Chapter 2, Linear Systems

OUTLINE

Geometry of Linear Systems

Existence, Uniqueness and Conditioning

Solving Linear Systems

Special Types of Linear Systems

Software for Linear Systems

Linear Systems

• We now consider solution of linear systems of the form $\mathbf{A}\mathbf{x} = \mathbf{b}$, where \mathbf{A} is an $n \times n$ system matrix of the form

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix},$$

while \mathbf{x} and \mathbf{b} are *n*-vectors.

- We will study cases in which these systems are singular or illconditioned (i.e., *nearly* singular) and cases where the systems are well-conditioned.
- We start with a brief review of conditions for singularity and of geometric interpretations of linear systems.

Existence and Uniqueness

- An $n \times n$ matrix **A** is said to be *nonsingular* if it satisfies any one of the following **equivalent** conditions:
 - 1. A has an inverse: A^{-1} such that $A^{-1}A = AA^{-1} = I$, the identity matrix.
 - 2. $det(\mathbf{A}) \neq 0$ (i.e., **A** has a nonzero determinant)
 - 3. rank $(\mathbf{A}) = n$ (the *rank* of a matrix = maximum number of linearly independent rows or columns it has)
 - 4. For any vector $\mathbf{z} \neq 0$, $\mathbf{Az} \neq 0$

The Geometry of Linear Equations¹

• Example, 2×2 system:

$$\begin{cases} 2x - y = 1 \\ x + y = 5 \end{cases} \iff \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

- Can look at this system by *rows* or *columns*.
- We will do both.

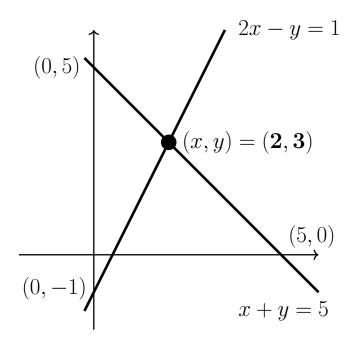
¹Gilbert Strang: Linear Algebra and Its Applications

Row Form

• In the 2×2 system, each equation represents a line:

$$2x - y = 1 \qquad \text{line 1}$$
$$x + y = 5 \qquad \text{line 2}$$

• The intersection of the two lines gives the unique point (x, y) = (2, 3), which is the solution.



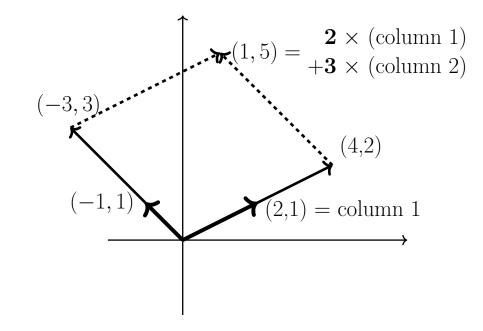
• We remark that the system is relatively *ill-conditioned* if the lines are close to being parallel, that is, if the smallest subtended angle is close to 0.

Column Form

- The second (and more important) geometry is column based.
- Here, we view the system of equations as *one vector equation*:

Column form
$$x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

• The problem is to find coefficients, x and y, such that the combination of vectors on the left equals the vector on the right.



• In this case, the system is *ill-conditioned* if the column vectors are nearly parallel. If these vectors are separated by an angle θ , it's relatively easy to show that the condition number scales as $\kappa \sim \frac{2}{\theta}$ as $\theta \longrightarrow 0$.

Row Form: A Case with n=3.

2u + v + w = 5Three planes: 4u - 6v = -2-2u + 7v + 2w = 9

- Each equation (row) defines a plane in \mathbb{R}^3 .
- The first plane is 2u + v + w = 5 and it contains points $(\frac{5}{2}, 0, 0)$ and (0, 5, 0) and (0, 0, 5).
- It is determined by three points, provided they do not lie on a line.
- Changing 5 to 10 would shift the plane to be parallel this one, with points (5,0,0) and (0,10,0) and (0,0,10).

Row Form: A Case with n=3, cont'd.

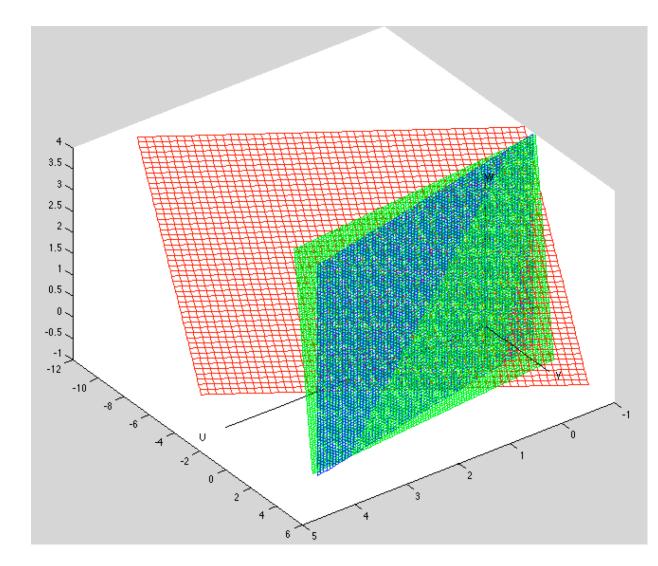
- The second plane is 4u 6v = -2.
- It is vertical because it can take on any w value.
- The intersection of this plane with the first is a *line*.
- The third plane, -2u + 7v + 2w = 9 intersects this line at a point, (u, v, w) = (1, 1, 2), which is the solution.
- In *n* dimensions, the solution is the intersection point of *n* hyperplanes, each of dimension n 1. A bit confusing.

Row Form: A Case with n=3, cont'd.

- The green and blue planes (Eqs. 2 and 3) intersect in a line.
- The **red** plane (Eq. 1) intersects this line.

$$2u + v + w = 5$$
$$4u - 6v = -2$$

$$-2u + 7v + 2w = 9$$



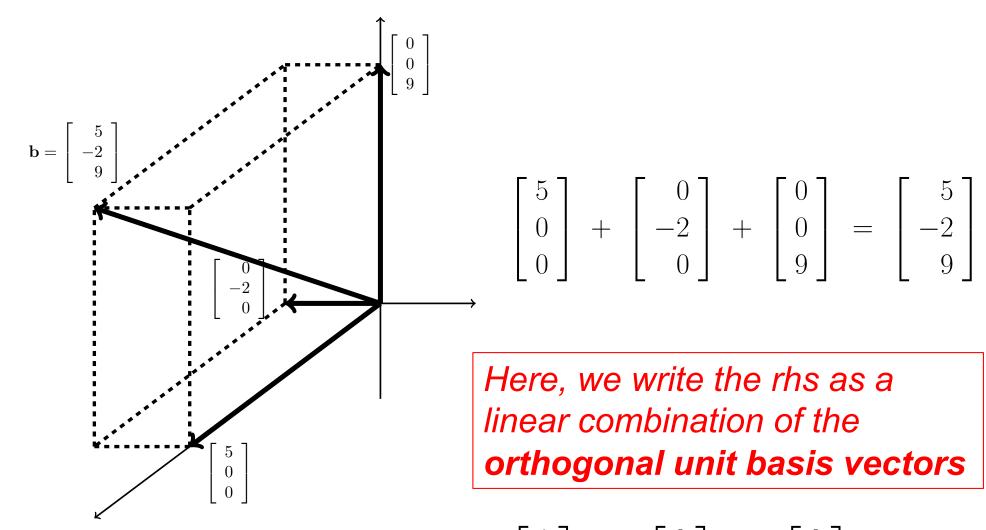
Column Vectors and Linear Combinations

• The preceding system in \mathbb{R}^3 can be viewed as the vector equation

$$u \begin{bmatrix} 2\\4\\-2 \end{bmatrix} + v \begin{bmatrix} 1\\-6\\7 \end{bmatrix} + w \begin{bmatrix} 1\\0\\2 \end{bmatrix} = \begin{bmatrix} 5\\-2\\9 \end{bmatrix} = \mathbf{b}.$$

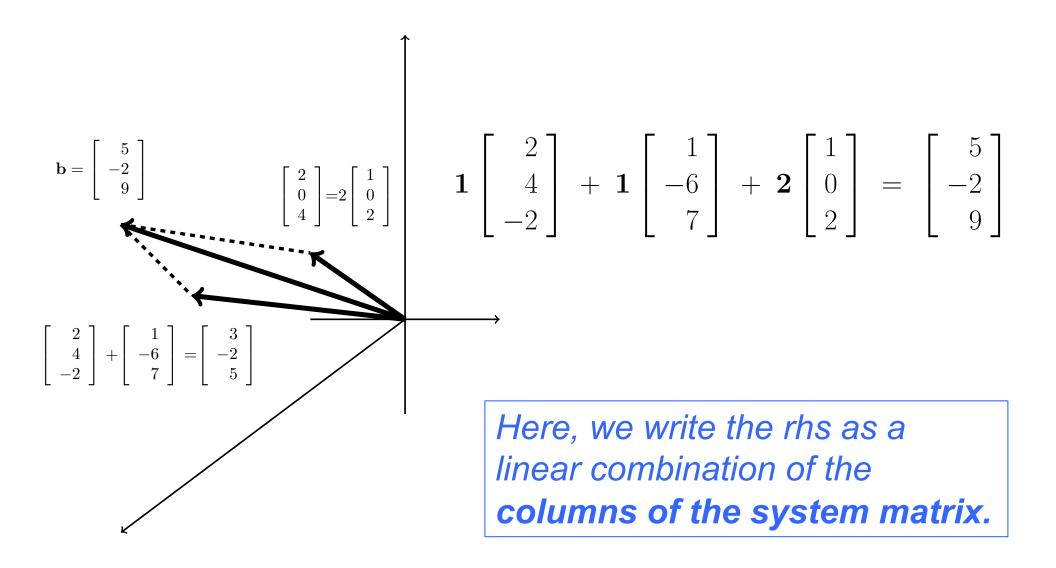
- Our task is to find the multipliers, u, v, and w.
- The vector **b** is identified with the point (5,-2,9).
- \bullet We can view ${\bf b}$ as a list of numbers, a point, or an arrow.
- For n > 3, it's probably best to view it as a list of numbers.

Vector Addition Example

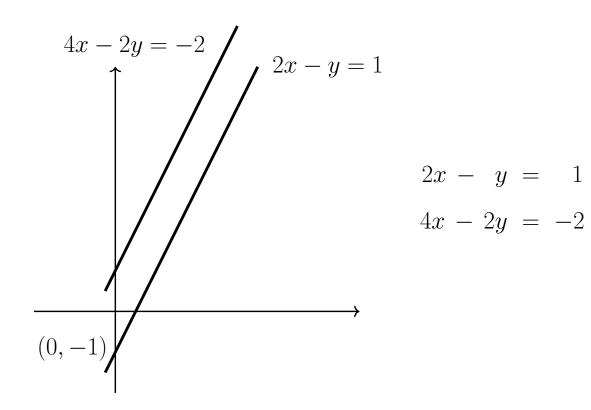


$$5\begin{bmatrix}1\\0\\0\end{bmatrix} - 2\begin{bmatrix}0\\1\\0\end{bmatrix} + 9\begin{bmatrix}0\\0\\1\end{bmatrix}$$

Linear Combination

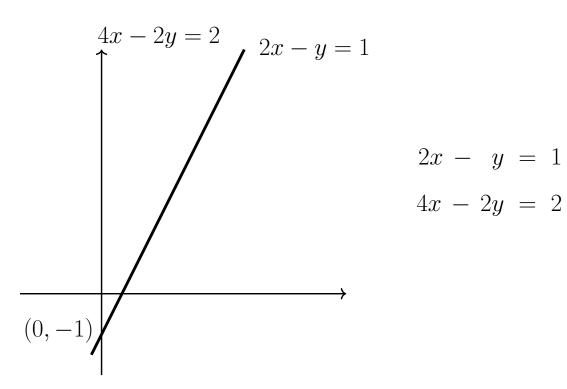


Singular Case: Row Picture



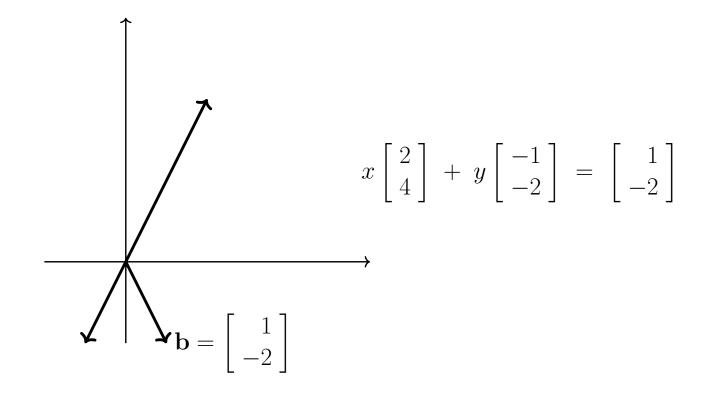
• No solution.

Singular Case: Row Picture



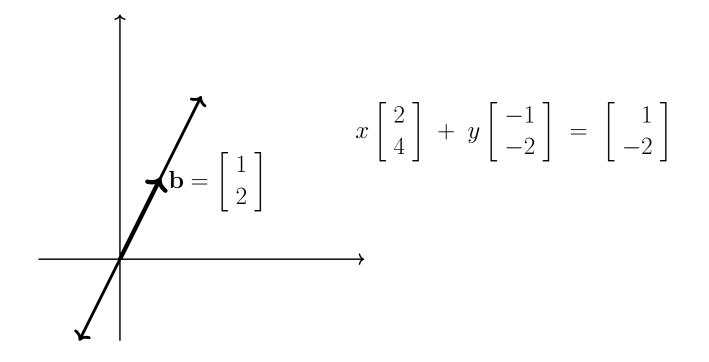
• Infinite number of solutions.

Singular Case: Column Picture



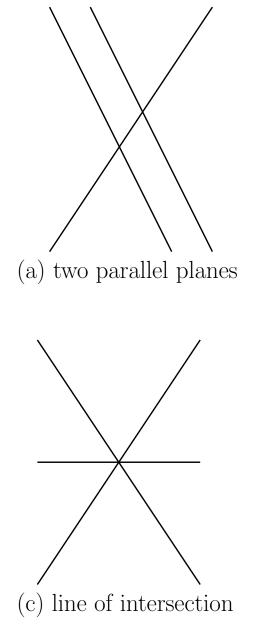
• No solution.

Singular Case: Column Picture

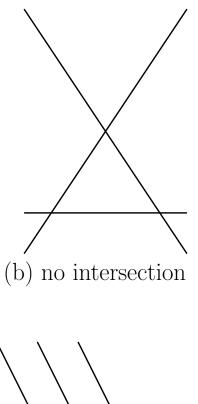


• Infinite number of solutions. (**b** coincident with \mathbf{a}_1 and \mathbf{a}_2 .)

