
Some Notes on Euler’s Method

• We all know that
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Notes on Euler’s Method, continued

• Consider ỹ0 = �ỹ on the interval t 2 [0, 1] with IC ỹ(0) = 1.

• The exact solution to this problem is ỹ(t) = e
�t and, for � = 1, we have

ỹ(1) = e

• Consider Euler forward applied to y
0 = �y on the interval t 2 [0, 1],

• Starting with y0 = 1, we have

yk = (1 + h�)y1 = (1 + h�)ky0 = (1 + h�)k

• Taking � = 1 and h = 1/n, we have

yn =
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ỹ(1) = e

• Consider Euler forward applied to y
0 = �y on the interval t 2 [0, 1],

• Starting with y0 = 1, we have

yk = (1 + h�)y1 = (1 + h�)ky0 = (1 + h�)k

• Taking � = 1 and h = 1/n, we have

yn =

✓
1 +

1

n

◆n

⇡ e

2

Notes on Euler’s Method, continued
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• The exact solution to this problem is ỹ(t) = e
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• Consider ỹ0 = �ỹ on the interval t 2 [0, 1] with IC ỹ(0) = 1.
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Notes on Euler’s Method, continued

• However, we have a more precise estimate than yn ⇡ e.

• We know that EF is O(h) accurate, so we expect th

e �
✓
1 +

1

n

◆n

= e � yn = Ch + O(h2)

• That is, the convergence rate O(h) = O(n�1)

• Moreover, from the Taylor series expansion for y, we have

yk+1 � yk = hy
0 +

h
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2
f
00(⇠), ⇠ 2 [0, 1]

so we expect the constant to be bounded by e/2,
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Richardson Extrapolation

• Suppose we have a sequence of yn =
�
1 + 1

n

�n
values for n = 2, 4, 8, . . .

• We can apply one or two rounds of Richardson extrapolation to get better
estimates of e

• Let

zn = 2y2n � yn ⇠ 2(e� c1
h

2
+O(h2)) � (e� c1h +O(h2))

⇠ e + c2h
2

• Repeating, with qn = (4z2n � zn)/3, will eliminate the O(h2) error, etc.

• est rich.m

• Of course, none of these are as rapidly convergent as the Taylor series for e,

e =
1X

k=0

1

k!
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Chapter 10: ODEs–Boundary Value Problems
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ODEs: Boundary Value Problems

• For solution of IVPs, we had all “boundary conditions” prescribed at the

same initial timepoint, t0

• For boundary value problems (BVPs), we prescribe conditions at more

than one point

• For a kth-order ODE, we require a total of k conditions

• For ODE-BVPs, conditions are generally specified at endpoints of intervale

of interest, [a, b], so we have a two-point boundary value problem with

boundary conditions (BCs) at a and b
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Examples of Two-Point BVPs

• 1D “Poisson” equation:

�ũ
00
= f (x) on ⌦ = [0, L], ũ(0) = ũ(L) = 0

• 1D advection-di↵usion equation:

�⌫ũ
00
+ c ũ

0
= f (x) on ⌦ = [0, L], ũ(0) = ũ(L) = 0

• Blasius equation - 3rd-order nonlinear BVP on ⌦ = [0,1],

ũ
000
+

1

2
ũ(x)ũ

00
(x) = 0, ũ(0) = ũ

0
(0) = 0, ũ

0
(x) �! 1 as x �! 1
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ũ
000
+

1

2
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00
+ c ũ

0
= f (x) on ⌦ = [0, L], ũ(0) = ũ(L) = 0
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Boundary Conditions

• Prescribed boundary values at either a or b are termed Dirichlet boundary
conditions

