Composite Trapezoidal (QCT) and Composite Simpson (QCS) rules work

by breaking the interval [a,b] into panels and then applying either

trapezoidal or Simpson method to each panel.

• QCT is the most common, particularly since QCS is readily derived via

Richardson extrapolation at no extra work.

• QCT can be combined with Richardson extrapolation to get higher order

accuracy, not quite competitive with Gauss quadrature, but a significant

improvement.
•

• This combination is known as Romberg integration.

• For functions that are periodic on [a,b], QCT is a Gauss quadrature rule.

Implementation of Composite Trapezoidal Rule

Assuming uniform spacing h = (b− a)/k,

QCT :=

kX

j=1

Qj =

kX

j=1

h

2
(fj−1 + fj)

=
h

2
f0 + hf1 + hf2 + . . . + . . . + hfk−1 +

h

2
fk

=

kX

j=0

wj fj , w0 = wk =
h

2
, wj = h, otherwise.

Composite Trapezoidal Rule

• Trapezoidal rule is also interpolatory, Qn(f) =

nX
j=1

Z b

a

lj(x)fj dx
XZ

• Lagrangian interpolants are piecewise linear “hat” functions

• On uniform grid with spacing h,
R b

a lj(x) dx = h for interior basis func-
tions, j = 2, . . . , n−1, and h/2 for end-point basis functions l1(x) and ln(x)

Error: Composite Trapezoidal Rule

Ij :=

Z xj

xj−1

f(x) dx =
h

2
(fj�1 + fj) + O(h3)

=: Qj + O(h3)

= Qj + cjh
3 + higher order terms.

cj ≤
1

4
max

[xj−1,xj]
|f 00(x)|

I =

Z b

a

f(x) dx =

nX

j=1

Qj

| {z }

QCT

+

nX

j=1

cjh
3 + h.o.t.

|I −QCT | + h.o.t. = h3
nX

j=1

cj ≤ h3nmax
j

|cj | = (b− a)h2max
j

|cj |

Composite Rule: Sum trapezoid rule across n panels:

QCT := h

"

n�1
X

i=1

fi +
1

2
(f0 + fn)

#

=
n

X

i=1

h

2
[fi�1 + fi]

=
n

X

i=1

h

Ĩi + c2h
3 f 00

i�
1

2

+ c4h
5 f iv

i�
1

2

+ c6h
7 f vi

i�
1

2

+ · · ·

i

= Ĩ + c2h
2

"

h

n
X

i=1

f 00

i�
1

2

#

+ c4h
4

"

h

n
X

i=1

f iv

i�
1

2

#

+ · · ·

= Ĩ +
h2

12

Z

b

a

f 00 dx + h.o.t.

�

+ c4h
4

Z

b

a

f iv dx + h.o.t.

�

+ · · ·

= Ĩ +
h2

12
[f 0(b)� f 0(a)] + O(h4).

• Global truncation error is O(h2) and has a particularly elegant form.

• Can estimate f 0(a) and f 0(b) with O(h2) accurate formula to
yield O(h4) accuracy.

• With care, can also precisely define the coefficient for h4, h6,
and other terms (Euler-Maclaurin Sum Formula).

Euler-Maclaurin Sum Formula

• Let f 2 C6([a, b]), and define h = b�a
n
.

• Then the Euler–Maclaurin formula applied to the trapezoidal rule gives:

Z

b

a

f(x) dx = Tn +
h2

12
(f 0(b)� f 0(a))�

h4

720

⇣

f (3)(b)� f (3)(a)
⌘

+
h6

30240

⇣

f (5)(b)� f (5)(a)
⌘

+R3,
Z

⇣ ⌘ ⇣ ⌘

where the composite trapezoidal rule is:

Tn =
h

2

0

@f (a) + 2

n�1
X

j=1

f (a + jh) + f (b)

1

A ,

@ A

• R3 denotes the remainder after three correction terms.
•

• The coefficients arise from Bernoulli numbers:

B2 =
1

6
, B4 = �

1

30
, B6 =

1

42
.

Examples.

• Apply (composite) trapezoidal rule for several endpoint
conditions, f 0(a) and f 0(b):

1. Standard case (nothing special).

2. Lucky case (f 0(a) = f 0(b) = 0).

3. Unlucky case (f 0(b) = �1).

4. Really lucky case (f (k)(a) = f (k)(b), k = 1, 2,. . .).

• Functions on [a, b] = [0, 1]:

(1) f(x) = ex

(2) f(x) = ex (1� cos 2πx)

(3) f(x) =
p

1� x2

(4) f(x) = log(2 + cos 2πx).

• quad1.m example.

Strategies to improve to O(h4) or higher?

• Endpoint Correction.

– Estimate f 0(a) and f 0(b) to O(h2) using available fi data.

– How?

