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Roots of Unity

For given integer n, we use notation

ωn = cos(2π/n)− i sin(2π/n) = e−2πi/n

for primitive nth root of unity, where i =
√
−1

nth roots of unity, sometimes called twiddle factors in this
context, are then given by ωkn or by ω−k

n , k = 0, . . . , n− 1

For convenience, we will assume that n is power of two,
and all logarithms used will be base two

We will also index sequences (components of vectors)
starting from 0 rather than 1

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 3 / 34



Discrete Fourier Transform
Convolution

Fast Fourier Transform
Parallel FFT

Roots of Unity
DFT
Inverse DFT

Discrete Fourier Transform

Discrete Fourier Transform, or DFT, of sequence
x = [x0, . . . , xn−1]

T is sequence y = [y0, . . . , yn−1]
T given

by

ym =

n−1∑
k=0

xk ω
mk
n , m = 0, 1, . . . , n− 1

or
y = Fn x

where entries of DFT matrix Fn are given by

{Fn}mk = ωmkn
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Inverse DFT

It is easily seen that

F−1
n = (1/n)FH

n

So inverse DFT is given by

xk =
1

n

n−1∑
m=0

ym ω
−mk
n k = 0, 1, . . . , n− 1
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Example

F4 =


1 1 1 1
1 ω1 ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i



4F−1
4 =


1 1 1 1
1 ω−1 ω−2 ω−3

1 ω−2 ω−4 ω−6

1 ω−3 ω−6 ω−9

 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i
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Convolution

Convolution takes input a and b and computes c

∀k ∈ [0, n− 1] ck =

k∑
j=0

ajbk−j

If a and b are coefficients of degree n/2− 1 polynomials

pa(x) =

n/2−1∑
k=0

akx
k, pb(x) =

n/2−1∑
k=0

bkx
k

the convolution computes the coefficients c of the product

pc(x) = pa(x)pb(x) =

n−1∑
k=0

ckx
k

naive evaluation costs O(n2) operations
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Convolution and Toeplitz Matrices

Convolution can be interpreted as matrix-vector
multiplication with a triangular Toeplitz matrix

[c0 c1 c2 c3] = [a1 a2 a3 a4]


b0 b1 b2 b3
0 b0 b1 b2
0 0 b0 b1
0 0 0 b0


Toeplitz and Hankel matrices (in the latter, each
antidiagonal is defined by a single element) provide a
general matrix representation for convolutional operators
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Convolution via Interpolation by DFT

The DFT, Fna evaluates polynomial pa at each ωj

The values of pc at each ωj are then easily obtained

pc(ωj) = pa(ωj)pb(ωj)

The inverse DFT, F−1
n pc(x) interpolates the values of the

polynomial pc at each ωj producing its coefficients c

The overall procedure is described by

c = F−1
n [(Fna)� (Fnb)]

where � is an elementwise product (a and b are padded
with trailing zeros)
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Convolution via DFT

Lets write out the full expression

ck =
1

n

∑
s

ω−ks
n

(∑
j

ωsjn aj

)(∑
t

ωstn bt

)
Rearrange the order of the summations to see what
happens to every product of a and b

ck =
1

n

∑
s

∑
j

∑
t

ω(j+t−k)s
n ajbt

For any u = j + t− k 6= 0, we observe
∑

s(ω
u
n)s = 0

When j + t− k = 0 the products ω(s+t−j)k
n = 1, so there are

n nonzero terms ajbk−j in the summation
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Computing DFT

To illustrate, consider computing DFT for n = 4,

ym =

3∑
k=0

xk ω
mk
n , m = 0, . . . , 3

Writing out equations in full,

y0 = x0ω
0
n + x1ω

0
n + x2ω

0
n + x3ω

0
n

y1 = x0ω
0
n + x1ω

1
n + x2ω

2
n + x3ω

3
n

y2 = x0ω
0
n + x1ω

2
n + x2ω

4
n + x3ω

6
n

y3 = x0ω
0
n + x1ω

3
n + x2ω

6
n + x3ω

9
n
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Computing DFT

Noting that

ω0
n = ω4

n = 1, ω2
n = ω6

n = −1, ω9
n = ω1

n

and regrouping, we obtain

y0 = (x0 + ω0
nx2) + ω0

n(x1 + ω0
nx3)

y1 = (x0 − ω0
nx2) + ω1

n(x1 − ω0
nx3)

y2 = (x0 + ω0
nx2) + ω2

n(x1 + ω0
nx3)

y3 = (x0 − ω0
nx2) + ω3

n(x1 − ω0
nx3)