• If ũ(a) = 0 it is a homogeneous Dirichlet condition, otherwise it is an

inhomogeneous Dirichlet condition

• If we prescribe the slope ũ
0
(a) (or ũ

0
(b), as in the Blasius example) the

boundary condition is a homogeneous Neumann condition if ũ
0
(a) = 0

and an inhomogeneous Neumann condition if ũ
0
(a) 6= 0

• We can also have mixed or Robin conditions, such as

↵ũ
0
(L) + �ũ(L) = �

Robin conditions are well posed under either of the two conditions

8
><

>:

↵ 6= 0 and ↵� � 0, (general Robin condition)

or

↵ = 0, � 6= 0, (Dirichlet at x = L)
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ODEs: Boundary Value Problems in 1D

Consider linear ODE of the form Lũ = f(x), with ũ(x) satisfying given BCs.

Here, we consider three basic approaches to find u ⇡ ũ.

• Finite di↵erence methods (FDM):

– Essentially, approximate di↵erential equation at multiple points, xi, i = 1, . . . , n.

– Note: we will use either n or n+1 points according to what makes the most sense
in the given context.

• Collocation methods:

– Use an expansion to represent a numerical solution,

u(x) :=
nX

j=1

uj�j(x).

– Solve for coe�cients uj such that the ODE is satisfied at a chosen set of
collocation points, xi, along with the boundary conditions.

– That is, the residual,

r(x) := (Lũ� Lu) ,

is forced to be zero at x = xi, i = 1, . . . , n.
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Here, we consider three basic approaches to find u ⇡ ũ.

• Finite di↵erence methods (FDM):

– Essentially, approximate di↵erential equation at multiple points, xi, i = 1, . . . , n.

– Note: we will use either n or n+1 points according to what makes the most sense
in the given context.

• Collocation methods:

– Use an expansion to represent a numerical solution,

u(x) :=
nX

j=1

uj�j(x).

– Solve for coe�cients uj such that the ODE is satisfied at a chosen set of
collocation points, xi, along with the boundary conditions.

– That is, the residual,

r(x) := (Lũ� Lu) ,

is forced to be zero at x = xi, i = 1, . . . , n.



• Weighted residual technique (WRT):

– Approximate the solution by an expansion,

u(x) :=
nX

j=1

uj�j(x),

and solve for coe�cients uj such that the ODE is satisfied in some weighted sense.

– That is, rather than enforcing r(x) = 0 at isolated points, we require r(x) to be
orthogonal to a set of weight functions,  i(x):

Z b

a

 i(x) r(x) dx =

Z b

a

 i(x) (L(u)� L(ũ)) dx = 0, or

Z b

a

 i(x)L(u) dx =

Z b

a

 i(x)L(ũ) dx =

Z b

a

 i(x) f(x) dx

for i = 1, 2, ...

– Note that if  i(x) = �(x� xi) (Dirac delta function), we recover collocation.

– Most often, the test-space and trial space are the same:  i := �i. (Galerkin case.)

– Finite element, spectral, spectral element methods are examples of WRTs.

– WRTs have many advantages over collocation in terms of flexibility of basis func-
tions, application of boundary conditions, etc., and are generally preferred over
collocation.





Finite Di↵erence Method (FDM)

• Finite di↵erence methods replace derivatives of continuous functions by

finite di↵erence approximations to derivatives on discrete grids

• For example, to solve two-point BVP

ũ
00
(x) = f (t, ũ, ũ

0
), a < x < b

with BC

ũ(a) = ↵ ũ(b) = �,
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0
), a < x < b

with BC

ũ(a) = ↵ ũ(b) = �,

introduce mesh points xj = a + ih, i = 0, 1, . . . , n + 1, where the uniform

grid spacing is h = �x = (b� a)/(n + 1)

• Let uj ⇡ u(xj) on interior points.
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1D Poisson Example

• As an example of the type of analysis to be covered this term we will consider Jacobi iteration
(i.e., fixed-point iteration with a diagonal preconditioner) to the system,

Au =
1

�x2

0

BBBBBBBB@

2 �1

�1 2 �1

�1
. . . . . .