Singular Case: Row Picture with n=3

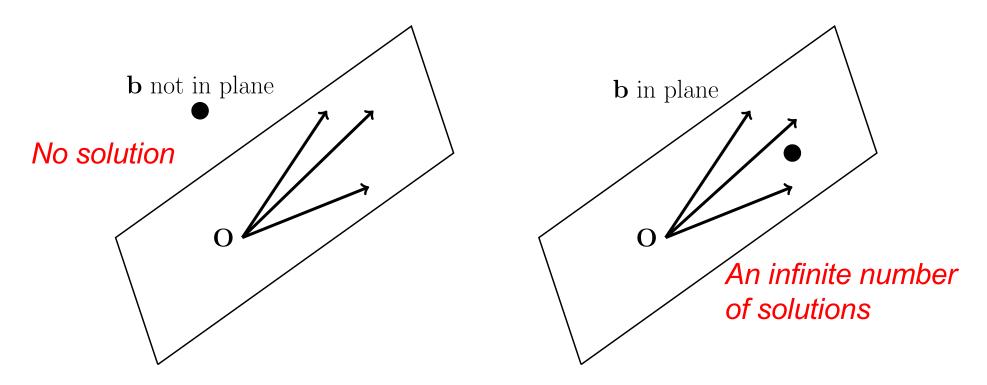


End-on view of 3 planes.



(d) all planes parallel

Singular Case: Column Picture with n=3



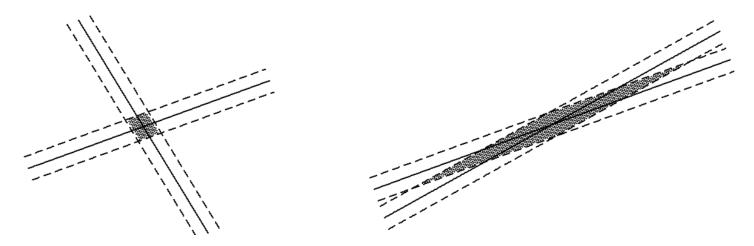
• In this case, the three columns of the system matrix lie in the same plane.

Example:
$$u \begin{bmatrix} 1\\2\\3 \end{bmatrix} + v \begin{bmatrix} 4\\5\\6 \end{bmatrix} + w \begin{bmatrix} 7\\8\\9 \end{bmatrix} = \mathbf{b}.$$

• Our system is *solvable* (we can get to any point in \mathbb{R}^3) if the three columns are *linearly independent*.

Nearly Singular Matrices – Row Perspective

 In two dimensions, uncertainty in intersection point of two lines depends on whether lines are nearly parallel

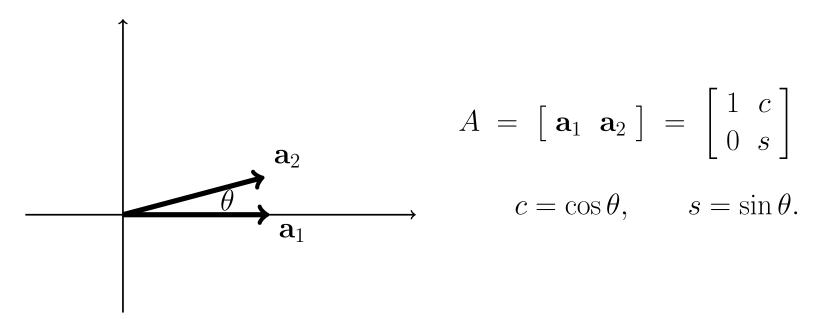


Well-Conditioned

Ill-Conditioned (nearly singular)

[An interesting question: For the 2x2 case, can you relate the angle to the condition number ?]

Nearly Singular Matrices – Column Perspective



- Clearly, as $\theta \longrightarrow 0$ the matrix becomes singular.
- Can show that

cond =
$$\sqrt{\frac{1+|c|}{1-|c|}} \approx \frac{2}{\theta}$$

for small θ (by Taylor series!)

Matrix Form and Matrix-Vector Products.

• We start with the familiar (row) form

$$2u + v + w = 5$$
$$4u - 6v = -2$$
$$-2u + 7v + 2w = 9$$

• In matrix form, this is

$$\begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \\ 9 \end{bmatrix}, \text{ or } A\mathbf{u} = \mathbf{b}.$$

• Of course, this must equal our column form,

$$u \begin{bmatrix} 2\\4\\-2 \end{bmatrix} + v \begin{bmatrix} 1\\-6\\7 \end{bmatrix} + w \begin{bmatrix} 1\\0\\2 \end{bmatrix} = \begin{bmatrix} 5\\-2\\9 \end{bmatrix} = \mathbf{b}.$$

Matrix Form and Matrix-Vector Products, 2.

• So, if A is the matrix with columns \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 ,

$$A := \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix} =: \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \\ \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}, \quad \text{and} \mathbf{u} := \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

• Then

$$A\mathbf{u} = u\mathbf{a}_1 + v\mathbf{a}_2 + w\mathbf{a}_3$$

Matrix Form and Matrix-Vector Products, 3.

• In general, if \mathbf{x} is the *n*-vector

$$\mathbf{x} := \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix},$$

and A is an $m \times n$ matrix, then

$$A\mathbf{x} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n$$

= linear combination of the columns of A.

• Always.

Matrix-Vector Products, Example.

If
$$\hat{\mathbf{x}} := V (V^T A V)^{-1} V^T \mathbf{b}$$

= $V \mathbf{y}$.

Then $\hat{\mathbf{x}} = \text{linear combination of the columns of } V$.

- $\hat{\mathbf{x}}$ lies in the *column space* of V.
- $\hat{\mathbf{x}}$ lies in the *range* of V.
- $\hat{\mathbf{x}} \in \operatorname{span}(V)$

Column Picture Example

• What linear combination of (1 2 3) and (1 1 1) will produce the vector (0 2 4)?

$$x_1 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + x_2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}.$$

• Is it unique?

Sigma Notation

• Let A be an $m \times n$ matrix,

$$A = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_j & \cdots & \mathbf{a}_n \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix}.$$

• Then

$$\mathbf{w} = A\mathbf{x} = \sum_{j=1}^{n} x_j \mathbf{a}_j = \sum_{j=1}^{n} \mathbf{a}_j x_j$$

$$w_i = (A\mathbf{x})_i = \sum_{j=1}^n a_{ij} x_j$$

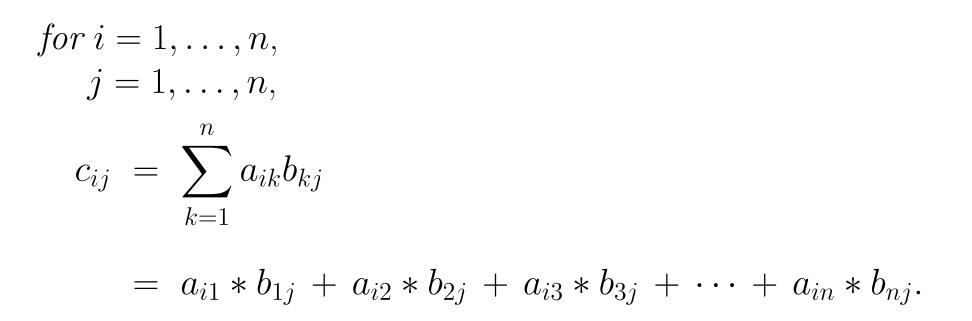
Matrix Multiplication

If
$$B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 \end{bmatrix}$$
,
Then $C = AB = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 \end{bmatrix}$

٠

$$c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}$$

- **Q:** (Important.) Suppose A and B are $n \times n$ matrices.
 - How many floating point operations (flops) are required to compute C = AB?
 - What is the number of memory accesses?



ANSWER:

• ~2n ops, "+" and "*", for each of n^2 results.

•
$$\rightarrow 2n^3$$
 operations total.

Some Special Matrix-Vector Products, 1/2.

Suppose V = v and W = w are n × 1 matrices (i.e., vectors).
Then

$$C = V^T W = \mathbf{v}^T \mathbf{w} = \sum_{j=1}^n v_j w_j = c$$

is a 1×1 matrix (i.e., a scalar).

• We refer to $\mathbf{v}^T \mathbf{w}$ as the "dot" or *inner* product of \mathbf{v} and \mathbf{w} .

Some Special Matrix-Vector Products, 2/2.

- Suppose $V = \mathbf{v}$ and $W = \mathbf{w}$ are $n \times 1$ matrices (i.e., vectors).
- Then

$$C = VW^{T} = \mathbf{v}\mathbf{w}^{T} = \mathbf{v}\left[w_{1} \ w_{2} \ \cdots \ w_{n}\right]$$
$$= \left[\mathbf{v}w_{1} \ \mathbf{v}w_{2} \ \cdots \ \mathbf{v}w_{n}\right]$$

is an $n \times n$ matrix, with each column a multiple of **v**.

- We refer to $\mathbf{v}\mathbf{w}^T$ as the *outer* product of \mathbf{v} and \mathbf{w} .
- It is a matrix of rank 1 and not invertible (unless n = 1).

– every column is a multiple of
$${\bf v}$$

- every row is a multiple of \mathbf{w}^T

Start here, Lecture 4

Solving a Linear System

Given

- $m \times n$ matrix, **A**
- m vector \mathbf{b}

What are we looking for and when are we allowed to ask the question? *Want*: *n*-vector \mathbf{x} so that $\mathbf{A}\mathbf{x} = \mathbf{b}$

- \bullet Linear combination of columns of ${\bf A}$ to yield ${\bf b}$
- Consider **square** case (m = n) for now
- Even then, solution may not exist or may not be unique
- Unique solution exists $iff \mathbf{A}$ is nonsingular

Next: Look at *conditioning* of this operation. Need matrix *norms*.

Matrix Norms

- Since we are considering $\mathbf{A}\mathbf{x}$, we need a measure of how \mathbf{A} can influence \mathbf{x} .
- Note that $\mathbf{y} = \mathbf{A}\mathbf{x}$ is just a *vector*.
- \bullet We have already introduced the *p*-norms for vectors.
- \bullet We can introduce an associated (or *induced*) matrix norm as the scalar $\|\mathbf{A}\|$ that satisfies

 $\left\|\mathbf{A}\mathbf{x}\right\| \, \leq \, \left\|\mathbf{A}\right\| \left\|\mathbf{x}\right\|$

for all $\mathbf{x} \in \mathbb{R}^n$, which simply defines $\|\mathbf{A}\|$ in terms of two vector norms, which we know how to compute.

• $\|\mathbf{A}\|$ is the maximum stretching realizable when multiplying \mathbf{x} by \mathbf{A} . Of course, can have $\|\mathbf{A}\| < 1$

Matrix Norms, continued

• This idea leads to two equivalent definitions

$$\|\mathbf{A}\| := \max_{\mathbf{x} \in \mathbb{R}^n} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}$$

$$= \max_{\|\mathbf{x}\|=1} \|\mathbf{A}\mathbf{x}\|$$

- For each *vector* norm, $\|\mathbf{x}\|$, we get a different *matrix norm* $\|\mathbf{A}\|$
- For example, for the vector norm $\|\mathbf{x}\|_2$ we have an associated matrix norm $\|\mathbf{A}\|_2$
- \bullet Note that these norms are well defined even if ${\bf A}$ is not square.

Identifying Matrix Norms

- What is $\|\mathbf{A}\|_1$? $\|\mathbf{A}\|_{\infty}$?
- If $\mathbf{A} = [a_{ij}],$

$$\|\mathbf{A}\|_1 = \max_{col j} \sum_{i=1}^m |a_{ij}| = \text{maximum column sum of } \mathbf{A}$$

 $\|\mathbf{A}\|_{\infty} = \max_{row \, i} \sum_{j=1}^{n} |a_{ij}| = \text{maximum row sum of } \mathbf{A}$ • **Q**: What is $\|I\|$ for the $n \times n$ identity matrix?

> Hint: Consider $\mathbf{x} = [\pm 1 \ \pm 1 \ \cdots \pm 1]^T$ so that $\mathbf{A}\mathbf{x}$ yields a sum on row *i*.

Matrix Norm Examples

- What is the 1-norm of the matrix A?
- What is the ∞ -norm?

$$A = \begin{bmatrix} 1 & -7 & 1 \\ 1 & 0 & 4 \\ 0 & 1 & 5 \end{bmatrix}$$

• *Hint:*

- For the ∞ -norm, set $\mathbf{x} = [\pm 1 \pm 1 \dots \pm 1]^T$ with signs chosen to maximize output. $||\mathbf{x}||_{\infty} = 1$.
- For the 1-norm, set $\mathbf{x} = [0 \ 0 \ \dots 1 \ \dots \ 0]^T$ with row chosen to maximize output. $||\mathbf{x}||_1 = 1$.

Identifying Matrix Norms, continued

- What is $\|\mathbf{A}\|_2$?
- In general, $\|\mathbf{A}\|_2 = \sigma_1$, the largest *singular value* of \mathbf{A} (more on this later)
- If **A** is real, square and symmetric, $\mathbf{A} = \mathbf{A}^T \iff a_{ij} = a_{ji}$, then $\|\mathbf{A}\|_2 = \max_j |\lambda_j| =: \rho(\mathbf{A}),$

the *spectral radius* of \mathbf{A} , corresponding the eigenvalue of maximum absolute value.

- The eigenvalues are the set of scalars $\lambda_j \in \mathbb{C}$, $j = 1, \ldots, n$, satisfying $\mathbf{A}\mathbf{z}_j = \lambda_j \mathbf{z}_j$ for given *eigenvectors*, \mathbf{z}_j .
- If **A** symmetric then the λ_j s are *real*

Identifying Matrix Norms

- How do matrix and vector norms relate for $n \times 1$ matrices?
- They are the same. WHY?
 - If $\mathbf{A} \in \mathbb{R}^{m \times 1}$, then $\mathbf{x} \in \mathbb{R}^1$ is a scalar
 - If $||\mathbf{x}|| = 1$, then x = 1 (or -1), so $||\mathbf{A}1|| = ||\mathbf{A}|| \cdot 1$
- **Q**: What is 1-norm of an $m \times 1$ matrix?

Properties of Matrix Norms

Matrix norms inherit the vector norm properties:

- $\|\mathbf{A}\| > 0 \iff \mathbf{A} \neq 0$
- $\|\gamma \mathbf{A}\| = |\gamma| \|\mathbf{A}\|$ for all scalars γ
- $\|\mathbf{A} + B\| \leq \|\mathbf{A}\| + \|\mathbf{B}\|$, triangle inequality

There are also two *submultiplicativity* properties that result from the induced norm definition,

- $\bullet \left\|\mathbf{A}\mathbf{x}\right\| \, \leq \, \left\|\mathbf{A}\right\| \left\|\mathbf{x}\right\|$
- $\bullet \|\mathbf{A}\mathbf{B}\| \leq \|\mathbf{A}\| \|\mathbf{B}\|$

In general we will write $\|\cdot\|$ for matrix norms without subscript if the statement is true for any induced norm.

Matrix Norm Examples

Consider

$$\mathbf{A} = \begin{bmatrix} .2 & .7 & 0 \\ .1 & .6 & 0 \\ 0 & 0 & .3 \end{bmatrix}$$

Hint: Consider
$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

- What is $\|\mathbf{A}\|_{\infty}$?
- What is $\|\mathbf{A}\|_1$?
- What is $\lim_{k\to\infty} \|\mathbf{x}_k\|_*$ for $\mathbf{x}_k := A^k \mathbf{x}$?
 - For the * = 1 case?
 - For the $* = \infty$ case?