– Q: What happens if you don’t have at least O(h2) accuracy?

– - Requires knowing the c2 coefficient. :(

• Richardson Extrapolation.

Ih = Ĩ + c2h
2 + O(h4)

I2h = Ĩ + 4c2h
2 + O(h4)

(Reuses fi, i=even!)

IR =

4

3
Ih �

1

3
I2h

�

= Isimpson !

trap_endpoint.m

Composite Trapezoidal + Richardson Extrapolation

Can in fact show that if f 2 C2K+1 then

I = QCT + c̃2h
2 + c̃4h

4 + c̃6h
6 + . . . + c̃2Kh

2K + O(h2K+1)

Suggests the following strategy:

(1) I = QCT (h) + c̃2h
2 + c̃4h

4 + c̃6h
6 + . . .

(2) I = QCT (2h) + c̃2(2h)
2 + c̃4(2h)

4 + c̃6(2h)
6 + . . .

Take 4 ⇥(1)-(2) (eliminate O(h2) term):

4I � I = 4QCT (h) �QCT (2h) + c04h
4 + c06h

6 + . . .

I =
4

3
QCT (h) �

1

3
QCT (2h) + ĉ4h

4 + ĉ6h
6 + . . .

= QS(2h) + ĉ4h
4 + ĉ6h

6 + h.o.t.

Here, QS(2h) ⌘
4

3
QCT (h) �

1

3
QCT (2h)

Composite Trapezoidal + Richardson Extrapolation

Can in fact show that if f 2 C2K+1 then

I = QCT + c̃2h
2 + c̃4h

4 + c̃6h
6 + . . . + c̃2Kh

2K + O(h2K+1)

Suggests the following strategy:

(1) I = QCT (h) + c̃2h
2 + c̃4h

4 + c̃6h
6 + . . .

(2) I = QCT (2h) + c̃2(2h)
2 + c̃4(2h)

4 + c̃6(2h)
6 + . . .

Take 4 ⇥(1)-(2) (eliminate O(h2) term):

4I � I = 4QCT (h) �QCT (2h) + c04h
4 + c06h

6 + . . .

I =
4

3
QCT (h) �

1

3
QCT (2h) + ĉ4h

4 + ĉ6h
6 + . . .

= QS(2h) + ĉ4h
4 + ĉ6h

6 + h.o.t.

Here, QS(2h) ⌘
4

3
QCT (h) �

1

3
QCT (2h)

Composite Trapezoidal + Richardson Extrapolation

Original error – O(h2)

New error – O(h4)

Can in fact show that if f 2 C2K+1 then

I = QCT + c̃2h
2 + c̃4h

4 + c̃6h
6 + . . . + c̃2Kh

2K + O(h2K+1)

Suggests the following strategy:

(1) I = QCT (h) + c̃2h
2 + c̃4h

4 + c̃6h
6 + . . .

(2) I = QCT (2h) + c̃2(2h)
2 + c̃4(2h)

4 + c̃6(2h)
6 + . . .

Take 4 ⇥(1)-(2) (eliminate O(h2) term):

4I � I = 4QCT (h) �QCT (2h) + c04h
4 + c06h

6 + . . .

I =
4

3
QCT (h) �

1

3
QCT (2h) + ĉ4h

4 + ĉ6h
6 + . . .

= QS(2h) + ĉ4h
4 + ĉ6h

6 + h.o.t.

Here, QS(2h) ⌘
4

3
QCT (h) �

1

3
QCT (2h)

Richardson Extrapolation + Composite Trapezoidal Rule

• Richardson + Composite Trapezoidal = Composite Simpson

• But we never compute it this way.

• Just use QCS = (4 QCT(h) – QCT(2h)) / 3

• No new function evaluations required!

a = x0 x1 x2 x3 x4 xk = b

h : wj:
h
2

h h h h h h · · ·

h
2

2h : w̃j:
2h
2

0 2h 0 2h 0 2h · · ·

2h
2

(k even)

4

3
wj −

1

3
w̃j:

h
3

4h
3

2h
3

4h
3

2h
3

4h
3

2h
3

· · ·

2h
3

Trapezoidal + Repeated Richardson Extrapolation
(Romberg Integration)

• We can repeat the extrapolation process to get rid of the O(h4) term.

• And repeat again, to get rid of O(h6) term.

• Idea works just as well if errors are of form c1h + c2h2 + c3h3 + … , but

tabular form would involve 2j instead of 4j

Tk,0 = Trapezoidal rule with h = (b− a)/2k

Tk,j =
4j Tk,j−1 − Tk−1,j−1

4j − 1

h T0,0

h/2 T1,0 T1,0

h/4 T2,0 T2,0 T2,0

h/8 T3,0 T3,1 T3,2 T3,3

O(h2) O(h4) O(h6) O(h8)

Repeated Richardson Extrapolation
(Romberg Integration)

• We can repeat the extrapolation process to get rid of the O(h4) term.