. . . . . . �1

�1 2

1

CCCCCCCCA

0

BBBBBBBB@

u1

u2

...

...

un

1

CCCCCCCCA

=

0

BBBBBBBB@

f1

f2

...

...

fn

1

CCCCCCCCA

. (13)

• With �x := L/N , N := n + 1, this system corresponds to a uniform-grid finite
di↵erence (or linear finite element) discretization of the 1D Poisson problem,

�d
2
ũ

dx2
= f(x), (14)

with Dirichlet boundary conditions, ũ(0) = ũ(L) = 0.

uj�1
uj

uj+1

0 =: x0 x1 x2 · · · xj�1 xj xj+1 · · · xN := L

Figure 1: Finite di↵erence grid on ⌦ := [0, L] with grid-spacing �x = L/N .



Finite Di↵erence Method, continued

• Replace derivatives by finite di↵erence approximations on grid

• For example, centered di↵erences on a uniform grid yields

ũ
0
(xj) =

ũj+1 � ũj�1

2h
+ O(h

2
) ⇡ uj+1 � uj�1

2h

ũ
00
(xj) =

ũj+1 � 2ũj + ũj�1

h2
+ O(h

2
) ⇡ uj+1 � 2uj + uj�1

h2

• Leads to system of equations to be solved for unknowns, ui, i = 1, . . . , n,

ui+1 � 2ui + ui�1

h2
= f

✓
xi, ui,

uj+1 � uj�1

2h

◆

• System may be linear or nonlinear, depending on f

• If linear, this tridiagonal system can be solved in ⇡ 8n operations

6

Finite Di↵erence Method, continued

• Replace derivatives by finite di↵erence approximations on grid

• For example, centered di↵erences on a uniform grid yields

ũ
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2h
+ O(h

2
) ⇡ uj+1 � uj�1

2h

ũ
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ũ
00
(xj) =
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Example: Convection-Diffusion Equation

�⌫
d2u

dx2
+ c

du

dx
= f, u(0) = u(1) = 0,

Apply finite di↵erence: Lu = Au + Cu = f

A =
⌫

�x2

2

666664

2 �1

�1 2 . . .
. . . . . . . . .

. . . . . . �1
�1 2

3

777775
C =

c

2�x

2

666664

0 1

�1 0 . . .
. . . . . . . . .

. . . . . . 1
�1 0

3

777775

• A is symmetric positive definite.

• C is skew-symmetric.

• L = A + C is neither SPD nor skew-symmetric.

d2u

dx2
or

d

dx
⌫(x)

du

dx

1



• Let’s look at a simple example in more detail.

�⌫
d2ũ

dx2
= f(x), ũ(0) = ũ(1) = 0,

where ũ(x) is analytical solution.

• For points with uniform spacing h := 1/(n+ 1), define:

xj = j · h, j = 0 . . . , n+ 1, as the grid points,

fj = f(xj) as the data (the rhs), and

uj ⇡ ũ(xj) as the unknowns.

• The system of equations for i = 1, . . . , n is

⌫

�x2

2

666664

2 �1

�1 2 . . .
. . . . . . . . .

. . . . . . �1
�1 2

3

777775

0

BBBBBB@

u1
u2
...
...

un

1

CCCCCCA
=

0

BBBBBB@

f1
f2
...
...

fn

1

CCCCCCA
.

• Note that, for i = 1, . . . , n, the ith equation is

� ⌫

�x2
[ui�1 � 2ui + ui+1] = fi,

which holds even at the boundary since u0 = 0 and un+1 = 0.

2
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777775

0

BBBBBB@

u1
u2
...
...

un

1

CCCCCCA
=

0

BBBBBB@

f1
f2
...
...

fn

1

CCCCCCA
.

• Note that, for i = 1, . . . , n, the ith equation is

� ⌫

�x2
[ui�1 � 2ui + ui+1] = fi,

which holds even at i = 1 and n since u0 = 0 and un+1 = 0.