• A:
$$\|\mathbf{x}_k\|_* = \|A^k \mathbf{x}\|_* \le \|A\|_*^k \|\mathbf{x}\|_*$$

Conditioning

What is the condition number when solving Ax = b?

- *Input*: **b** with error Δ **b**
- **Output**: **x** with error Δ **x**
- Observe $\mathbf{A}(\mathbf{x} + \Delta \mathbf{x}) = (\mathbf{b} + \Delta \mathbf{b})$, so $\mathbf{A}\Delta \mathbf{x} = \Delta \mathbf{b}$

$$\frac{\text{rel err in output}}{\text{rel err in input}} = \frac{\|\Delta \mathbf{x}\| / \|\mathbf{x}\|}{\|\Delta \mathbf{b}\| / \|\mathbf{b}\|} = \frac{\|\Delta \mathbf{x}\|}{\|\Delta \mathbf{b}\|} \cdot \frac{\|\mathbf{b}\|}{\|\mathbf{x}\|}$$
$$= \frac{\|\mathbf{A}^{-1}\Delta \mathbf{b}\|}{\|\Delta \mathbf{b}\|} \cdot \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}$$
$$\leq \|\mathbf{A}^{-1}\| \cdot \|\mathbf{A}\|$$

Condition Number

 \bullet We denote the *condition number* of ${\bf A}$ as

$$\kappa(\mathbf{A}) = \|\mathbf{A}^{-1}\| \cdot \|\mathbf{A}\|$$

- **Q**: What is the condition number of \mathbf{A}^{-1} ?
- $\kappa(\mathbf{A})$ is also the condition number associated with matrix-vector multiplication, $\mathbf{y} = \mathbf{A}\mathbf{x}$.
- Notice that $\kappa(\mathbf{A})$ depends on the associated matrix norm, $\|\mathbf{A}\|$.
- If **A** is *singular* we define $\kappa = \infty$

Condition Number, continued

• **Example**: Suppose $\kappa(\mathbf{A}) = 100$. What is $\kappa(10 \mathbf{A})$?

- Consider $\mathbf{B} := 10 \mathbf{A}$ with $\|\mathbf{A}\| = 5$ and $\|\mathbf{A}^{-1}\| = 20$
- What is $\|\mathbf{B}\|$?
- What is $\|\mathbf{B}^{-1}\|$?

•
$$\mathbf{B} = 10\mathbf{A} \iff \mathbf{B}^{-1} = \mathbf{A}^{-1}10^{-1} = 0.1\mathbf{A}^{-1}$$

• $\kappa(\mathbf{B}) = \|\mathbf{B}\| \cdot \|\mathbf{B}^{-1}\| = 10\|\mathbf{A}\| \cdot (0.1\|\mathbf{A}^{-1}\|) = \kappa(\mathbf{A})$

Properties of Condition Number

- For any matrix \mathbf{A} , $\kappa(\mathbf{A}) \geq 1$
- For identity matrix, $\kappa(\mathbf{I}) = 1$
- For any matrix **A** and scalar γ , $\kappa(\gamma \mathbf{A}) = \kappa(\mathbf{A})$
- For any diagonal matrix $\mathbf{D} = \operatorname{diag}(d_i), \, \kappa(\mathbf{D}) = \frac{\max |d_i|}{\min |d_i|}$
- If **A** is symmetric positive definite (SPD), $\kappa_2(\mathbf{A}) = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}$

• Condition number:

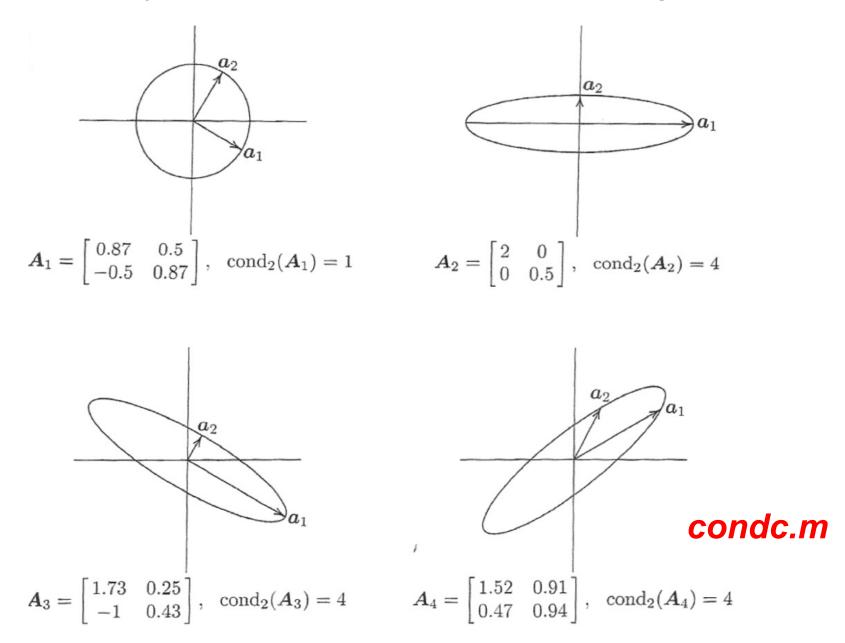
$$\kappa(A) := \|A\| \cdot \|A^{-1}\| = \frac{\max_{\|\mathbf{x}\|=1} \|A\mathbf{x}\|}{\min_{\|\mathbf{x}\|=1} \|A\mathbf{x}\|}.$$

- To see this, note that $\mathbf{y} = A^{-1}\mathbf{x} \iff \mathbf{x} = A\mathbf{y}$, and

$$||A^{-1}|| = \max_{\mathbf{x}\neq 0} \frac{||A^{-1}\mathbf{x}||}{||\mathbf{x}||} = \max_{\mathbf{y}\neq 0} \frac{||\mathbf{y}||}{||A\mathbf{y}||}$$
$$= \max_{||\mathbf{y}||=1} \frac{1}{||A\mathbf{y}||}$$
$$= \frac{1}{\min_{||\mathbf{y}||=1} ||A\mathbf{y}||}.$$

• So, condition number is the ratio of max-to-min stretching of A acting on a vector.

Condition Number Examples Apply **A** to unit-vector **x** at different angles



condc.m

```
hdr
```

```
A=[1.52\ 0.91;
    0.47 0.94 ];
theta = 2*pi*[0:1000]/1000;
x=cos(theta);
y=sin(theta);
X=[x ; y];
AX = A * X;
plot(x,y,'k-',lw,2,AX(1,:),AX(2,:),'r-',lw,2);
axis equal
legend('locus of {\bf x}','locus of {\bf Ax}',...
        'location', 'southeast')
cond_A = cond(A)
"condc.m" 37L, 292B written
```

Residual Vector

- What is the **residual vector** when solving $\mathbf{A}\mathbf{x} = \mathbf{b}$?
- **Answer**: It is the "remainder" that results from an inaccurate solution.
- \bullet Suppose the answer produced by our code is $\hat{\mathbf{x}}.$
- Then the residual vector is

$$\mathbf{r} = \mathbf{b} - \mathbf{A}\hat{\mathbf{x}} = -\mathbf{A}\Delta\mathbf{x}$$

Relationship between Residual and Error

- How does the norm of the residual vector \mathbf{r} relate to the norm of the error $\Delta \mathbf{x}$?
- Consider

$$\|\Delta \mathbf{x}\| = \|\mathbf{x} - \hat{\mathbf{x}}\| = \|\mathbf{A}^{-1}(\mathbf{b} - \mathbf{A}\hat{\mathbf{x}})\| = \|\mathbf{A}^{-1}\mathbf{r}\|$$

• Divide both sides by $\|\mathbf{x}\|$:

$$\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} = \frac{\|\mathbf{A}^{-1}\mathbf{r}\|}{\|\mathbf{x}\|} \le \frac{\|\mathbf{A}^{-1}\| \|\mathbf{r}\|}{\|\mathbf{x}\|} = \kappa(\mathbf{A})\frac{\|\mathbf{r}\|}{\|\mathbf{A}\| \|\mathbf{x}\|} \le \kappa(\mathbf{A})\frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}$$

• (relative error)
$$\leq \kappa(\mathbf{A})$$
 (relative residual)

• Given small relative residual $\|\mathbf{r}\| / \|\mathbf{b}\|$, relative error is only (guaranteed to be) small if the condition number is also small.

Perturbations in the Matrix

- Matrix entries are also FP numbers and thus subject to round-off.
- How do changes in **A** influence the output, $\hat{\mathbf{x}}$?

$$Ax = b \longrightarrow \hat{A}\hat{x} = b$$

• Consider

$$\Delta \mathbf{x} = \hat{\mathbf{x}} - \mathbf{x} = \mathbf{A}^{-1} \left(\mathbf{A} \hat{\mathbf{x}} - \mathbf{b} \right) = \mathbf{A}^{-1} \left(\mathbf{A} \hat{\mathbf{x}} - \hat{\mathbf{A}} \hat{\mathbf{x}} \right) = -\mathbf{A}^{-1} \Delta \mathbf{A} \hat{\mathbf{x}}$$

• Thus

$$\|\Delta \mathbf{x}\| \leq \|\mathbf{A}^{-1}\| \|\Delta \mathbf{A}\| \|\hat{\mathbf{x}}\|$$

and

$$\frac{\|\Delta \mathbf{x}\|}{\|\hat{\mathbf{x}}\|} \le \kappa(A) \frac{\|\Delta \mathbf{A}\|}{\|\mathbf{A}\|}$$

Changing Condition Numbers

It is often possible to mitigate large condition numbers by *preconditioning*.

- Left preconditioning: MAx = Mb
- Right preconditioning: $\mathbf{A} \mathbf{M} \mathbf{y} = \mathbf{b}, \mathbf{x} = \mathbf{M} \mathbf{y}$

For example, can use a diagonal matrix ${\bf D}$ as a preconditioner

- Row-wise scaling: $\mathbf{DAx} = \mathbf{Db}$
- Column-wise scaling: $\mathbf{A} \mathbf{D} \mathbf{y} = \mathbf{b}, \mathbf{x} = \mathbf{D} \mathbf{y}$

Orthogonal Matrices

What is an orthogonal (= orthonormal) matrix?

- An orthonormal matrix is a square matrix that satisfies $\mathbf{Q}^T \mathbf{Q} = I$ and $\mathbf{Q}\mathbf{Q}^T = I$
- Recall, if $\mathbf{Q} = [\mathbf{q}_1 \ \mathbf{q}_2 \ \cdots \ \mathbf{q}_n]$, then $\mathbf{Q}^T \mathbf{Q} = [\mathbf{q}_i^T \mathbf{q}_j] = \delta_{ij}$ (the Kronecker delta, $\delta_{ij} = 1$ if i = j, 0 otherwise)
- That is, the columns of an orthonormal matrix **Q** are mutually orthogonal.
- If \mathbf{Q} is an orthogonal matrix, then \mathbf{Q}^T is also orthogonal, so the rows of an orthonormal matrix \mathbf{Q} are also mutually orthogonal.

Orthogonal Matrices and the 2-Norm

How do orthogonal matrices interact with the 2-norm?

$$\|\mathbf{Q}\mathbf{v}\|_2^2 = (\mathbf{Q}\mathbf{v})^T(\mathbf{Q}\mathbf{v}) = \mathbf{v}^T\mathbf{Q}^T\mathbf{Q}\mathbf{v} = \mathbf{v}^T\mathbf{v} = \|\mathbf{v}\|_2^2$$

Singular Value Decomposition (SVD)

The SVD of an $m \times n$ matrix **A** is given by the factorization

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

where

- U is $m \times m$ and orthogonal Columns \mathbf{u}_j are called the *left singular vectors*
- $\Sigma = \operatorname{diag}(\sigma_i)$ is $m \times n$ and non-negative Typically $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_s \geq 0$, with $s = \min(m, n)$. Diagonal entries σ_i are called the *singular values*
- V is $n \times n$ and orthogonal Columns \mathbf{v}_j are called the *right singular vectors*

We'll discuss existance and computation later.

Computing the 2-Norm

Use the SVD of **A** to compute the 2-norm $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ with \mathbf{U} , \mathbf{V} orthogonal

- 2-norm satisfies $\|\mathbf{QB}\|_2 = \|\mathbf{B}\|_2 = \|\mathbf{BQ}\|_2$ for any **B** and orthogonal **Q**
- So $\|\mathbf{A}\|_2 = \|\mathbf{\Sigma}\|_2 = \sigma_{\max}$

We can express the matrix condition number, $\kappa_2(\mathbf{A})$ in terms of the SVD of \mathbf{A}

• \mathbf{A}^{-1} has singular values $1/\sigma_j$

•
$$\kappa_2(\mathbf{A}) = \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2 = \sigma_{\max} / \sigma_{\min}$$

Frobenius Norm

- The 2-norm is costly to compute; is there something cheaper?
- The *Frobenius norm*

$$\|\mathbf{A}\|_F := \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

- $\|\mathbf{A}\|_F$ is **not** and induced norm.
- It does, however, satisfy the standar matrix-norm properties:
 - definiteness
 - scaling
 - triangle inequality
 - submultiplicativity (via Cauchy-Schwarz)

Frobenius Norm Properties

• Is the Frobenius norm induced by any vector norm?

Not possible. What is $||I||_F$?

• How does the Frobenius norm relate to the SVD?