• And repeat again, to get rid of O(h6) term.

Richardson Example

I =

Z
1

0

e
x

dx

Initial values, all created from same 17 values of f(x).

1.859140914229523

1.753931092464825

1.727221904557517

1.720518592164302

1.718841128579994

Using these 5 values, we build the table (extrapolate) to get more precision.

None Round 1 Round 2 Round 3 Round 4

1.859140914229

1.753931092464 1.718861151876

1.727221904557 1.718318841921 1.718282687924

1.720518592164 1.718284154699 1.718281842218 1.718281828794

1.718841128579 1.718281974051 1.718281828675 1.718281828460 1.718281828459

Richardson Example

Error for Richardson Extrapolation (aka Romberg integration)

1/h None Round 1 Round 2 Round 3 Round 4

1 1.4086e-01

2 3.5649e-02 5.7932e-04

4 8.9401e-03 3.7013e-05 8.5947e-07

8 2.2368e-03 2.3262e-06 1.3759e-08 3.3549e-10

16 5.5930e-04 1.4559e-07 2.1631e-10 1.3429e-12 3.2419e-14

O(h^2) O(h^4) O(h^6) O(h^8) O(h^10)

Gauss Quadrature Results

n Qn E

2 1.8591e+00 1.4086e-01

3 1.7189e+00 5.7932e-04

4 1.7183e+00 1.0995e-06

5 1.7183e+00 1.1666e-09

6 1.7183e+00 7.8426e-13

7 1.7183e+00 0

Next Up

• Gaussian Quadrature

• Composite Trapezoidal Rule

• Richardson Extrapolation

Gaussian Quadrature

• Gaussian quadrature rules are based on polynomial interpolation, but
nodes as well as weights are chosen to maximize degree

• With 2n parameters, we can attain a degree of 2n� 1

• Gaussian quadrature rules can be found by method of undetermined coeffi-
cients, but resulting system of moment equations is nonlinear

• It is relatively easy to show that the standard (open) Gauss nodes on [-1,1]
are the roots of Pn(x), the nth-order Legendre polynomial

• The weights are the integrals of the corresponding Lagrange cardinal func-
tions based on these nodes

• The closed Gauss nodes, which include x = ±1 are the roots of
(1� x

2)P 0

n�1
(x)

Gaussian Quadrature

• The nodes and weights are extensively tabulated but are also available in
routines for most every programming language

• The open points are often referred to as Gauss or Gauss-Legendre quadra-
ture points

• The closed points are referred to as Gauss-Lobatto or Gauss-Lobatto-

Legendre points

• There are also Gauss-Chebyshev points, etc.

• Finally, there are Gauss-Radau points for the case where −1 is included as
a node but +1 is not (i.e., closed on left but open on the right)

Example: Gaussian Quadrature, n = 2

• Derive two-point Gauss quadrature rule on [-1,1],

G2(f) = w1f (x1) + w2f (x2)

with (wi, xi) chosen to maximize degree of resulting rule

• Use method of undetermined coefficients

• Four parameters to be determined, so expect to be able to integrate cubics
exactly because cubics are determined by 4 parameters

Gauss Quadrature Example, continued

• Requiring rule to integrate first four monomials exactly yields four moment

equations

w1 + w2 =

Z

1

−1

1 dx = x|1
−1

= 2

Z

−

w1x1 + w2x2 =

Z

1

−1

x dx = x2
�

�

1

−1
= 0

Z

−

�

�

w1x
2

1
+ w2x

2

2
=

Z

1

−1

x2 dx =
1

3
x3
�

�

�

�

1

−1

= 2/3

�

Z

�

�

�

−

w1x
3

1
+ w2x

2

3
=

Z

1

−1

x3 dx =
1

4
x4
�

�

�

�

1

−1

= 0

Gauss Quadrature Example, continued

• In this case, can exploit symmetry, x1 = −x2, w1 = w2 = 1, to obtain
quadratic equation for x2

• Solution is x1 = −1/
√

3, x2 = 1/
√

3, w1 = 1, w2 = 1

• Resulting two-point Gauss quadrature rule has form

G2(f) = f (−1/
√

3) + f (1/
√

3)

• Remarkably, evaluating f at just two points allows us to exactly integrate
all polynomials up to and including degree 3

Gauss Quadrature Example, continued

• Degree of 2-point Gauss quadrature rule is d = 3

• In general, n-point Gauss quadrature rule has degree d = 2n− 1

• For n-point Gauss-Lobatto rule, which has endpoints ±1 prescribed, degree
d = 2n− 3 as there are only 2n− 2 free parameters in this case

Gauss Quadrature, I

Consider I :=

Z 1

−1

f(x) dx.