DFT can now be computed with only 8 additions and 6
multiplications, instead of expected (4− 1) ∗ 4 = 12
additions and 42 = 16 multiplications
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Computing DFT

Actually, even fewer multiplications are required for this
small case, since ω0

n = 1, but we have tried to illustrate how
algorithm works in general

Main point is that computing DFT of original 4-point
sequence has been reduced to computing DFT of its two
2-point even and odd subsequences

This property holds in general: DFT of n-point sequence
can be computed by breaking it into two DFTs of half
length, provided n is even
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Computing DFT

General pattern becomes clearer when viewed in terms of
first few Fourier matrices

F1 = 1, F2 =

[
1 1
1 −1

]
, F4 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


Let P4 be permutation matrix

P4 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
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Computing DFT

Let D2 be diagonal matrix

D2 = diag(1, ω4) =

[
1 0
0 −i

]
Then we have

F4P4 =


1 1 1 1
1 −1 −i i

1 1 −1 −1
1 −1 i −i

 =

[
F2 D2F2

F2 −D2F2

]

Thus, F4 can be rearranged so that each block is
diagonally scaled version of F2

Such hierarchical splitting can be carried out at each level,
provided number of points is even
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Computing DFT

In general, Pn is permutation that groups even-numbered
columns of Fn before odd-numbered columns, and

Dn/2 = diag
(

1, ωn, . . . , ω
(n/2)−1
n

)
To apply Fn to sequence of length n, we need merely
apply Fn/2 to its even and odd subsequences and scale
results, where necessary, by ±Dn/2

Resulting recursive divide-and-conquer algorithm for
computing DFT is called Fast Fourier Transform, or FFT

FFT is particular way of computing DFT efficiently
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Radix-2 Fast Fourier Transform (FFT)

Consider b = Fna, we have

∀j ∈ [0, n− 1] bj =

n−1∑
k=0

ωjkn ak

Express DFT as two DFTs of dimension n/2, with a
different root of unity ωn/2
Separate summands into odds and evens, use ωn/2 = ω2

n

bj =

n/2−1∑
k=0

ωj(2k)n a2k +

n/2−1∑
k=0

ωj(2k+1)
n a2k+1

=

n/2−1∑
k=0

ωjkn/2a2k + ωjn

n/2−1∑
k=0

ωjkn/2a2k+1
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Radix-2 Fast Fourier Transform (FFT), contd.

bj =

n/2−1∑
k=0

ωjk
n/2a2k︸ ︷︷ ︸

uj

+ωj
n

n/2−1∑
k=0

ωjk
n/2a2k+1︸ ︷︷ ︸
vj

The summations for bj and bj+n/2 are closely related,

bj+n/2 =

n/2−1∑
k=0

ω
(j+n/2)k
n/2 a2k + ωj+n/2

n

n/2−1∑
k=0

ω
(j+n/2)k
n/2 a2k+1

Now ω
(j+n/2)k
n/2 = ωjk

n/2 since (ω
n/2
n/2)k = 1k = 1 and using ωn/2

n = −1,

bj+n/2 =

n/2−1∑
k=0

ωjk
n/2a2k︸ ︷︷ ︸

uj

−ωj
n

n/2−1∑
k=0

ωjk
n/2a2k+1︸ ︷︷ ︸
vj
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Radix-2 Fast Fourier Transform (FFT), contd.

Let vectors u and v be two recursive FFTs, ∀j ∈ [0, n/2− 1]

uj =

n/2−1∑
k=0

ωjk
n/2a2k, vj =

n/2−1∑
k=0

ωjk
n/2a2k+1

Given u and v scale using "twiddle factors" zj = ωj
n · vj

Then it suffices to combine the vectors as follows b =

[
u + z
u− z

]
This recombination is an FFT of dimension 2

b =

[
b1
b2

]
= vec

([
b1 b2

])
= vec

([
u z

] [1 1
1 −1

]
︸ ︷︷ ︸
F4[0:2,0:2]

)

Radix-r algorithm for any A ∈ Rr×n/r

Fn vec (A) = vec
((

[Fn[0 : r, 0 : n/r]� (FrA)]Fn/r)T
)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 19 / 34