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^n \sigma_i^2}$$

Solving Systems: Simple Cases

- Solve $\mathbf{D}\mathbf{x} = \mathbf{b}$ if \mathbf{D} is diagonal.
 - $x_i = b_i/d_{ii}$ with cost O(n)
- Solve $\mathbf{Q}\mathbf{x} = \mathbf{b}$ if \mathbf{Q} is orthogonal

 $\mathbf{x} = \mathbf{Q}^T \mathbf{b}$ with cost $O(n^2)$

• Given SVD, $\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{A}$, solve $\mathbf{A} \mathbf{x} = \mathbf{b}$

 $\mathbf{z} = \mathbf{U}^T \mathbf{b}$ $\mathbf{y} = \mathbf{\Sigma}^{-1} \mathbf{z}$ $\mathbf{x} = \mathbf{V} \mathbf{y}$ Cost: $O(n^2)$ to solve, $O(n^3)$ to compute SVD

Note on Row Scaling / Permutation

$$D\mathbf{v} = \text{scale rows of } \mathbf{v}$$

$$P\mathbf{v} = \text{permute rows of } \mathbf{v}$$

 $DA = [D\mathbf{a}_1 D\mathbf{a}_2 \cdots D\mathbf{a}_n] = \text{ scale rows of } A$ $PA = [P\mathbf{a}_1 P\mathbf{a}_2 \cdots P\mathbf{a}_n] = \text{ permute rows of } A$

$$\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \\ 3 & 3 & 3 \\ 4 & 4 & 4 \end{bmatrix}$$
$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 2 \\ 3 & 3 & 3 \\ 4 & 4 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 4 & 4 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

Note on Column Scaling / Permutation

$$AD = [d_1 \mathbf{a}_1 d_2 \mathbf{a}_2 \cdots d_n \mathbf{a}_n] = \text{ scale columns of } A$$
$$AP = [\mathbf{a}_{p_1} \mathbf{a}_{p_2} \cdots \mathbf{a}_{p_n}] = \text{ permute columns of } A$$

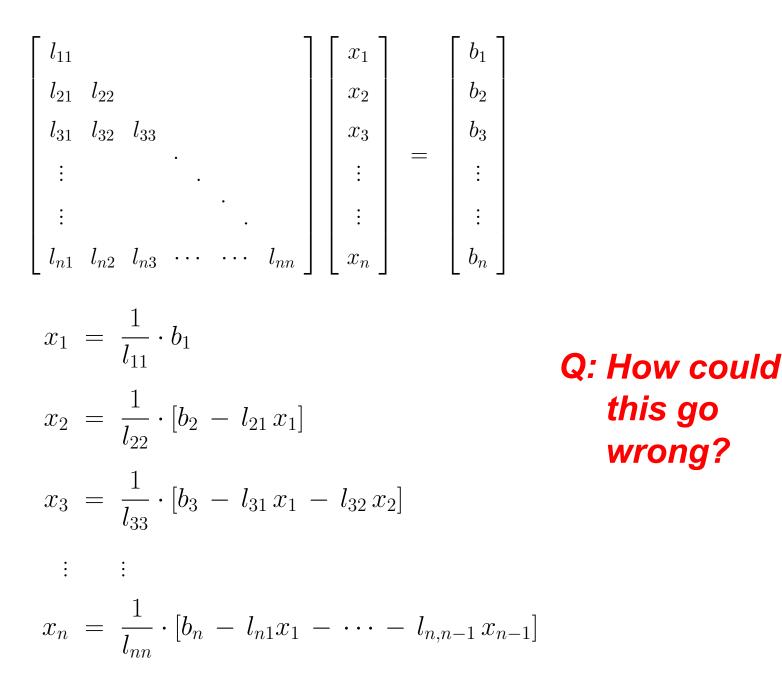
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 4 \\ 2 & 3 & 4 \\ 2 & 3 & 4 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 3 & 4 \\ 2 & 3 & 4 \\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 3 \\ 4 & 2 & 3 \\ 4 & 2 & 3 \end{bmatrix}$$

System Modification by Permutations

$$PA\mathbf{x} = P\mathbf{b}$$
 Row Permutation
 $\longrightarrow A'\mathbf{x} = \mathbf{b}'$

$$A P P^T \mathbf{x} = \mathbf{b}$$
 Column Permutation
 $\longrightarrow A' \mathbf{x}' = \mathbf{b}$

Solution of Lower Triangular Systems



Solution of Lower Triangular Systems

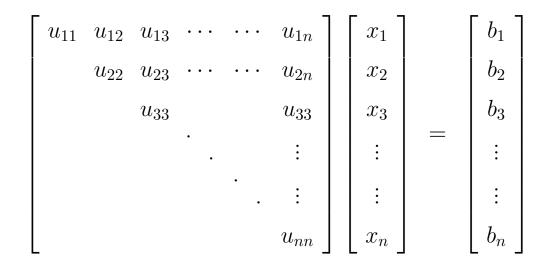
$$\begin{bmatrix} l_{11} & & & & \\ l_{21} & l_{22} & & & \\ l_{31} & l_{32} & l_{33} & & & \\ \vdots & & & \ddots & & \\ \vdots & & & \ddots & & \\ \vdots & & & \ddots & & \\ l_{n1} & l_{n2} & l_{n3} & \cdots & \cdots & l_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ \vdots \\ b_n \end{bmatrix}$$

for
$$i = 1, 2, ..., n$$
: $x_i = \frac{1}{l_{ii}} \left(b_i - \sum_{j=1}^{i-1} l_{ij} x_j \right)$.

for
$$i = 1 : n$$

 $x_i = b_i$
for $j = 1 : i - 1$
 $x_i = x_i - l_{ij} x_j$
end
 $x_i = x_i/l_{ii}$
end

Solution of Upper Triangular Systems



$$\begin{aligned} x_n &= \frac{1}{u_{n,n}} \cdot b_n \\ x_{n-1} &= \frac{1}{u_{n-1,n-1}} \cdot [b_{n-1} - u_{n-1,n} x_n] \\ x_{n-2} &= \frac{1}{u_{n-2,n-2}} \cdot [b_{n-1} - u_{n-2,n} x_n - u_{n-2,n-1} x_{n-1}] \\ \vdots & \vdots \\ x_1 &= \frac{1}{u_{1,1}} \cdot [b_1 - u_{1,n} x_n - \dots - u_{1,2} x_2]. \end{aligned}$$

Solution of Upper Triangular Systems

for
$$i = n, n - 1, \dots, 1$$
: $x_i = \frac{1}{u_{ii}} \left(b_i - \sum_{j=i+1}^n u_{ij} x_j \right)$.

for
$$i = n : 1$$

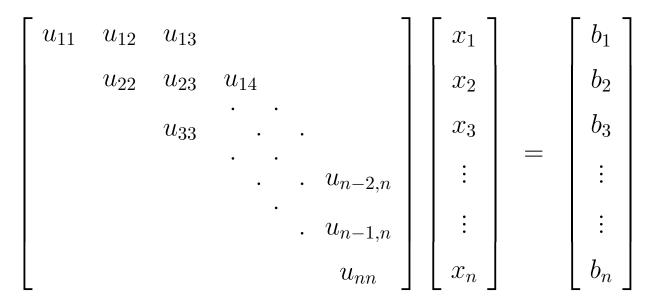
 $x_i = b_i$
for $j = i + 1 : n$
 $x_i = x_i - u_{ij} x_j$
end
 $x_i = x_i/u_{ii}$
end

What is the cost ??

Solution of Upper Banded Systems

Suppose U is a *banded matrix*: $u_{ij} = 0, j > i + \beta$.

For example, $\beta = 2$:



for
$$i = n, n - 1, \dots, 1$$
: $x_i = \frac{1}{u_{ii}} \left(b_i - \sum_{j=i+1}^{\min(i+\beta,n)} u_{ij} x_j \right).$

What is the cost ??

Solution of Upper Banded Systems

for
$$i = n, n - 1, \dots, 1$$
: $x_i = \frac{1}{u_{ii}} \left(b_i - \sum_{j=i+1}^{\min(i+\beta,n)} u_{ij} x_j \right).$

for i = n : 1 $x_i = b_i, \quad j_{\max} := \min(j + \beta, n)$ for $j = i + 1 : j_{\max}$ $x_i = x_i - u_{ij} x_j$ end $x_i = x_i/u_{ii}$ end

- In this case, there are $\sim 2\beta n$ operations and $\sim \beta n$ memory references (one for each u_{ij}).
- Often $\beta \ll n$, which means that the upper-banded system is *much* faster to solve than the full upper triangular system.
- The same savings applies to the lower-banded case.

START HERE, Lec 5

Generating Triangular Systems: LU Factorization

A = LU

Elimination

- To transform general linear system into upper triangular form, need to replace selected nonzero entries of matrix by zeros
- This can be accomplished by subtracting a multiple of "pivot row" from rows where zeros are desired

• Consider 2-vector
$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

• If $a_1 \neq 0$, then

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -a_2/a_1 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_1 \\ 0 \end{bmatrix}$$

Elimination

• Suppose we have a 3-vector
$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

• If
$$a_1 \neq 0$$
, then

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ -a_2/a_1 & 1 & 0 \\ -a_3/a_1 & 0 & 1 \end{bmatrix}}_{\mathbf{M}_1} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_1 \\ 0 \\ 0 \end{bmatrix}$$

- We refer to \mathbf{M}_1 as an elementary elimination matrix
- It removes entries below row 1 in the prescribed vector

Elimination

• More generally, to eliminate all entries below kth row, $a_{k+1} \cdots a_n$, we would use a matrix of the form

$$\mathbf{M}_{k} = \mathbf{I} - \mathbf{m}_{k} \mathbf{e}_{k}^{T} = \begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & & \\ & & -m_{k+1} & 1 & \\ & & \vdots & \ddots & \\ & & -m_{n} & & 1 \end{bmatrix}$$

• Here, $\mathbf{e}_k = k$ th column of the $n \times n$ identity matrix and

$$\mathbf{m}_{k} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ m_{k+1} \\ \vdots \\ m_{n} \end{bmatrix},$$

with entries $m_i := a_i/a_k, i = k + 1, \ldots, n$.

Elimination

- \mathbf{M}_k is unit lower triangular and nonsingular
- $\mathbf{M}_k^{-1} = \mathbf{I} + \mathbf{m}_k \mathbf{e}_k^T$, which means $\mathbf{L}_k := \mathbf{M}_k^{-1}$ is same as \mathbf{M}_k except signs of multipliers are reversed.
- If j > k, then

$$\mathbf{M}_{k} \mathbf{M}_{j} = (\mathbf{I} - \mathbf{m}_{k} \mathbf{e}_{k}^{T})(\mathbf{I} - \mathbf{m}_{j} \mathbf{e}_{j}^{T})$$

$$= \mathbf{I} - \mathbf{m}_{k} \mathbf{e}_{k}^{T} - \mathbf{m}_{j} \mathbf{e}_{j}^{T} + \mathbf{m}_{k} \mathbf{e}_{k}^{T} \mathbf{m}_{j} \mathbf{e}_{j}^{T}$$

$$= \mathbf{I} - \mathbf{m}_{k} \mathbf{e}_{k}^{T} - \mathbf{m}_{j} \mathbf{e}_{j}^{T}$$

because \mathbf{e}_k is orthogonal to \mathbf{m}_j (the order, j > k, matters).

• The product, $\mathbf{M}_k \mathbf{M}_j$ is thus essentially the "union" of the entries, and similarly for the inverses, $\mathbf{L}_k \mathbf{L}_j$.

Example: Elementary Elimination Matrices

• For
$$\mathbf{a} = \begin{bmatrix} 2\\4\\-6 \end{bmatrix}$$

 $\mathbf{M}_1 \mathbf{a} = \begin{bmatrix} 1 & 0 & 0\\-2 & 1 & 0\\3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2\\4\\-6 \end{bmatrix} = \begin{bmatrix} 2\\0\\0 \end{bmatrix}$

and

$$\mathbf{M}_{2} \mathbf{a} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 6/4 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ -6 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix}$$

Example, continued

• Note that

$$\mathbf{L}_{1} := \mathbf{M}_{1}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}, \qquad \mathbf{L}_{2} := \mathbf{M}_{2}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3/2 & 1 \end{bmatrix}$$

and

$$\mathbf{M}_{1}\mathbf{M}_{2} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 3/2 & 1 \end{bmatrix}, \qquad \mathbf{L}_{1}\mathbf{L}_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & -3/2 & 1 \end{bmatrix}$$

Gaussian Elimination as LU Factorization

• Consider the sequence of transformations

• Consequently,

$$\mathbf{A} = \mathbf{M}_{1}^{-1} \cdots \mathbf{M}_{n-2}^{-1} \mathbf{M}_{n-1}^{-1} \mathbf{U}$$
$$= \underbrace{\mathbf{L}_{1} \cdots \mathbf{L}_{n-2} \mathbf{L}_{n-1}}_{L} \mathbf{U} = \mathbf{L} \mathbf{U}$$

- Our sequence of elementary elimination steps amounts to factoring \mathbf{A} into a (nonsingular) unit lower triangular matrix \mathbf{L} and a (possibly singular) upper triangular matrix \mathbf{U}
- Once we have the factorization $\mathbf{A} = \mathbf{L}\mathbf{U}$, solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ as $\mathbf{L}\mathbf{U}\mathbf{x} = \mathbf{b}$ by defining $\mathbf{y} = \mathbf{U}\mathbf{x}$ and
 - solving lower triangular system $\mathbf{L}\mathbf{y} = \mathbf{b}$ for \mathbf{y} using forward substitution
 - solving upper triangular system $\mathbf{U}\mathbf{x} = \mathbf{y}$ using backward substitution
- \bullet An important concern when computing the ${\bf LU}$ factorization is if any pivot is 0 or small
- We will address this issue by swapping rows to find the largest (in absolute value) pivot in column k during the kth step of Gaussian elimination.
- \bullet Let's turn to some examples of how we implement ${\bf LU}$ factorization in practice

Gaussian Elimination - Main Steps

- The transformation of a general matrix to upper triangular form is known as Gaussian Elimination and it is equivalent to what is known as LU factorization.
- Equivalence-preserving operations used in Gaussian elimination include
 - row interchanges
 - column interchanges (relatively rare; used only for "full pivoting")
 - addition of a multiple of another row to a given row

Notice that we do not include "multiplication of a row by a constant" because, while valid for any nonzero constant, it is generally not needed for Gaussian elimination.

- We have already seen how row/column interchanges can transform a system from lower-triangular form to upper-triangular form and can understand that reversing that procedure would take us back to our targeted upper-triangular form.
- Let's now look at the row-addition process for a more general example.

• Example:

$$\begin{bmatrix} 1 & 2 & 3 & & \\ & 4 & 4 & 6 & 1 \\ & 8 & 8 & 9 & 2 \\ & 6 & 1 & 3 & 3 \\ & 4 & 2 & 8 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ 4 \\ 4 \\ 4 \end{bmatrix}$$

- First column is already in upper triangular form.
- Eliminate second column:

$$\operatorname{row}_{3} \longleftarrow \operatorname{row}_{3} - \begin{cases} \frac{8}{4} \times \operatorname{row}_{2} \\ \operatorname{row}_{4} \longleftrightarrow \operatorname{row}_{4} - \begin{cases} \frac{6}{4} \times \operatorname{row}_{2} \\ \frac{6}{4} \times \operatorname{row}_{2} \end{cases} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 4 & 6 & 1 \\ 0 & -3 & 0 \\ -5 & -6 & \frac{3}{2} \\ -2 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ -4 \\ -2 \\ 0 \end{bmatrix}$$

$$\bullet \underbrace{a_{22}}_{2} = 4 \text{ is the pivot}$$

$$\bullet \operatorname{row}_{2} \text{ is the pivot row}$$

$$\bullet \operatorname{l}_{32} = \frac{8}{4}, \operatorname{l}_{42} = \frac{6}{4}, \operatorname{l}_{52} = \frac{4}{4}, \text{ is the multiplier column.} = \frac{a_{ik}}{a_{kk}}, i = k + 1 \dots n$$

• Augmented form. Store **b** in A(:, n+1):

$$\begin{bmatrix} 1 & 2 & 3 & & & 0 \\ & 4 & 4 & 6 & 1 & 4 \\ & 8 & 8 & 9 & 2 & 4 \\ & 6 & 1 & 3 & 3 & 4 \\ & 4 & 2 & 8 & 4 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 & & & 0 \\ & 4 & 4 & 6 & 1 & 4 \\ & 0 & -3 & 0 & -4 \\ & -5 & -6 & \frac{3}{2} & -2 \\ & -2 & 2 & 3 & 0 \end{bmatrix}$$

This Case.

General Case.