2

conv_diff.m



Example: Convection-Diffusion Equation

Note: It is critical that A & C be defined as 
sparse matrices.  
Otherwise, the cost will be O(n3) instead of O(n)!

conv_diff.m



Comments About Computing Error Norms

• We test the convergence of FD by computing ej := ũ(xj) � uj,
where ũ solves a known problem.

• Be careful with the l2 vector norm!

• Even though max |ei| �! 0 with n �! 1,
we can still have ||e|| grow with n. Why?

• When solving di↵erential equations, it is better to use
norms that approximate their continuous counterparts.

||e||2 =

Z

⌦

e2 dx

� 1
2

⇡
"
1

n

nX

i=1

|ei|2
# 1

2

| {z }
n scales out

• The issue can also be resolved by measuring relative error:

error :=
||e||
||u||

for some appropriate vector norm.

• Still, it’s best to use a norm that doesn’t scale with n.

1



Convection-Diffusion Equation
Convection (& Convection-Di↵usion).

• Consider 1D convection-di↵usion with c = 1 and f = 1:

@u

@t
+ c

@u

@x
= ⌫

@
2
u

@x2
+ f

u(0) = 0, u(1) = 0.

• Assume steady-state conditions ut = 0

�⌫uxx + c ux = 1, u(0) = u(1) = 0.

• If ⌫ = 0, we have:

c ux = 1, u(0) = u(1) = 0 ???

Too many boundary conditions!



Convection-Diffusion Equation

• The issue is that ⌫ �! 0 is a singular perturbation.

• This is true whenever the highest-order derivative is multiplied

by a small constant.

• As the constant goes to zero, the number of boundary conditions

changes.

• Here,

– We go from one boundary condition when ⌫ = 0,

– to two boundary conditions when ⌫ > 0 (even for ⌫ ⌧ 1).

• An example that is not a singular perturbation is

�uxx + ✏ ux = 1, u(0) = u(1) = 0, ✏ �! 0.

This is called a regular perturbation.



Regular / Singular Perturbations You’re Familiar With
• Another example:

• Consider solutions to the quadratic equation: ax
2
+ bx + c = 0.

Example 1: x
2
+ ✏x = 1 : Two roots as ✏ �! 0. Regular perturbation.

Example 2: ✏x
2
+ x = 1 :

x = � 1

2✏
± 1

2✏

p
1 + 4✏

x1 =
1

2✏

⇣p
1 + 4✏ � 1

⌘

=
1

2✏

�
1 + 2✏ � 1 + O(✏

2
)
�

= 1 + O(✏).

x2 = � 1

2✏
(2 + O(✏)) �! �1. Singular perturbation.

• Another example:
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2
+ bx + c = 0.

Example 1: x
2
+ ✏x = 1 : Two roots as ✏ �! 0. Regular perturbation.

Example 2: ✏x
2
+ x = 1 :

x = � 1

2✏
± 1

2✏

p
1 + 4✏

x1 =
1

2✏

⇣p
1 + 4✏ � 1

⌘

=
1

2✏

�
1 + 2✏ � 1 + O(✏

2
)
�

= 1 + O(✏).
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• Another example:

• Consider solutions to the quadratic equation: ax
2
+ bx + c = 0.

Example 1: x
2
+ ✏x = 1 : Two roots as ✏ �! 0. Regular perturbation.

Example 2: ✏x
2
+ x = 1 :

x = � 1

2✏
± 1

2✏

p
1 + 4✏

x1 =
1

2✏

⇣p
1 + 4✏ � 1

⌘

=
1

2✏

�
1 + 2✏ � 1 + O(✏

2
)
�

= 1 + O(✏).

x2 = � 1

2✏
(2 + O(✏)) �! �1. Singular perturbation.

Equation changes to first order when e=0.