Discrete Fourier Transform
Convolution

Fast Fourier Transform
Parallel FFT

Computing DFT
FFT Algorithm

FFT Algorithm

procedure fft(x, y, n, ω)
if n = 1 then

y[0] = x[0]
else

for k = 0 to (n/2)− 1
p[k] = x[2k]
s[k] = x[2k + 1]

end
fft(p, q, n/2, ω2)
fft(s, t, n/2, ω2)
for k = 0 to n− 1

y[k] = q[k mod (n/2)] + ωkt[k mod (n/2)]
end

end
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Complexity of FFT Algorithm

There are log n levels of recursion, each of which involves
Θ(n) arithmetic operations, so total cost is Θ(n log n)

By contrast, straightforward evaluation of matrix-vector
product defining DFT requires Θ(n2) arithmetic operations,
which is enormously greater for long sequences

n n log n n2

64 384 4096
128 896 16384
256 2048 65536
512 4608 262144

1024 10240 1048576
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FFT Algorithm

For clarity, separate arrays were used for subsequences,
but transform can be computed in place using no additional
storage

Input sequence is assumed complex; if input sequence is
real, then additional symmetries in DFT can be exploited to
reduce storage and operation count by half

Output sequence is not produced in natural order, but
either input or output sequence can be rearranged at cost
of Θ(n log n), analogous to sorting

FFT algorithm can be formulated using iteration rather than
recursion, which is often desirable for greater efficiency or
when programming language does not support recursion
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Computing Inverse DFT

Because of similar form of DFT and its inverse, FFT
algorithm can also be used to compute inverse DFT
efficiently

Ability to transform back and forth quickly between time
and frequency domains makes it practical to perform any
computations or analysis that may be required in
whichever domain is more convenient and efficient
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Binary Exchange Parallel FFT

To obtain fine-grain decomposition of FFT, we assign input
data xk to task k, which also computes result yk

x0
x1
x2
x3
x4
x5
x6
x7

y0
y1
y2
y3
y4
y5
y6
y7

At stage m of algorithm, tasks k and j exchange data,
where k and j differ only in their mth bits
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Binary Exchange Parallel FFT

There are n tasks and log n stages, so parallel time
required to compute FFT is

Tn = (γ + α+ β) log n

where γ is cost of multiply-add, and α+ β is cost of
exchanging one number between pair of tasks at each
stage

Hypercube is natural network for FFT algorithm
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Binary Exchange Parallel FFT

To obtain smaller number of coarse-grain tasks,
agglomerate sets of n/p components of input and output
vectors x and y, where we assume p is also power of two

x0
x1
x2
x3
x4
x5
x6
x7

y0
y1
y2
y3
y4
y5
y6
y7
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Binary Exchange Parallel FFT

Components having their log p most significant bits in
common are assigned to same task

Thus, exchanges are required in binary exchange
algorithm only for first log p stages, since data are local for
remaining log(n/p) stages
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Binary Exchange Parallel FFT

Each stage involves updating of n/p components by each
task, and exchange of n/p components for each of first
log p stages

Thus, total time required using hypercube network is

Tp = α (log p) + β n (log p)/p+ γ n (log n)/p

To determine isoefficiency function, set

γ n log n ≈ E (αp log p+ β n log p+ γ n log n)

which holds if n = Θ(p), so isoefficiency function is
Θ(p log p), since T1 = Θ(n log n)
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Transpose Parallel FFT

Binary exchange algorithm has one phase that is
communication free and another phase that requires
communication at each stage

Another approach is to realign data so that both
computational phases are communication free, and only
communication is for data realignment phase between
computational phases

To accomplish this, data can be organized in
√
n×
√
n

array, as illustrated next for n = 16
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Transpose Parallel FFT
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Transpose Parallel FFT

If array is partitioned by columns, which are assigned to
p ≤
√
n tasks, then no communication is required for first

log(
√
n ) stages

Data are then transposed using all-to-all personalized
collective communication, so that each row of data array is
now stored in single task

Thus, final log(
√
n ) stages now require no communication

Overall performance of transpose algorithm depends on
particular implementation of all-to-all personalized
collective communication
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Transpose Parallel FFT

Straightforward approach yields total parallel time

Tp = Θ(α log p+ β n log p/p+ γ n log n/p)

Compared with binary exchange algorithm, transpose
algorithm has higher cost due to message start-up but
lower cost due to per-word transfer time

Thus, choice of algorithm depends on relative values of α
and β for given parallel system
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