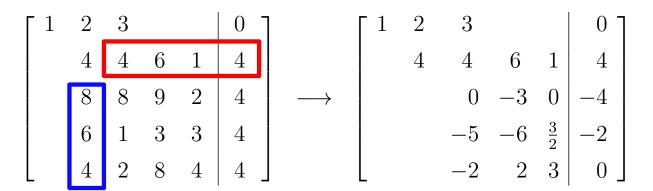
pivot = 4 = pivot row = $\begin{bmatrix} 4 & 6 & 1 & | & 4 \end{bmatrix}$ = multiplier column = $\frac{1}{4} \begin{bmatrix} 8 \\ 6 \\ 4 \end{bmatrix}$ = = $\begin{bmatrix} 2 \\ \frac{3}{2} \\ 1 \end{bmatrix}$

 $= a_{kk}$ when zeroing the kth column.

$$= \mathbf{r}_{k}^{T} = a_{kj}, j = k+1, \dots, n[+b_{k}]$$

$$= \mathbf{c}_k = \frac{a_{ik}}{a_{kk}}, i = k+1, \dots, n$$

• Augmented form. Store **b** in A(:, n+1):



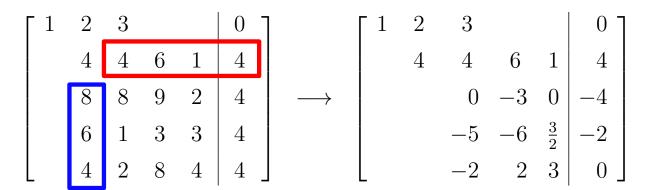


pivot = 4 pivot row = $\begin{bmatrix} 4 & 6 & 1 & | & 4 \end{bmatrix}$ multiplier column = $\begin{bmatrix} 1 \\ 4 \\ 6 \\ 4 \end{bmatrix}$ = $\begin{bmatrix} 2 \\ \frac{3}{2} \\ 1 \end{bmatrix}$ $= a_{kk}$ when zeroing the kth column.

$$= \mathbf{r}_{k}^{T} = a_{kj}, j = k+1, \dots, n \left[+ b_{k} \right]$$

$$= \mathbf{c}_k = \frac{a_{ik}}{a_{kk}}, i = k+1, \dots, n$$

• Augmented form. Store **b** in A(:, n+1):



This Case.

pivot = 4 pivot row = $\begin{bmatrix} 4 & 6 & 1 & | & 4 \end{bmatrix}$ multiplier column = $\begin{bmatrix} 1 \\ 4 \end{bmatrix} \begin{bmatrix} 8 \\ 6 \\ 4 \end{bmatrix}$ = $\begin{bmatrix} 2 \\ \frac{3}{2} \\ 1 \end{bmatrix}$ $= a_{kk}$ when zeroing the kth column.

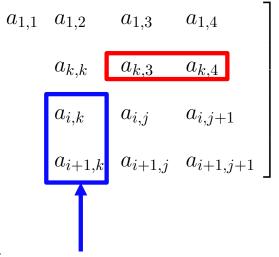
$$= \mathbf{r}_{k}^{T} = a_{kj}, j = k+1, \dots, n[+b_{k}]$$

$$= \mathbf{c}_k = \frac{a_{ik}}{a_{kk}}, i = k+1, \dots, n$$

 $\mathbf{c}_k \longrightarrow \mathbf{l}_k$, store as column k of L.

kth Update Step

- Look more closely at the kth update step for Gaussian elimination.
- Assume A is $m \times n$, which covers the case where A is augmented with the right-hand side vector.
- Row k remains unchanged.
- For each row *i*, with i > k, we want to generate a zero in place of a_{ik} .
- We do this by subtracting a multiple of row k from row i, i = k + 1, ..., m.



• This operation can be expressed in several equivalent ways:

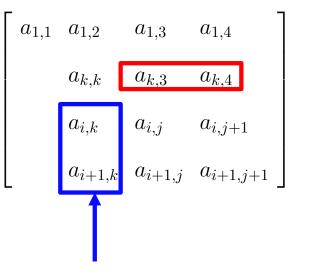
$$\operatorname{row}_{i} = \operatorname{row}_{i} - \frac{a_{ik}}{a_{kk}} \times \operatorname{row}_{k}$$

$$a_{ij} = a_{ij} - a_{ik} a_{kk}^{-1} a_{kj} \quad j = k + 1, \dots, n$$

$$= a_{ij} - (\mathbf{c}_{k})_{i} (\mathbf{r}_{k}^{T})_{j} \quad j = k + 1, \dots, n$$

$$A^{(k+1)} = A^{(k)} - \mathbf{c}_{k} \mathbf{r}_{k}^{T},$$

- Here, \mathbf{c}_k is the column vector with entries $(\mathbf{c}_k)_i = a_{ik}/a_{kk}$, and \mathbf{r}_k^T is the row vector with entries $(\mathbf{r}_k^T)_j = a_{kj}$.
- Formally, we think of $(\mathbf{c}_k)_i = 0$, $i \leq k$ and $(\mathbf{r}_k^T)_j = 0$, $j \leq k$, though we would implement as an update only to the active submatrix.
- The $m \times n$ matrix $\mathbf{c}_k \mathbf{r}_k^T$ is of rank 1. All columns are multiples of the only linearly independent column, \mathbf{c}_k .
- We typically save the entries of the multiplier column as the kth column of a lower triangular matrix: $l_{ik} := (\mathbf{c}_k)_i$.
- In fact, since the entries below a_{kk} in $A^{(k+1)}$ are zero, we can store the values of the multiplier column l_{ik} there.



```
% Demo of outer-product-based LU factorization
format compact
U = [1234;
    0567;
    0012;
     00031
L = [1000;
     1100;
     2410;
     3561]
A = L*U; [m,n]=size(A);
A, pause
v=[ ' | '; ' | '; ' | '; ' | '];
for k=1:n-1; kp=k+1;
   r = A(k,k:m)';
                                            % Pivot Row
    c = A(kp:m,k)/A(k,k);
                                            % Multiplier Column
   A(kp:m,k:n) = A(kp:m,k:n) - c*r';
                                            % Rank-1 Update
    disp([ num2str(A) v num2str(U) ]), pause
end;
%
%
   COMPACT FORM
%
display('Compact form, with L U overwriting A')
A = L * U;
for k=1:n-1; kp=k+1;
                = A(kp:m,k)/A(k,k);
                                                      %% Store l_k
    A(kp:m,k)
   A(kp:m, kp:n) = A(kp:m, kp:n) - A(kp:m, k) * A(k, kp:m);
    disp([ num2str(A) v num2str(L) v num2str(U) ]), pause
end;
display('Compact form, with L U overwriting A')
Α
```

Note: This demo does not use pivoting.

For stability, we would invariably use partial pivoting because the computational overhead (cost, in terms of operations) is only $O(n^2)$, where as the total factor cost is ~ 2/3 n^3

Using LU Factorization in Practice

• Give LU = A, we can solve $A\mathbf{x} = \mathbf{b}$ as follows:

```
Given: A\mathbf{x} = LU\mathbf{x} = \mathbf{b}

L(U\mathbf{x}) = L\mathbf{y} = \mathbf{b}

Solve: L\mathbf{y} = \mathbf{b}

U\mathbf{x} = \mathbf{y}
```

- We have seen already that the total solve cost (for L and U solves) is $2 \times n^2$.
- What about the factor cost, $A \longrightarrow LU$?

LU Factorization Costs (Important)

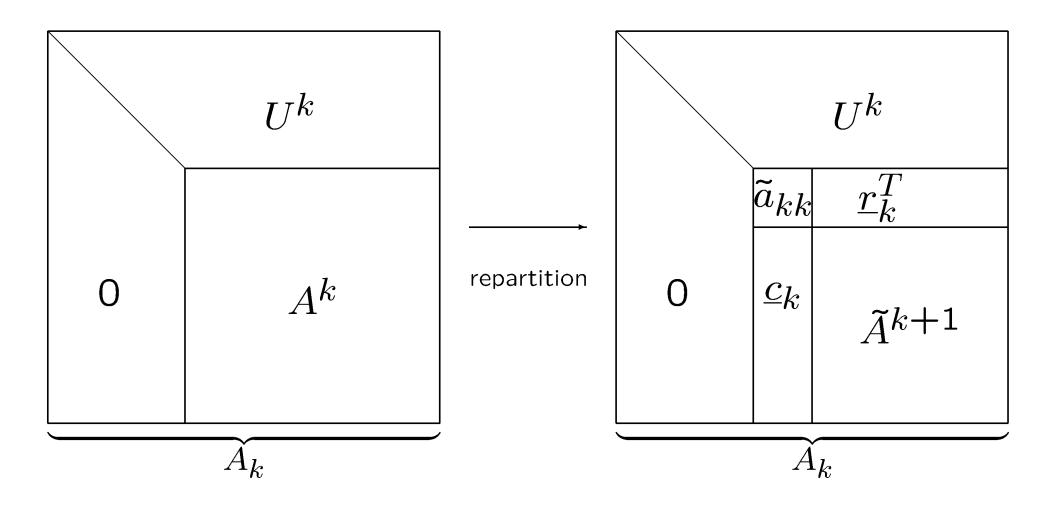
- In general, the cost for $A \longrightarrow LU$ is $O(n^3)$.
- It is large (i.e., it is not optimal, which would be O(n)), and therefore important.
- The dominant cost comes from the essential update step:

$$A^{(k+1)} = A^{(k)} - \mathbf{c}_k \mathbf{r}_k^T,$$

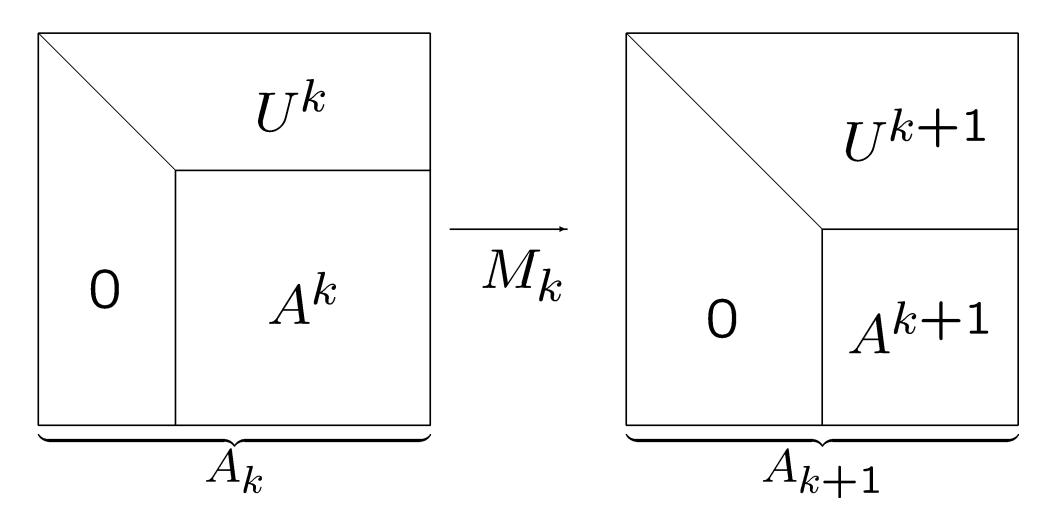
which is effected for $k = 1, \ldots, n - 1$ steps.

- If A is square $(n \times n)$, then $\mathbf{c}_k \mathbf{r}_k^T$ is a square matrix with $(n-k)^2$ nonzeros.
- Each entry requires one "*" and its subtraction from $A^{(k)}$ requires one "-".
- Total cost is $2 \times [(n-1)^2 + (n-2)^2 + \dots + (1)^2] \sim 2n^3/3$ operations.
- Example: $n = 10^3 \longrightarrow n^3 = 10^9$. Cost is about 0.6 billion operations. With a 3 GHz clock and 2 floating point ops / clock, expect about 0.1 seconds (very fast).
- Example: $n = 10^4 \longrightarrow n^3 = 10^{12}$. Cost is about 600 billion operations. With a 3 GHz clock and 2 floating point ops / clock, expect about 10.0 seconds.

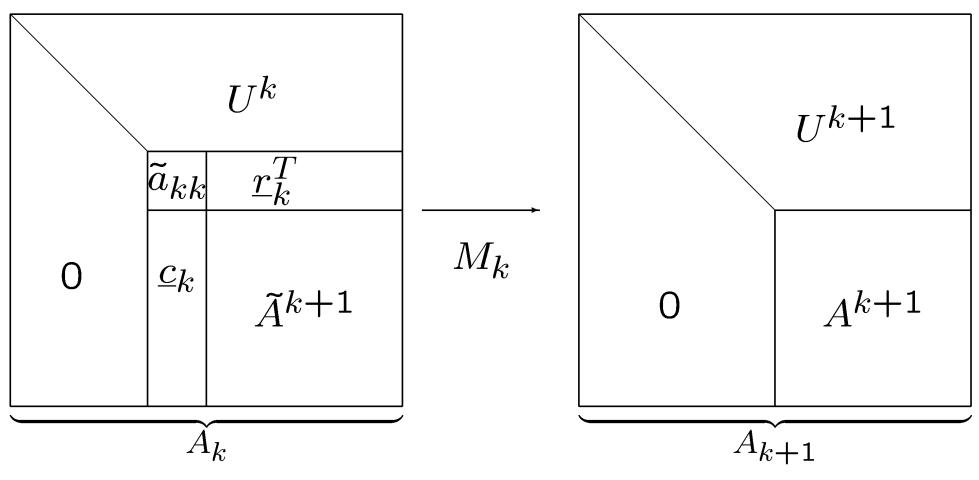
First Step: Define sub-block



Single Gaussian Elimination Step



Second Step: Annihilate \underline{c}_k



q Update step is:

$$A^{k+1} = \tilde{A}^{k+1} - \underline{c}_k \tilde{a}_{kk}^{-1} \underline{r}_k^T$$

which is a rank one update to A_k :

$$A_{k+1} = A_k - \underline{m}_k \underline{e}_k^T A_k$$

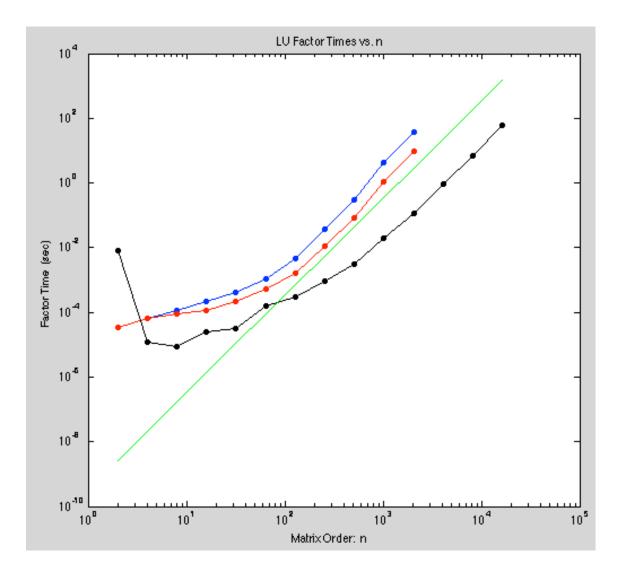
Can also be Implemented in **Block Form**



$$A^{k+1} = \tilde{A}^{k+1} - C_k \tilde{A}_{kk}^{-1} R_k^T$$

Advantage is that, if A_{kk} is a b x b block, you revisit the A^k subblock only n/b times, and thus need fewer memory accesses. An order-of-magnitude faster. (LAPACK vs. LINPACK)

Matlab demo, gauss2.m



- Blue curve is rank-1 update
- Red curve is rank-4 update
- Black curve is matlab lu() function
 - It uses a 4 CPUs on the Mac and achieves an impressive 50 Gflops, which is very near peak
- Note that the black curve represents a ~100X speed up over a naïve rank-1 update approach. (Why?)