Convection-Diffusion Equation

• Exact solution for our 1D model problem:

u =
x

c
� L

c


e
cx/⌫ � 1

ecL/⌫ � 1

�

=
1

c


x � e

c(x�L)/⌫ � e
�cL/⌫

1 � e�cL/⌫

�
.

• In the convection-dominated limit (cL � ⌫), one of these

is computable in IEEE floating point, one is not.

• Which is which?



Nonlinear Example: The Bratu Equation

• Consider 1D di↵usion with nonlinear right-hand side:

�d2u

dx2
= q(x, u) = � eu, u(0) = u(1) = 0.

• Discretizing with finite di↵erences (say),

Au = � eu.

• Nonlinear system:

f(u) = 0, f(u) = Au � � eu.



• Newton’s method:

uk+1 = uk + sk

sk = �
⇥
Jk

⇤�1
f(uk).

�
Jk

�
ij

:=
@fk

i

@ukj
.

• ith equation:

fk
i =

nX

j=1

Aij u
k
j � �eu

k
i �! (Jk)ij =

@fi
@uj

= Aij � ��ije
ui.

• If b = �1 and aj = 2 � h2�euj , then

• At each iteration, modify the tridiagonal matrix A such that

Jk = A + �eu
k
i �ij,

and solve this tridiagonal system in ⇡ 8n operations.



• Newton’s method:

uk+1 = uk + sk

sk = �Jk f(uk).

�
Jk

�
ij

:=
@fk

i

@ukj
.

• ith equation:

fk
i

=
nX

j=1

Aij u
k
j � �eu

k
i �! (Jk)ij =

@fi
@uj

= Aij � �eui.

• If b = �1 and aj = 2 � h2�euj , then

• At each iteration, modify the tridiagonal matrix A such that

Jk = A + �eu
k
i �ij,

and solve this tridiagonal system in ⇡ 8n operations.

we seek an unknown function u(x) (where x 2 [0, 1] is a spatial coordinate) that satisfies the steady-
state heat (di↵usion) equation

�d
2
u

dx2
= q, u(0) = u(1) = 0, (3)

where q(x) represents the heat source. For the Bratu problem, we define

q = �e
u(x)

,

where � is a parameter.

Equation (3) is a ordinary di↵erential equation (ODE) and in particular it is a nonlinear two-point
boundary value problem with boundary conditions prescribed as above. To turn this continous
problem into a system of nonlinear equations we first discretize the second derivate term in (3)
using a finite di↵erence appoximation. Through application of Taylor series at points xj := jh,
j = 1, . . . , n, with grid spacing h = 1/(n+ 1). we derive

�uj�1 � 2uj � uj+1

h2
= �d

2
u

dx2

����
j

+O(h2) = �e
uj +O(h2). (4)

If we neglect the O(h2) error term then the system is solvable we can anticipate that our solution
uj will approximate u(xj) to order h2.

Subtracting the right-hand side from both sides of (4) and changing the sign, we arrive at the
n-dimensional root-finding problem f(u) = 0,

fj =
uj�1 � 2uj � uj+1

h2
+ �e

uj = 0, j = 1, . . . , n (5)

To apply (1), we need the Jacobian (2), which is given by the tridiagonal matrix

J =
1

h2

0

BBBBBBBBB@

a1 b

b a2 b

b
. . .

. . .

. . .
. . . b

b an

1

CCCCCCCCCA

, (6)

with b = 1 and aj = �2 + h
2
�e

uj . Note that, as is often the case with systems arising from
di↵erential equations, J is sparse. That is, it has a fixed number of nonzeros per row, independent
of n and thus has O(n) nonzeros. Moreover, because this system is tridiagonal, the factor cost is



bratu1a.m



Extension of Finite Difference to Variable Coefficients

xj� 1
2

xj+ 1
2

xj�1 xj xj+1

Figure 1: Grid spacing for variable coe�cient di↵usion operator.