Find wi, xi i = 1, . . . , n, to maximize degree of accuracy, M .

• Cardinality, | . |: | lPM | = M + 1

|wi | + | xi | = 2n

M + 1 = 2n ⇐⇒ M = 2n− 1

• Indeed, it is possible to find xi and wi such that all polynomials of degree

≤ M = 2n− 1 are integrated exactly.

• The n nodes, xi, are the zeros of the nth-order Legendre polynomial.

• The weights, wi, are the integrals of the cardinal Lagrange polynomials
associated with these nodes:

wi =

Z 1

−1

li(x) dx, li(x) ∈ lPn−1, li(xj) = δij.

• Error scales like |I −Qn| ∼ C
f (2n)(ξ)

(2n)!
(Qn exact for f(x) ∈ lP2n−1.)

• n nodes are roots of orthogonal polynomials

Change of Interval

• Gauss rules are prescribed on interval [−1, 1], so usually need to transform
to [a, b] for general application

• Suppose [ξi, wi] are the Gauss points and weights associated with interval
[−1, 1]

• Then, use the affine (i.e., linear) transformation,

ti = a + (b− a)(ξi + 1)/2,

which satisfies ξ = −1 when t = a and ξ = 1 when t = b
−

• Here ξi, i = 1, . . . , n are the Gauss points on [-1,1]

•

• You simply look up the (ξi, wi) pairs, use the above formula to get ti, then
evaluate

Qn =
b− a

2

nX

i=1

wif (ti)

*

(*that is, call a function)

Use of Gauss Quadrature

• There is a lot of software, in most every language, for computing the

nodes and weights for all of the Gauss, Gauss-Lobatto, Gauss-Radau

rules (Chebyshev, Legendre, etc.)

Let’s work out an example for 3-Point Gaussian quadrature applied to

I :=

Z
1

−1

ex dx.

Table Look-Up: quadrature points, ξi ∈ (−1, 1) and weights, wi:

ξ1 = −0.774596669241483 w1 = 0.5555555555555555

ξ2 = 0.000000000000000 w2 = 0.8888888888888890

ξ3 = 0.774596669241483 w3 = 0.5555555555555555

Function Eval: evaluate integrand f(x) = ex at quadrature points:

f1 = e−0.774596669241483 = 0.4608896344821015

f2 = e 0.000000000000000 = 1.0000000000000000

f3 = e+0.774596669241483 = 2.1697168371419185

Quadrature Rule: sum product of weights × function, wifi:

QGL = 0.555555555555555 ∗ 0.4608896344821015

+ 0.888888888888888 ∗ 1.0000000000000000

+ 0.555555555555555 ∗ 2.1697168371419185

= 2.350336928680011

Comparison: Compare to exact answer:

I =

Z
1

−1

ex dx = e1 − e−1 = 2.350402387287603

|I −QGL| = 6.545860759255007e− 05

Let’s compare to Simpson’s Rule:

Quadrature Points and Weights:

ξ1 = −1.0 w1 = 1/3 (Recall, b− a = 2.)

ξ2 = 0.0 w2 = 4/3

ξ3 = 1.0 w3 = 1/3

Function Eval: evaluate integrand f(x) = ex at quadrature points:

f1 = e−1 = 0.3678794411714423

f2 = e 0 = 1.0000000000000000

f3 = e+1 = 2.7182818284590452

Simpsons Rule: sum product of weights × function, wifi:

Qsimp =
1

3
0.3678794411714423 +

4

3
1.0000000000000000 +

1

3
2.7182818284590452

= 2.362053756543496

Comparison: Compare to exact answer:

|I −Qsimp| = 1.165136925589261e− 02

Error for Simpson’s rule is ≈ 180 times larger.

Gaussian Quadrature

• Gaussian quadrature rules have maximal degree and optimal accuracy for

the number of nodes used

• Weights are always positive and approximate integral always converges to

exact integral as n �! 1
�! 1

• Unfortunately, aside from Chebyshev, Gaussian rules of different orders do

not have points in common so Gaussian rules are not progressive

• If you want to improve the estimate by increasing n to n0, you have to re-

evaluate f at all n0 nodes

• Thus, estimating error using Gauss rules of different order requires a full

re-evaluation

• Gauss-Konrod rules augment the Gauss points with n0
� n points, but are

suboptimal

Gauss-Lobatto-Legendre Quadrature Example

gauss_quad_demo.m

Closed Gauss Rules (Gauss-Lobatto-Legendre)

• Gauss-Legendre quadrature

• Endpoints not included

• Open formula

• Gauss-Lobatto-Legendre quadrature

• +1 and -1 (i.e., a,b) included in function evaluation (like Simpson)

• Closed formula

• GL is more efficient than GLL.

GLL points

GL points

Gauss-Legendre Quadrature Example

gauss_quad_demo2.m