Next Topics

- Pivoting / zeros & stability
 - Approach
 - Permutation Matrices
 - Stability
 - Cost
- Sherman Morrison
- Computing matrix 2-norm
- SPD / Cholesky Factorization
- Banded Factorization
 - Approach
 - Cost

Recall our earlier example:

$$\begin{bmatrix} 1 & 2 & 3 & & \\ & 4 & 4 & 6 & 1 \\ & 8 & 8 & 9 & 2 \\ & 6 & 1 & 3 & 3 \\ & 4 & 2 & 8 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ 4 \\ 4 \\ 4 \end{bmatrix}$$

- First column is already in upper triangular form.
- Eliminate second column:

- $a_{22} = 4$ is the *pivot*
- row_2 is the *pivot row*
- $l_{32} = \frac{8}{4}, l_{42} = \frac{6}{4}, l_{52} = \frac{4}{4}$, is the multiplier column.

• Augmented form. Store **b** in A(:, n+1):

$$\begin{bmatrix} 1 & 2 & 3 & & & 0 \\ & 4 & 4 & 6 & 1 & 4 \\ & 8 & 8 & 9 & 2 & 4 \\ & 6 & 1 & 3 & 3 & 4 \\ & 4 & 2 & 8 & 4 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 & & & 0 \\ & 4 & 4 & 6 & 1 & 4 \\ & 0 & -3 & 0 & -4 \\ & -5 & -6 & \frac{3}{2} & -2 \\ & -2 & 2 & 3 & 0 \end{bmatrix}$$

This Case.

General Case.

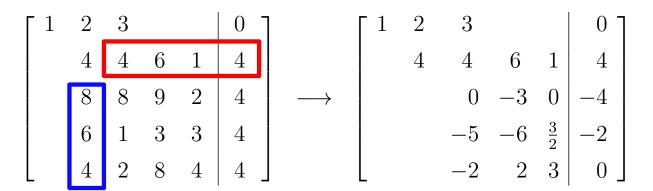
pivot = 4 = pivot row = $\begin{bmatrix} 4 & 6 & 1 & | & 4 \end{bmatrix}$ = multiplier column = $\frac{1}{4} \begin{bmatrix} 8 \\ 6 \\ 4 \end{bmatrix}$ = = $\begin{bmatrix} 2 \\ \frac{3}{2} \\ 1 \end{bmatrix}$

 $= a_{kk}$ when zeroing the kth column.

$$= \mathbf{r}_{k}^{T} = a_{kj}, j = k+1, \dots, n[+b_{k}]$$

$$= \mathbf{c}_k = \frac{a_{ik}}{a_{kk}}, i = k+1, \dots, n$$

• Augmented form. Store **b** in A(:, n+1):



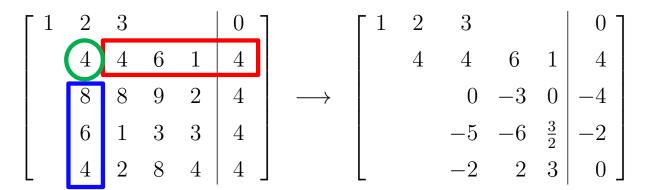


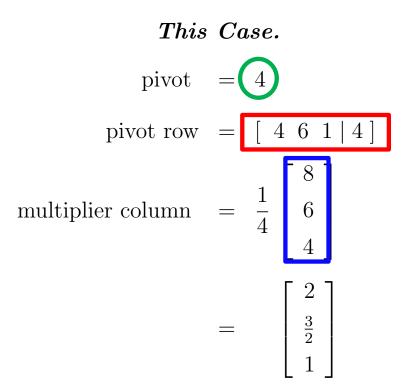
pivot = 4 pivot row = $\begin{bmatrix} 4 & 6 & 1 & | & 4 \end{bmatrix}$ multiplier column = $\begin{bmatrix} 1 \\ 4 \\ 6 \\ 4 \end{bmatrix}$ = $\begin{bmatrix} 2 \\ \frac{3}{2} \\ 1 \end{bmatrix}$ $= a_{kk}$ when zeroing the kth column.

$$= \mathbf{r}_{k}^{T} = a_{kj}, j = k+1, \dots, n \left[+ b_{k} \right]$$

$$= \mathbf{c}_k = \frac{a_{ik}}{a_{kk}}, i = k+1, \dots, n$$

• Augmented form. Store **b** in A(:, n+1):





General Case.

 $= a_{kk}$ when zeroing the kth column.

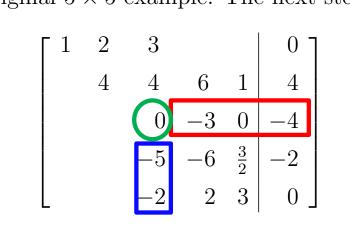
$$= \mathbf{r}_{k}^{T} = a_{kj}, j = k+1, \dots, n[+b_{k}]$$

$$= \mathbf{c}_k = \frac{a_{ik}}{a_{kk}}, i = k+1, \dots, n$$

 $\mathbf{c}_k \longrightarrow \mathbf{l}_k$, store as column k of L.

Pivoting

• We return to our original 5×5 example. The next step would be:



- Here, we have diffiulty because the nominal pivot, a_{33} is zero.
- The remedy is to exchange rows with one of the remaining two, since the order of the equations is immaterial.
- For numerical stability, we choose the row that maximizes $|a_{ik}|$.
- This choice ensures that all entries in the multiplier column are less than one in modulus.

Next Step: k = k + 1

• After switching rows, we have

$$\begin{bmatrix} 1 & 2 & 3 & & & 0 \\ 4 & 4 & 6 & 1 & 4 \\ & -5 & -6 & \frac{3}{2} & -2 \\ & 0 & -3 & 0 & -4 \\ & -2 & 2 & 3 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 & & & 0 \\ 4 & 4 & 6 & 1 & 4 \\ & -5 & -6 & \frac{3}{2} & -2 \\ & 0 & -3 & 0 & -4 \\ & 0 & 4\frac{2}{5} & 2\frac{2}{5} & \frac{4}{5} \end{bmatrix}$$

pivot =
$$-5$$

pivot row = $\begin{bmatrix} -6 & \frac{3}{2} & | & -2 \end{bmatrix}$
multiplier column = $\frac{1}{-5} \begin{bmatrix} 0 \\ -2 \end{bmatrix}$

Pivoting:

Moving small pivots down moves us closer to upper triangular form, with *no round-off.*

$$PA = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \epsilon & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ \epsilon & 1 \end{pmatrix}$$

A general principle in numerical computing regarding round-off:
 Small corrections are preferred to large ones.

□ Failure to exchange a small pivot on the diagonal can result in all subsequent rows looking like multiples of the current pivot row → singular submatrix.

Failure to pivot can result in all subsequent rows looking like multiples of the kth row:

Consider

$$A = \begin{pmatrix} \epsilon & -\underline{r}_1^T - \\ a_{21} & -\underline{r}_2^T - \\ a_{31} & -\underline{r}_3^T - \\ \vdots & -\vdots - \end{pmatrix}$$

Gaussian elimination leads to

$$\underline{r}_i \leftarrow \underline{r}_i - \frac{a_{i1}}{\epsilon} \underline{r}_1 \approx -\frac{a_{i1}}{\epsilon} \underline{r}_1$$

Matlab example "pivot_off.m", etc.

pivot_partial.m

1.0e-18	1.0000	2.0000	3.0000	4.0000
1.0000	4.0000	4.0000	6.0000	1.0000
2.0000	8.0000	7.0000	9.0000	2.0000
3.0000	6.0000	1.0000	3.0000	3.0000
4.0000	4.0000	2.0000	8.0000	4.0000

Failure to Pivot, Noncatastrophic Case

- In cases where the nominal pivot is small but > ε_M, we are effectively reducing the number of significant digits that represent the remainder of the matrix A.
- In essence, we are driving the rows (or columns) to be *similar*, which is equivalent to saying that we have nearly parallel columns.
- We saw already a 2 x 2 example where the condition number of the matrix with 2 unit-norm vectors scales like 2 / μ, where μ is the (small) angle between the column vectors.

LU Factorization with Patial Pivoting

- With partial pivoting, each \mathbf{M}_k is preceded by a permutation, \mathbf{P}_k to interchange rows to bring entry with of largest magnitude into diagonal pivot position.
- Still obtain $\mathbf{MA} = \mathbf{U}$ with \mathbf{U} upper triangular, but now,

$$\mathbf{M} = \mathbf{M}_{n-1} \mathbf{P}_{n-1} \cdots \mathbf{M}_1 \mathbf{P}_1$$

- $\mathbf{L} = \mathbf{M}^{-1}$ is still triangular in a general sense, but not necessarily lower triangular
- Alternatively, can write

$$\mathbf{P} \mathbf{A} = \mathbf{L} \mathbf{U}$$

where $\mathbf{P} = \mathbf{P}_{n-1} \cdots \mathbf{P}_1$ permutes rows of \mathbf{A} into order determined by partial pivoting and now \mathbf{L} is lower triangular

• "tlu.m" demo

Partial Pivoting: Costs

Procedure:

- For each k, pick k' such that $|a_{k'k}| \ge |a_{ik}|, i \ge k$.
- Swap rows k and k'.
- Proceed with central update step: $A^{(k+1)} = A^{(k)} \mathbf{c}_k \mathbf{r}_k^T$

Costs:

- For each step, search is O(n-k), total cost is $\approx n^2/2$.
- For each step, row swap is O(n-k), total cost is $\approx n^2/2$.
- Total cost for partial pivoting is $O(n^2) \ll 2n^3/3$.
- If we use *full pivoting*, total search cost such that $|a_{k'k''}| \ge |a_{ij}|, i, j \ge k$, is $O(n^3)$.
- Row and column exchange costs still total only $O(n^2)$.

Notes:

- Partial (row) pivoting ensures that multiplier column entries have modulus ≤ 1. (Good.)
- For *banded matrices* full pivoting also destroys band structure, whereas partial pivoting leaves some band structure intact. (Matrix bandwith increases by at most 2×.)

Partial Pivoting: LU=PA

- Note: If we swap rows of A, we are swapping equations. \longrightarrow Must swap rows of **b**.
- LU routines normally return the pivot index vector to effect this exchange.
- Nominally, it looks like a permutation matrix P, which is simply the identity matrix with rows interchanged.
- If we swap equations, we must also swap rows of L
- If we are consistent, we can swap rows at any time (i.e., A, or L) and get the same final factorization: LU = PA.
- Swapping rows of $A^{(k+1)}$ helps with speed (vectorization) of $A^{(k+1)} = A^{(k)} \mathbf{c}_k \mathbf{r}_k^T$.
- In parallel computing, one would *not* swap the pivot row between processors. Just pass the pointer to the processor holding the new pivot row, where the swap would take place locally.

Remaining Topics

Condition Number Example

Special Matrices

SPD / Cholesky Factorization

Sherman Morrison

Condition Number and Relative Error: Ax = b

• Want to solve $A\mathbf{x} = \mathbf{b}$, but computed rhs is:

$$\mathbf{b}' = \mathbf{b} + \Delta \mathbf{b},$$

where we anticipate

$$rac{||\Delta \mathbf{b}||}{||\mathbf{b}||} \lesssim \epsilon_M.$$

• Net result is we end up solving $A\mathbf{x}' = \mathbf{b}'$ and want to know how large is the relative error in $\mathbf{x}' = \mathbf{x} + \Delta \mathbf{x}$,

$$\frac{||\Delta \mathbf{x}||}{||\mathbf{x}||}?$$

• Since $A\mathbf{x}' = \mathbf{b}'$ and (by definition) $A\mathbf{x} = \mathbf{b}$, we have $A\Delta\mathbf{x} = \Delta\mathbf{b}$ and thus,

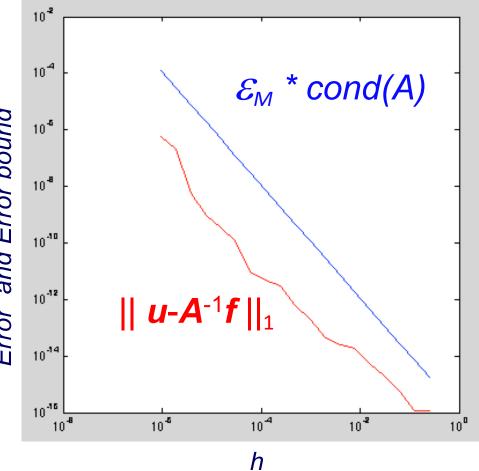
$$\begin{aligned} |\Delta \mathbf{x}|| &\leq ||A^{-1}|| ||\Delta \mathbf{b}|| \\ ||\mathbf{b}|| &\leq ||A|| ||\mathbf{x}|| \\ \frac{1}{||\mathbf{x}||} &\leq ||A|| \frac{1}{||\mathbf{b}||} \\ \frac{\Delta \mathbf{x}}{||\mathbf{x}||} &\leq ||A|| \frac{\Delta \mathbf{x}}{||\mathbf{b}||} \\ &\leq ||A|| ||A^{-1}|| \frac{\Delta \mathbf{b}}{||\mathbf{b}||} = \operatorname{cond}(A) \frac{\Delta \mathbf{b}}{||\mathbf{b}||}. \end{aligned}$$

- Key point: If $\operatorname{cond}(A) = 10^k$, then expected relative error is $\approx 10^k \epsilon_M$, meaning that you will lose k digits (of 16, if $\epsilon_M \approx 10^{-16}$.
- A similar analysis and result holds when the entries of A are perturbed.

Illustration of Impact of cond(A)

```
%% Check the error in solving Au=f vs eps*cond(A).
%% Test problem is finite difference solution to -u" = f
\$ on [0,1] with u(0)=u(1)=0.
for k=2:20; n = (2^k)-1; h=1/(n+1);
  e = ones(n, 1);
  A = spdiags([-e 2*e -e], -1:1, n, n)/(h*h);
                                                              10-2
  x=1:n; x=h*x';
  ue=1+sin(pi*(8*x.*x));
                                                              10<sup>-4</sup>
  f=A*ue;
  u=A \setminus f;
                                                          Error and Error bound
                                                              10<sup>-6</sup>
  hk(k)=h; ck(k)=cond(A);
  ek(k)=max(abs(u-ue))/max(ue);
                                                              10<sup>-8</sup>
end;
loglog(hk,ek,'r-',hk,eps*ck,'b-');
                                                              10<sup>-10</sup>
axis square
                                                              10<sup>-12</sup>
Here, we see that \mathcal{E}_{M} * cond(A)
bounds the error in the solution to Au=f,
```

as expected.



- If A is symmetric-positive definite (SPD), $\operatorname{cond}(A) = \frac{\lambda_{\max}}{\lambda_{\min}}$
- There are many matrices where we have good estimates for the condition number.
- For example, the tridiagonal matrix below arises in many boundaryvalue problems and has a condition number $\operatorname{cond}(A) \sim \frac{4n^2}{\pi^2}$.

$$A = \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & \ddots & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{pmatrix}$$

• The condition number can also be estimated at low cost when solving a linear system $A\mathbf{x} = \mathbf{b}$ using Gaussian elimination.