Consider the one-dimesional model problem,

d

dx
a(x)

du

dx
= f(x), u(0) = u(1) = 0. (5)

Let

ui := u(xi), ai+ 1
2

:= a(xi+ 1
2
). (6)

with xi := i h, i = 0, . . . , n+ 1 and xi+ 1
2
:= (i+

1
2)h, i = 0, . . . , n, and h := 1/(n+ 1). Then

wi =
d

dx
a(x)

du

dx

����
xi

⇡ 1

h

2

4
✓
a
du

dx

◆����
x
i+1

2

�
✓
a
du

dx

◆����
x
i� 1

2

3

5 (7)

⇡ 1

h


ai+ 1

2

✓
ui+1 � ui

h

◆
� ai� 1

2

✓
ui � ui�1

h

◆�
. (8)

Assuming u = 0 at the domain endpoints, then the finite di↵erence appoximation to u
0
i+ 1

2

, i =

0, . . . , n can be evaluated as the matrix-vector product, v = Du, where D is the (n+ 1)⇥ n finite

di↵erence matrix illustrated below.

v =

0

BBBBBB@

v 1
2

v 3
2

.

.

.

vn+ 1
2

1

CCCCCCA
=

1

h

2

6666664

1

�1 1

�1
. . .

. . . 1

�1

3

7777775

0

BBBBB@

u1

u2

.

.

.

un

1

CCCCCA
= Du. (9)

Note that
1
h(ui+1 � ui) is generally regarded as a first-order accurate approximation to

du
dx , it is in

fact second-order accurate at the midpoint xi+ 1
2
.

Given vi+ 1
2
, it remains to evaluate the outer finite di↵erence in (7), which maps data from the

(n+ 1) half-points to the n integer points. Let

qi+ 1
2

:= ai+ 1
2
vi+ 1

2
. (10)

Then

w =

0

BBBBB@

w1

w2

.

.

.

wn

1

CCCCCA
=

1

h

2

6664

�1 1

�1 1

. . .
. . .

�1 1

3

7775

0

BBBBBB@

q 1
2

q 3
2

.

.

.

qn+ 1
2

1

CCCCCCA
= �D

T
q. (11)

2

Consider the one-dimesional model problem,

� d

dx
a(x)

du

dx
= f(x), u(0) = u(1) = 0. (5)

Let

ui := u(xi), ai+ 1
2

:= a(xi+ 1
2
), wi ⇡ d

dx
a(x)

du

dx

����
xi

, (6)

with xi := i h, i = 0, . . . , n+ 1 and xi+ 1
2
:= (i+ 1

2)h, i = 0, . . . , n, and h := 1/(n+ 1). Then
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Assuming u = 0 at the domain endpoints, then the finite di↵erence appoximation to u0
i+ 1

2
,

i = 0, . . . , n can be evaluated as the matrix-vector product, v = Du, whereD is the (n+1)⇥n
finite di↵erence matrix illustrated below.
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Note that 1
h(ui+1 � ui) is generally regarded as a first-order accurate approximation to du

dx ,
it is in fact second-order accurate at the midpoint xi+ 1

2
.



Extension of Finite Difference to Variable Coefficients
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Figure 1: Grid spacing for variable coe�cient di↵usion operator.
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Given vi+ 1
2
, it remains to evaluate the outer finite di↵erence in (7), which maps data from the
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Extension of Finite Difference to Variable Coefficients

Finally, note that if A is an (n+ 1)⇥ (n+ 1) diagonal matrix with entries (a 1
2
, a 3

2
, . . . an+ 1

2
), then

(10) can be expressed as q = Av, and the finite-di↵erence approximation (7) can be compactly

expressed in matrix form as

w = �D
T
ADu (12)

Assuming ai+ 1
2
> 0, it is easy to show that the matrix

L := D
T
AD (13)

is symmetric positive definite, which is a requirement if the system is to be solved with conjugate

gradient iteration or Cholesky factorization. Fortunately, this property carries over into the mul-

tidimensional case, which we consider in the next section. We further remark that L is a map

from data (u1 . . . uj . . . un) to (w1 . . . wj . . . wn). That is, once defined, it does not generate data at

the half gridpoint locations. This is a particularly attractive feature in multiple space dimensions

where having multiple grids leads to an explosion of notational di�culties.

2.2 Finite Di↵erences in Two Dimensions

We extend the results of the preceding section to the two-dimensional case. Assume we have

a tensor-product domain in x � y with interior gridpoints (xi, yj) = (i�x, j�y), i = 1, . . . ,m,

j = 1, . . . , n, and gridspacing �x = Lx/m and �y = Ly/n. Let uij ⇡ u(xi, yj) and assume that

u = 0 for x = 0, x = Lx, and y = 0, y = Ly.

Here, we consider the specific PDE

� @

@x
H

3 @p

@x
� @

@y
H

3 @p

@y
= f(x, y) (14)

with H = H(x), only. In this case, the PDE simplifies to

� @

@x
H

3 @p

@x
� H

3 @
2
p

@y2
= f(x, y). (15)

The first term gives rise to the matrix form of the preceding section, while the second leads to a stan-

dard second-derivative approximation in the y direction with a multiplier (H
3
) that is independent

of y.

Let P = pij be the field of values to which we wish to apply the finite di↵erence approximation of

(15). We can view P = (p
1
. . . p

j
. . . p

ny
) as a sequence of rows of data at di↵erent y locations, yj .

Let Lx be the nx ⇥ nx matrix given by (13). Then, for each row j, one would apply the derivative

operator as wj = Lxpj
to approximate the first term in (15). Let Ly be the ny ⇥ ny matrix

Ly :=
1

�y2

2
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Convergence Behavior: Finite Difference

• In differential equations, we are interested in the rate of convergence 
– i.e., the rate at which the error goes to zero vs. n, the number of 
unknowns in the system.

• For finite difference methods and methods using Lagrangian 
interpolants, n is the number of gridpoints (but, depends on the type 
of boundary conditions…..)

• The next figure shows the error vs. n for a 2nd-order (i.e., O(h2)) finite 
difference solution of the steady-state convection-diffusion equation 
in 1D.

• For n > ~ eM-1/3, the error goes up, due to round-off associated with   
the approximation to the 2nd-order derivative.  

• As we’ve seen in past homework assignments, the minimum error is 
around eM-1/2



Finite Difference Convergence Rate

round-off 
~ eM n2

50/n2

Finite difference error
           ~ 50/n2



Properties of Finite Difference Methods

• Pros
• Easy to formulate (for simple problems)
• Easy to analyze                  “
• Easy to code                       “
• Closed-form expressions for eigenvalues/eigenvectors for uniform 

grid with constant coefficients.

• Cons –
• Geometric complexity for 2D/3D is not as readily handled as FEM.
• Difficult to extend to high-order (because of boundary conditions).
• Do not always (e.g., because of BCs)  get a symmetric matrix for 

�⌫
d2u

dx2
+ c

du

dx
= 1, u(0) = u(1) = 0,

Apply finite di↵erence: Lu = Au + Cu = f

A =
⌫
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2
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3
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• A is symmetric positive definite.

• C is skew-symmetric.

• L = A + C is neither SPD nor skew-symmetric.

d2u

dx2
or

d

dx
⌫(x)

du

dx

1



Eigenvalues, Continuous and Discrete

• One of the great features of finite difference methods is that one can 
readily compute the eigenvalues of the discrete operators and thus 
understand their spectrum and convergence rates.  

• The latter is important for understanding accuracy.

• The former is important for understanding stability of time-stepping 
schemes in the case of PDEs, which we’ll see in the next chapter.