Some Special Matrices

- Diagonally dominant
- Symmetric Positive Definite (SPD)
- Banded $(a_{ij} = 0 \text{ for } |i j| > b)$
- Sparse (number of nonzeros per row bounded, independent of n)

Matrices that do not Require Pivoting

• Diagonally dominant:

$$\sum_{i \neq j} |a_{ij}| \leq |a_{jj}|, \ j = 1, \dots, n$$

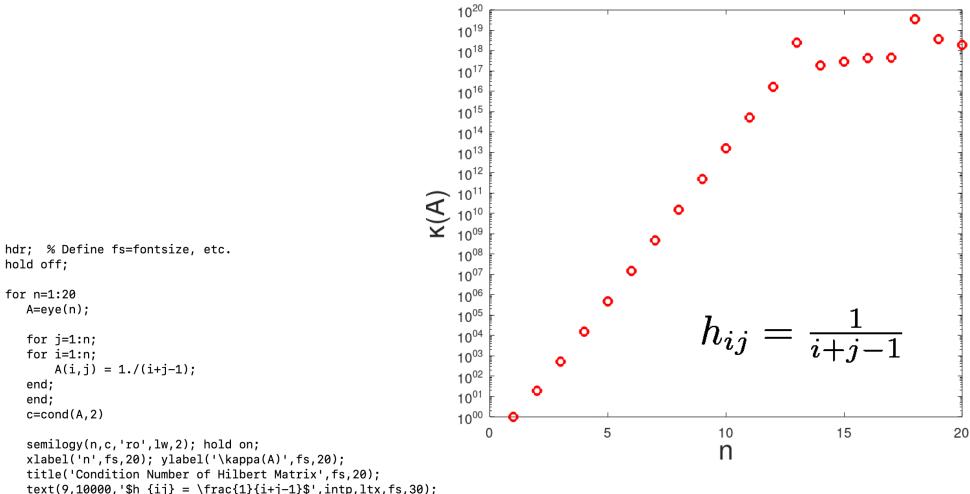
• Symmetric positive definite (SPD):

$$\mathbf{A} = \mathbf{A}^T$$
 and $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \neq 0$

- Some consequences of **A** being SPD:
 - Diagonal entries, $a_{ii} > 0, i = 1, \ldots, n$
 - Eigenvalues, $\lambda_i > 0, i = 1, \ldots, n$
 - Linear systems can be solved with *Cholesky factorization* ("direct" method) or, in the case of a sparse SPD system, *conjugate gradients* ("iterative" method)
 - Being SPD does *not*, however, imply that **A** is well-conditioned. (hilbert.m demo)

Condition Number of Hilbert Matrix

- The Hilbert matrix, $\mathbf{H} = h_{ij} = \frac{1}{i+j-1}$ is SPD
- It is notoriously *ill-conditioned*, however, with $\kappa(\mathbf{H})$ growing exponentially with n



Condition Number of Hilbert Matrix

Example of SPD Matrix

• If **B** is invertible, then $\mathbf{A} = \mathbf{B}^T \mathbf{B}$ is SPD.

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{B}^T \mathbf{B} \mathbf{x} = (\mathbf{B} \mathbf{x})^T \mathbf{B} \mathbf{x} = \mathbf{y}^T \mathbf{y} = \|\mathbf{y}\|_2^2 > 0$$

• The expression $\mathbf{y} = \mathbf{B}\mathbf{y}$ can only be singular for nonzero \mathbf{x} if \mathbf{B} is singular.

Cholesky Factorization

- If **A** is SPD then *LU* factorization can be arranged so that $U = L^T$ (for **L** not *unit* lower triangular)
- This gives the *Cholesky factorization*

$$\mathbf{A} = \mathbf{L}\mathbf{L}^T$$

where \mathbf{L} is lower triangular with posivite diagonal entries

- Algorithm for computing it can be derived by equating corresponding entries of \mathbf{A} and $\mathbf{L}\mathbf{L}^T$
- In 2 \times 2 case, for example,

$$\begin{bmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} \\ 0 & l_{22} \end{bmatrix}$$

implies

$$l_{11} = \sqrt{a_{11}}$$
 $l_{21} = a_{21}/l_{11}$ $l_{22} = \sqrt{a_{22} - l_{21}^2}$

Cholesky Factorization

• One way to write the algorithm, with Cholesky factor **L** overwriting lower triangle of **A**, is

for
$$k = 1$$
 to n (loop over columns)
 $a_{kk} = \sqrt{a_{kk}}$
for $i = k + 1$ to n
 $a_{ik} = a_{ik}/a_{kk}$ (scale current column)
end
for $j = k + 1$ to n
for $i = j$ to n
 $a_{ij} = a_{ij} - a_{ik} \cdot a_{jk}$ (rank-1 update)
end
end
end

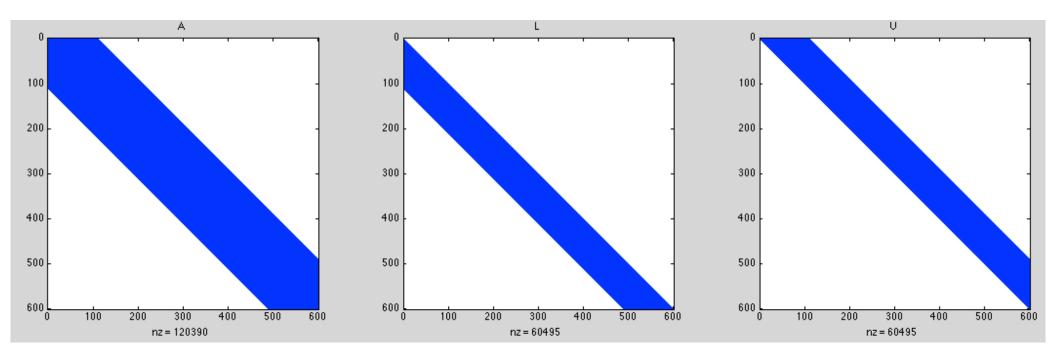
Cholesky Factorization, continued

- Features of Cholesky factorization
 - \bullet Requires that ${\bf A}$ be SPD
 - All n square roots are positive \longrightarrow algorithm is well defined
 - No pivoting required to maintain numerical stability
 - Only lower triangular part of \mathbf{A} is accessed, so only 1/2 the storage is required
 - Only $n^3/6$ multiplications and additions required, so 1/2 the work
- Cholesky requires about half the work and half the storage of LU and avoids the need for pivoting.

Band Matrices

- $a_{ij} = 0$ for |j i| > b
- Gaussian elimination for band matrices differs little from general case–only loop ranges change
- Typically matrix is stored in array by diagonals to avoid storing zero entries
- If pivoting is required for numerical stability, bandwidth can grow (but no more than double)
- General purpose solver for arbitrary bandwidth is similar to code for Gaussian elimination for general matrices
- For fixed small bandwidth, band solver can be extremely simple, especially if pivoting is not required for stability

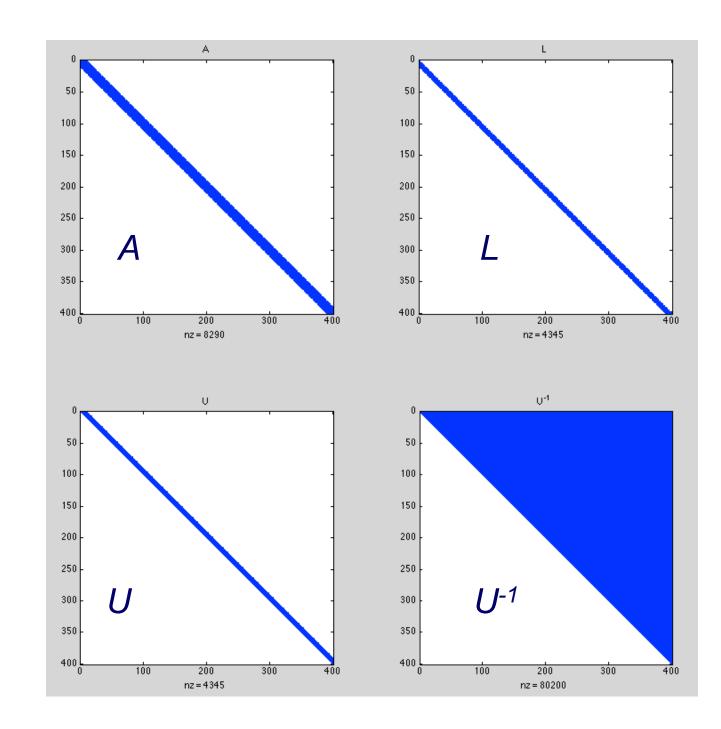
Band Matrices

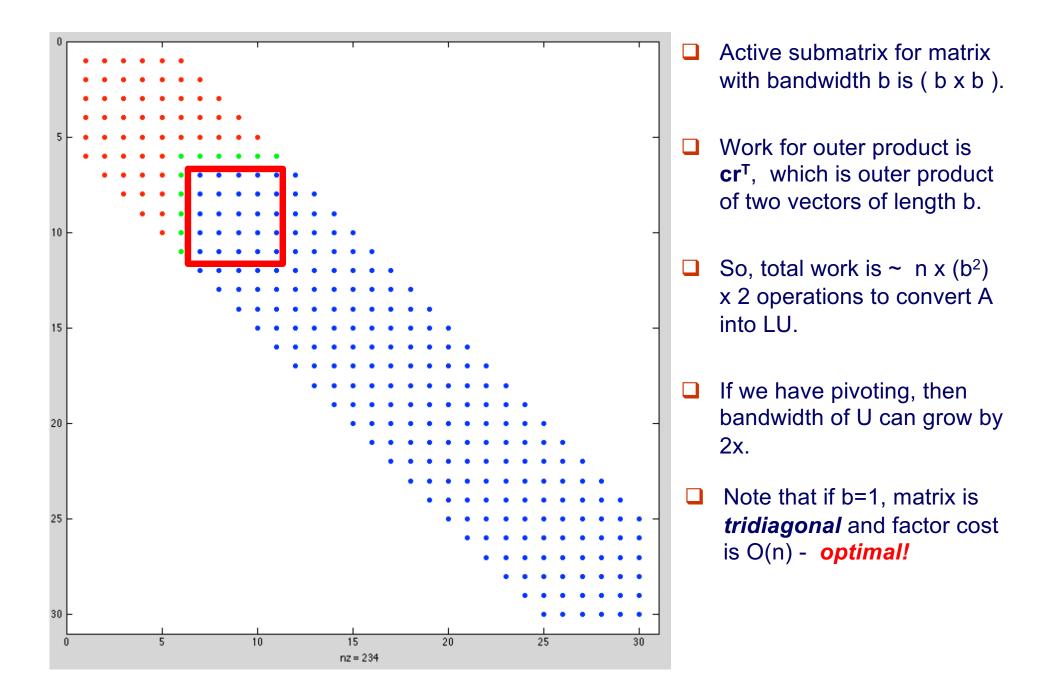


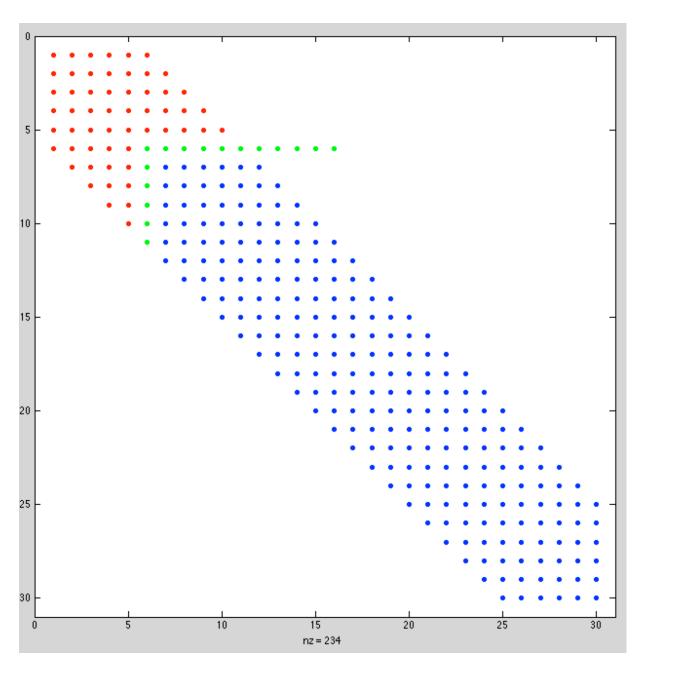
- Significant savings in storage and work if A is banded $\rightarrow a_{ij} = 0$ if |i-j| > b
- The LU factors preserve the nonzero structure of A (unless there is pivoting, in which case, the bandwidth of L can grow by at most 2x).
- □ Storage / solve costs for LU is ~ 2nb
- **Given Sector Cost is ~** n b 2 << n 3

Band Matrices

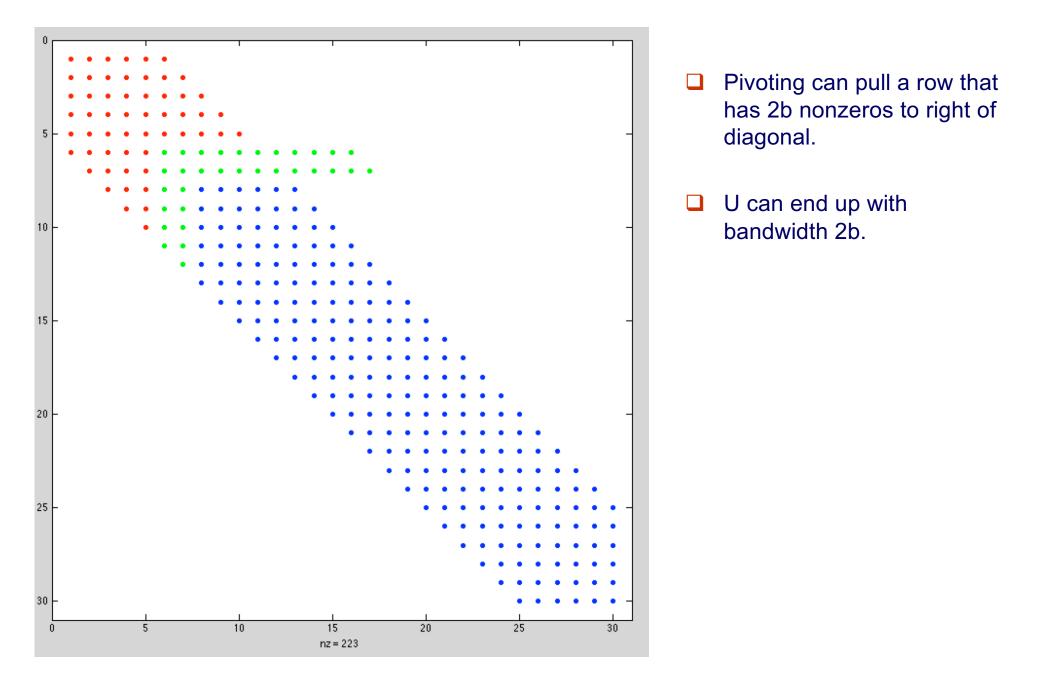
Definitely do not invert **A** or **L** or **U** for banded systems!

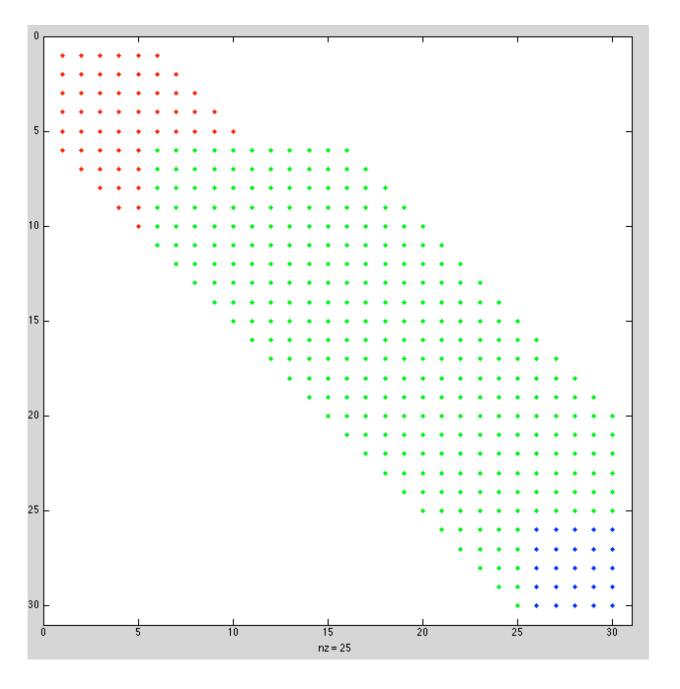






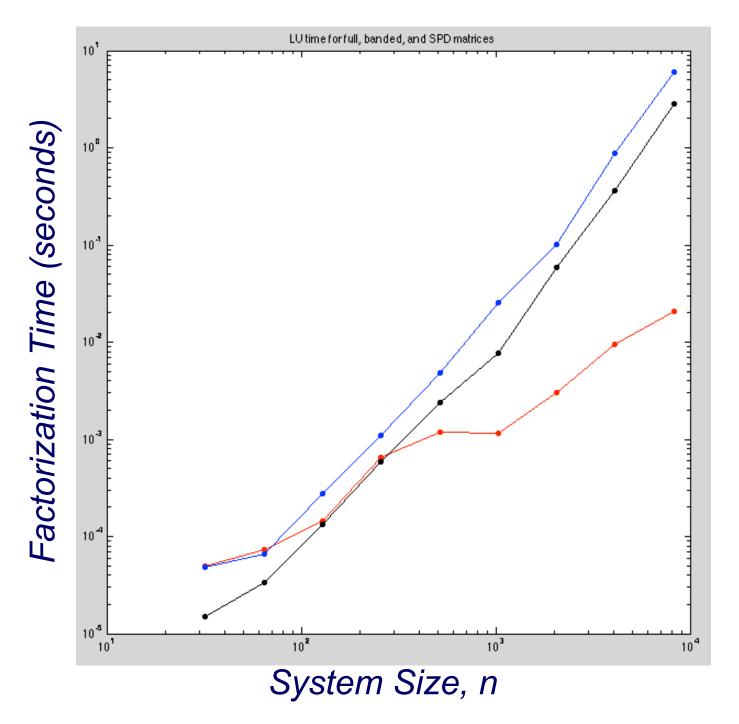
- Pivoting can pull a row that has 2b nonzeros to right of diagonal.
- U can end up with bandwidth 2b.





- Pivoting can pull a row that has 2b nonzeros to right of diagonal.
- U can end up with bandwidth 2b.

Solver Times, Banded, Cholesky (SPD), Full



Solver Times, Banded, Cholesky (SPD), Full

% Demo of banded-matrix costs

```
clear all;
for pass=1:2;
beta=10;
for k=4:13; n = 2^k;
   R=9*eye(n) + rand(n,n); S=R'*R; A=spalloc(n,n,1+2*beta);
   for i=1:n; j0=max(1,i-beta);j1=min(n,i+beta);
       A(i,j0:j1)=R(i,j0:j1);
   end;
   tstart=tic; [L,U]=lu(A); tsparse(k) = toc(tstart);
   tstart=tic; [L,U]=lu(R); tfull(k) = toc(tstart);
   tstart=tic; [C]=chol(S); tchol(k) = toc(tstart);
   nk(k)=n;
   sk(k) = (2*(n^3)/3)/(1.e9*tfull(k)); % GFLOPS
   ck(k) = (2*(n^3)/3)/(1.e9*tchol(k)); % GFLOPS
   [n tsparse(k) tfull(k) tchol(k)]
end;
loglog(nk,tsparse,'r.-',nk,tfull,'b.-',nk,tchol,'k.-')
axis square; title('LU time for full, banded, and SPD matrices')
```

Tridiagonal Matrices

• Consider tridiagonal matrix

$$oldsymbol{A} = egin{bmatrix} b_1 & c_1 & 0 & \cdots & 0 \ a_2 & b_2 & c_2 & & \vdots \ 0 & \ddots & 0 \ \vdots & \ddots & a_{n-1} & b_{n-1} & c_{n-1} \ 0 & \cdots & 0 & a_n & b_n \end{bmatrix}$$

• Gaussian elimination without pivoting reduces to

$$d_1 = b_1$$

for $i = 2$ to n
 $m_i = a_i/d_{i-1}$
 $d_i = b_i - m_i c_{i-1}$
end

Tridiagonal Matrices, continued

 \bullet LU factorization of ${\bf A}$ is then

$$\boldsymbol{L} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ m_2 & 1 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & m_{n-1} & 1 & 0 \\ 0 & \cdots & 0 & m_n & 1 \end{bmatrix}, \quad \boldsymbol{U} = \begin{bmatrix} d_1 & c_1 & 0 & \cdots & 0 \\ 0 & d_2 & c_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & d_{n-1} & c_{n-1} \\ 0 & \cdots & 0 & d_n \end{bmatrix}$$

• Cost of solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ without pivoting is $\sim 8n$ ops

Block Factorization

• Consider 2×2 block partition,

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$$

• Perform block Gaussian elimination,

$$\mathbf{U} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{0} & \mathbf{S}_{22} \end{bmatrix}$$

- Here, $\mathbf{S}_{22} := \mathbf{A}_{22} \mathbf{A}_{21}\mathbf{A}_{11}^{-1}\mathbf{A}_{12}$, is the *Schur complement*,
- Note that

as can be verified by showing that $\mathbf{L}\mathbf{U} = \mathbf{A}$.

Block Factorization

- Block factorizations can be used in many ways.
- We've seen one already, in which we replace inefficient rank-1 updates with memory-efficienty rank-b updates, which lead to matrix-matrix products bearing the brunt of the computational effort
- The *Sherman-Morrison formula* is another instance of using block-factorization

[1] Solve
$$A\tilde{\mathbf{x}} = \tilde{\mathbf{b}}$$
:
 $A \longrightarrow LU$ ($O(n^3)$ work)
Solve $L\tilde{\mathbf{y}} = \tilde{\mathbf{b}}$,
Solve $U\tilde{\mathbf{x}} = \tilde{\mathbf{y}}$ ($O(n^2)$ work).

[2] New problem:

$$(A - \mathbf{u}\mathbf{v}^T)\mathbf{x} = \mathbf{b}.$$
 (different \mathbf{x} and \mathbf{b})

Key Idea:

• $(A - \mathbf{u}\mathbf{v}^T)\mathbf{x}$ differs from $A\mathbf{x}$ by only a small amount of information.

• Rewrite as:
$$A\mathbf{x} + \mathbf{u}\gamma = \mathbf{b}$$

 $\gamma := -\mathbf{v}^T\mathbf{x} \iff \mathbf{v}^T\mathbf{x} + \gamma = 0$

Extended system:

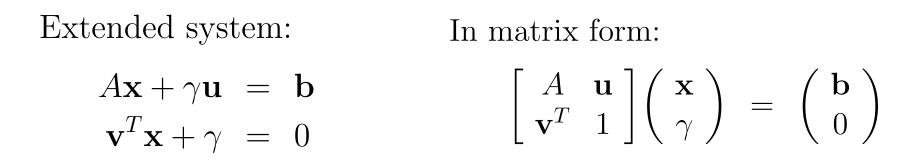
$$A\mathbf{x} + \gamma \mathbf{u} = \mathbf{b}$$
$$\mathbf{v}^T \mathbf{x} + \gamma = 0$$

Extended system:

$$A\mathbf{x} + \gamma \mathbf{u} = \mathbf{b}$$
$$\mathbf{v}^T \mathbf{x} + \gamma = 0$$

In matrix form:

$$\begin{bmatrix} A & \mathbf{u} \\ \mathbf{v}^T & 1 \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix}$$



Eliminate for γ :

$$\begin{bmatrix} A & \mathbf{u} \\ 0 & 1 - \mathbf{v}^T A^{-1} \mathbf{u} \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ -\mathbf{v}^T A^{-1} \mathbf{b} \end{pmatrix}$$

Extended system: In matrix form: $\begin{array}{rcl}
A\mathbf{x} + \gamma \mathbf{u} &= \mathbf{b} \\
\mathbf{v}^T \mathbf{x} + \gamma &= 0
\end{array} \qquad \begin{bmatrix}
A & \mathbf{u} \\
\mathbf{v}^T & 1
\end{bmatrix}
\begin{pmatrix}
\mathbf{x} \\
\gamma
\end{pmatrix} = \begin{pmatrix}
\mathbf{b} \\
0
\end{pmatrix}$

Eliminate for γ :

$$\begin{bmatrix} A & \mathbf{u} \\ 0 & 1 - \mathbf{v}^T A^{-1} \mathbf{u} \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ -\mathbf{v}^T A^{-1} \mathbf{b} \end{pmatrix}$$

 $\gamma = -\left(1 - \mathbf{v}^T A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^T A^{-1} \mathbf{b}$

Extended system: In matrix form: $\begin{array}{rcl}
A\mathbf{x} + \gamma \mathbf{u} &= \mathbf{b} \\
\mathbf{v}^T \mathbf{x} + \gamma &= 0
\end{array} \qquad \begin{bmatrix}
A & \mathbf{u} \\
\mathbf{v}^T & 1
\end{bmatrix} \begin{pmatrix}
\mathbf{x} \\
\gamma
\end{pmatrix} = \begin{pmatrix}
\mathbf{b} \\
0
\end{pmatrix}$

Eliminate for γ :

$$\begin{bmatrix} A & \mathbf{u} \\ 0 & 1 - \mathbf{v}^T A^{-1} \mathbf{u} \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ -\mathbf{v}^T A^{-1} \mathbf{b} \end{pmatrix}$$

$$\gamma = -\left(1 - \mathbf{v}^T A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^T A^{-1} \mathbf{b}$$
$$\mathbf{x} = A^{-1} \left(\mathbf{b} - \mathbf{u}\gamma\right) = A^{-1} \left[\mathbf{b} + \mathbf{u} \left(1 - \mathbf{v}^T A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^T A^{-1} \mathbf{b}\right]$$

Extended system: In matrix form: $\begin{array}{rcl}
A\mathbf{x} + \gamma \mathbf{u} &= \mathbf{b} \\
\mathbf{v}^T \mathbf{x} + \gamma &= 0
\end{array} \qquad \begin{bmatrix}
A & \mathbf{u} \\
\mathbf{v}^T & 1
\end{bmatrix}
\begin{pmatrix}
\mathbf{x} \\
\gamma
\end{pmatrix} = \begin{pmatrix}
\mathbf{b} \\
0
\end{pmatrix}$

Eliminate for γ :

$$\begin{bmatrix} A & \mathbf{u} \\ 0 & 1 - \mathbf{v}^T A^{-1} \mathbf{u} \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ -\mathbf{v}^T A^{-1} \mathbf{b} \end{pmatrix}$$

$$\gamma = -\left(1 - \mathbf{v}^T A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^T A^{-1} \mathbf{b}$$
$$\mathbf{x} = A^{-1} \left(\mathbf{b} - \mathbf{u}\gamma\right) = A^{-1} \left[\mathbf{b} + \mathbf{u} \left(1 - \mathbf{v}^T A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^T A^{-1} \mathbf{b}\right]$$

 $(A - \mathbf{u}\mathbf{v}^T)^{-1} = A^{-1} + A^{-1}\mathbf{u} (1 - \mathbf{v}^T A^{-1}\mathbf{u})^{-1} \mathbf{v}^T A^{-1}.$

Sherman Morrison: Potential Singularity

- Consider the modified system: $(A \mathbf{u}\mathbf{v}^T)\mathbf{x} = \mathbf{b}.$
- The solution is

$$\mathbf{x} = (A - \mathbf{u}\mathbf{v}^T)^{-1}\mathbf{b}$$
$$= \left[I + A^{-1}\mathbf{u}\left(1 - \mathbf{v}^T A^{-1}\mathbf{u}\right)^{-1}\mathbf{v}^T A^{-1}\right]A^{-1}\mathbf{b}.$$

- If $1 \mathbf{v}^T A^{-1} \mathbf{u} = 0$, failure.
- Why?

Sherman Morrison: Potential Singularity

• Let
$$\tilde{A} := (A - \mathbf{u}\mathbf{v}^T)$$
 and consider,
 $\tilde{A}A^{-1} = (A - \mathbf{u}\mathbf{v}^T)A^{-1}$
 $= (I - \mathbf{u}\mathbf{v}^TA^{-1}).$

• Look at the product $\tilde{A}A^{-1}\mathbf{u}$,

$$\tilde{A} A^{-1} \mathbf{u} = (I - \mathbf{u} \mathbf{v}^T A^{-1}) \mathbf{u}$$

= $\mathbf{u} - \mathbf{u} \mathbf{v}^T A^{-1} \mathbf{u}$.

• If $\mathbf{v}^T A^{-1} \mathbf{u} = 1$, then

$$\tilde{A} A^{-1} \mathbf{u} = \mathbf{u} - \mathbf{u} = 0,$$

which means that \tilde{A} is singular since we assume that A^{-1} exists.

• Thus, an unfortunate choice of **u** and **v** can lead to a singular modified matrix and this singularity is indicated by $\mathbf{v}^T A^{-1} \mathbf{u} = 1$.

Sherman-Morrison Example

• Q: What is the cost of solving Ax = b if A is $n \times n$ and of the form below?

$$A = \begin{bmatrix} 1.0 & -.1 & -.1 & -.1 & -.1 & -.1 & -.1 & -.1 \\ -.1 & 1.0 & -.1 & -.1 & -.1 & -.1 & -.1 \\ -.1 & -.1 & 1.0 & -.1 & -.1 & -.1 & -.1 \\ -.1 & -.1 & -.1 & 1.0 & -.1 & -.1 & -.1 \\ -.1 & -.1 & -.1 & -.1 & 1.0 & -.1 & -.1 \\ -.1 & -.1 & -.1 & -.1 & 1.0 & -.1 & -.1 \\ -.1 & -.1 & -.1 & -.1 & -.1 & 1.0 & -.1 \\ -.1 & -.1 & -.1 & -.1 & -.1 & 1.0 & -.1 \\ -.1 & -.1 & -.1 & -.1 & -.1 & 1.0 \end{bmatrix}$$