• The reason it is easy to find the eigenvalues for finite difference 
methods is that, for the constant coefficient case, they often share 
the same eigenfunctions as their continuous counterparts.



Eigenvalue Example:

• Consider the analytical (i.e., continuous) eigenvalue problem

� d2ũ

dx2
= �̃ ũ, ũ(0) = ũ(1) = 0.

• The eigenfunctions/eigenvalues for the continuous problem are

ũ = sin(k⇡x) :

�ũ00 = k2⇡2 sin(k⇡x) = k2⇡2 ũ = �̃k ũ

�̃k = k2⇡2

1

k=1 mode                                          k=2 mode

The modes are like the vibrations of a guitar string.  
Higher wavenumbers, k, correspond to higher frequency.
Here, the k=2 mode would be a harmonic – one octave higher. 



Finite Di↵erence Eigenvectors/values:

• Consider s = [sin(k⇡xj)]T :

As|j =
�1

�x2
[sin k⇡xj+1 � 2 sin k⇡xj + sin k⇡xj�1]

=
�1

�x2
[sin(k⇡xj +�x) � 2 sin(k⇡xj) + sin(k⇡xj ��x)]

• Use the identity:

sin(a+ b) = sin a cos b + cos a sin b

sin(k⇡xj+1) = sin k⇡xj cos k⇡�x + cos k⇡xj sin k⇡�x

sin(k⇡xj�1) = sin k⇡xj cos k⇡�x � cos k⇡xj sin k⇡�x

sum = 2 sin k⇡xj cos k⇡�x

• As|j =
�1

�x2
[sj+1 � 2sj + sj�1] = � 1

�x2
[2 cos k⇡�x� 2] sin k⇡xj

= �ks|j

�k =
2

�x2
[1� cos k⇡�x] .

2



Eigenvalue Properties for �u00 = �u, u(0) = u(1) = 0:

• max�k ⇠ Cn2 �̃n

�n
⇠ ⇡2

4

• For k�x ⌧ 1, (with ✓ := k�x):

�k = (k⇡)2

1 � (k⇡�x)2

12
+ · · ·

�
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Collocation

• Collocation is essentially the method of undetermined coe�cients.

– Start with

u(x) =
nX

j=0

ûj�j(x)

.

– Find coe�cients ûj such that BVP is satisfied at gridpoints xi.

• Instead of using monomials, �j = xj , could use Lagrange polynomials
on Chebyshev or Legendre quadrature points.

• Normally, one would use Gauss-Lobatto-Legendre or Gauss-Lobatto-Chebyshev
points, which include ±1 (i.e., the endpoints of the interval) in the nodal set.

• If the solution is to be zero at those boundaries one would have u0 = un = 0.

• In many cases, these methods are exponentially convergent.

• For several reasons conditioning, symmetry, robustness, and ease
of boundary condtions, collocation has lost favor to Galerkin methods.

1



Finite Difference Convergence Rate

round-off 
~ º ²M n2

50*n2

Finite difference error
           ~ 50/n2



Convergence Behavior:  High-Order Methods

• The 2nd-order convergence of standard finite difference methods 
looks reasonable.

• However, higher-order methods are generally much faster in that the 
same error can be achieved with a lower n, once n is large enough 
for the asymptotic convergence behavior to apply.

• High-order methods suffer the same round-off issue, with error 
growing like eMn2.

• However, their truncation error goes to zero more rapidly so that the 
n where truncation and round-off errors balance is lower and the 
minimum error is thus much smaller.

• Usually, we are more interested in a small error at small n, rather 
than realizing the minimum possible error. 

• For PDEs on an (n x n x n) grid cost generally scales as n3, so a 
small n is a significant win. 



Spectral Collocation vs. Finite Difference

10/n2

Finite difference error
           ~ 10/n2

Legendre
collocation

round-off 
~ eM n2



Spectral Collocation vs. Finite Difference (semilogy)

round-off 
~ eM n2
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Finite difference error
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